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Cancer stem cells (CSCs) are believed to exhibit distinctive self-renewal, proliferation,

and differentiation capabilities, and thus play a significant role in various aspects of

cancer. CSCs have significant impacts on the progression of tumors, drug resistance,

recurrence and metastasis in different types of malignancies. Due to their primary role,

most researchers have focused on developing anti-CSC therapeutic strategies, and

tremendous efforts have been put to explore methods for selective eradication of these

therapeutically resistant CSCs. In recent years, many reports have shown the use of

CSCs-specific approaches such as ATP-binding cassette (ABC) transporters, blockade

of self-renewal and survival of CSCs, CSCs surface markers targeted drugs delivery and

eradication of the tumor microenvironment. Also, various therapeutic agents such as

small molecule drugs, nucleic acids, and antibodies are said to destroy CSCs selectively.

Targeted drug delivery holds the key to the success of most of the anti-CSCs based

drugs/therapies. The convention CSCs-specific therapeutic agents, suffer from various

problems. For instance, limited water solubility, small circulation time and inconsistent

stability of conventional therapeutic agents have significantly limited their efficacy. Recent

advancement in the drug delivery technology has demonstrated that specially designed

nanocarrier-based drug delivery approaches (nanomedicine) can be useful in delivering

sufficient amount of drug molecules even in the most interiors of CSCs niches and

thus can overcome the limitations associated with the conventional free drug delivery

methods. The nanomedicine has also been promising in designing effective therapeutic

regime against pump-mediated drug resistance (ATP-driven) and reduces detrimental

effects on normal stem cells. Here we focus on the biological processes regulating CSCs’

drug resistance and various strategies developed so far to deal with them.We also review

the various nanomedicine approaches developed so far to overcome these CSCs related

issues and their future perspectives.

Keywords: CSCs, nanomedicine, immunotherapy of cancer, nanocarrier, drug resistance of CSC, autophagy,

tumor suppressor protein p53

INTRODUCTION

Initial studies to define the characteristics of tumors revealed the presence of a rare population
which not only have the self-renewing capacity and proliferate for long periods but could also
transfer tumors on transplantation in experimental recipient models (Nowell, 1976; Quintana
et al., 2010; Meacham and Morrison, 2013). These cells are termed as cancer stem cells (CSCs) or
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tumor supporting cells or tumor-propagating cells. Showing
further experimentally supported the hypothesis through
the transfer of tumorigenic properties of CD34+/CD38−
human acute myeloid leukemia cells into severe combined
immunodeficiency mice (SCID) (Bonnet and Dick, 1997).
Since then CSCs are reported in many types of solid tumor
(carcinoma) including brain (Singh et al., 2004), lung (Eramo
et al., 2008), breast (Al-Hajj et al., 2003; Pece et al., 2010), colon
(Diehn and Clarke, 2006; O’Brien et al., 2007; Ricci-Vitiani et al.,
2007), liver (Yang et al., 2008), pancreatic cancers (Li et al., 2007)
through similar xenotransplantation experiments in mice. Use
of genetically engineered mice model to demonstrate stem cell
activities by independent research groups (Skin, intestine, and
brain tumors) has provided direct evidence in their support
(Chen et al., 2012; Driessens et al., 2012; Schepers et al., 2012).
Moreover, the ambiguities raised by some critiques about the
presence of stem cell activities in tumor cell through direct
evidence in natural settings is well resolved (Reya et al., 2001;
Maenhaut et al., 2010; Chen et al., 2012; Schepers et al., 2012).
Various studies provide substantial evidence of drug resistance,
showing the crucial role of CSCs in both tumor progression and
disease relapse (Dean et al., 2005; Eramo et al., 2006; Yu et al.,
2007; Dylla et al., 2008; Diehn et al., 2009; Liu Y. P. et al., 2013).
The evident central role of CSCs in tumor and their related
treatments modalities compelled people to define characteristics
for the identification which led to accumulating reports on
CSCs phenotypic markers. For example high expression level
of drug efflux transporter genes, enhanced activation of anti-
apoptotic activities, significantly up-modulated DNA repair
activities, slow rate of proliferation (often quiescent) capabilities
to program the metabolic processes (Vinogradov and Wei,
2012). It is important to be noticed that current treatment
for cancer treatments including chemotherapy/radiotherapy
and tumor targeting agents may further enhance the CSCs
population and can make it harder to be cured due to increasing
spread and survival of them (Eramo et al., 2006; Ma et al.,
2008). Thus, there are significant chances of tumor relapse after
most tumor treatments with anticancer agents that can kill a
bulk amount of tumor cells while drug-resistant CSCs remain
unaffected and cause regression (Yu et al., 2012; Flemming,
2015; Li S. Y. et al., 2015). These reports indicate an extreme
demand for the more clinical and preclinical studies to define
the various characteristics of CSCs and how does CSCs respond
to different therapeutic regimes. Present strategies to manage
CSCs related cancer relapse imply different approaches such as
targeting CSCs specific surface markers, ignition of ATP-binding
cassette (ABC) transporters blocking, downregulating CSCs
self-renewal and survival signaling pathways and diminishing
the tumor microenvironment/niches (Beck and Blanpain, 2013;
Chen et al., 2013). Since it plays crucial in cancer treatment,
CSCs has been an attractive target for the development of
most efficient anti-cancer therapies. During past several years
increasing number of anti-cancer agents which kill CSCs have
been reported, e.g., salinomycin (Gupta et al., 2009), curcumin
(Li et al., 2014), thioridazine hydrochloride (Sachlos et al.,
2012), sulforaphane (Li et al., 2010), miR-34a (Liu et al., 2011),
and miR-130b (Ma et al., 2010). However, the typical rate

limiting factors which remain associated with other anti-cancer
drugs (e.g., small molecules, peptide-based drugs, and nucleic
acid based drugs) are also present with them. For instance,
off-target effects, poor water solubility, inconsistent stability,
short circulation time, and inefficient distribution along with
low therapeutic indexes are most commonly reported limitations
(Chen, 2010). Recent advancements in nanomedicine technology
have raised the hopes for the development of optimal cancer
therapeutics. There are various types of nanocarriers such as
liposomes, polymeric micelles, dendrimers, carbon nanotubes
and metal nanoparticles, which can overcome the limitations
as mentioned earlier (Davis et al., 2008; Rink et al., 2013).
The nanoparticle-based drug delivery system own superior
pharmacokinetic/pharmacodynamic qualities that make it
an excellent method of choice for the cancer management.
Nanoparticle offers higher carrier capacities for most of the
drugs with improved pharmacokinetic and pharmacodynamic
profiles (Sun T. et al., 2014). These properties are carefully
controlled through their component type, size and surface
characteristics which make them capable of having reduced
harmful side-effects (Sun T. et al., 2014). There are few
examples of clinically approved nanomedicines (nanocarbon
based), e.g., liposomal doxorubicin (Doxil) (Barenholz, 2012),
Albumin-bound paclitaxel (Abraxane) (Gordon et al., 2001)
and PEG-1 Asparaginase (Oncaspar) (Gordon et al., 2004).
There are few more novel and sophisticated nanoparticles with
multiple functions which are being evaluated for their various
characteristics and would be available in the near future as
an advanced version of nanomedicines (Sun Q. et al., 2014).
The successful treatment of cancer requires the development
of approaches which can efficiently eradicate cancer and
much-improved application of this new drug-delivery modality
(nanomedicines) (Zhao et al., 2013). There are reports on
the development of new regime by using these technological
advancements to track the challenges posed by CSCs in the
treatment of cancer. For example, a significant reduction in
the growth of anchorage-dependent clonogenic growth of
CD133+ CSCs in glioblastoma cell-based studies by using
Nano-CurcTM (Sign Path Pharmaceuticals, Inc., Pennsylvania,
USA; 1.5% curcumin content) (Lim et al., 2011). Recently,
Sun et al., demonstrated enhanced anti-cancer activities of
doxorubicin and all-trans-retinoic acid through a polymer
co-delivery system in human breast cancer mice models (Sun
et al., 2015).

Thus, it seems that Nanotechnology-based approaches are
going to be the primary tool for developing most effective
anti-cancer therapies and an increasing number of CSCs-
targeting nanomedicines are being developed and even being
evaluated through preclinical studies. For the introduction of
these nanomedicines into clinical practice, a large number of
detailed experimental and other relevant information is essential
and present article focuses on the CSCs related biological
processes. The objective of this review is to discuss different
nanomedicines targeted toward CSCs and also the limitations
associated with their clinical uses. The first section deals with
the comprehensive details about the CSCs biology and various
therapeutic approaches to tackle them. Whereas, the second part
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of the article provides a detailed understanding of the different
types of Nanocarriers along with their combination of different
CSCs management approach.

CSCs AND VARIOUS THERAPEUTIC
APPROACHES

In the1800s, embryonal rest theory stated the possible relationship
between the origin of cancer and stem cells (Sell, 2009). Around
50 years ago various studies started on germinal cell cancer
(teratocarcinoma)showing the generation of cancer cells from
stem cells, and it proposed a concept that tumors contain
different types of stem cells (Sell, 2009). Studies on liver cancer
which shown the origin of liver cancer from dedifferentiated
mature hepatocytes further strengthen this concept (Sell,
2009). Since then, our understanding of cancer etiology has
significantly improved through modern genomic, proteomic,
and functional analytical technologies (Hanahan and Weinberg,
2011). Burgeoning information through various cancer studies
about the heterogeneity and molecular mechanisms regulating
various components of cancer cells has firmly established the
existence of cancer stem (-like) cells (CSCs) or Tumor-initiating
cells (TICs) (Nguyen et al., 2012). A unique fraction of cells
that have self-renewal, differentiation capabilities are further
defined by using many specific cell surface markers and various
intracellular dyes (e.g., Hoechst, 33342, PKH26) (Oates et al.,
2009; Pece et al., 2010). It is a common assumption that CSCs can
differentiate into various derivatives that comprise the significant
share of tumor tissue. The genesis of CSCs in the solid tumor is
not very well understood. It is shown that CSCs may arise from
a series of naturally occurring stem cells or some differentiated
cell also (Bjerkvig et al., 2005; Bu and Cao, 2012). Reports
are indicating crucial role played by epithelial-mesenchymal
transition (EMT) programs in generating CSCs in many types

of malignancies (Mani et al., 2008; Gupta et al., 2009). The
EMT (and reverse process Mesenchymal-Epithelial Transition or
MET) play a central role in normal embryogenesis and often
gets activated during cancer invasion and metastasis (Hay, 1995;
Perez-Pomares and Munoz-Chapuli, 2002). Many transcription
factors which have pleiotropic activity have been demonstrated
to play a central role in embryogenesis by orchestrating EMTs
as reported by several developmental genetic research studies
(Briegel, 2006). Further advancements occurred in defining
malignant traits, e.g., motility, invasiveness, and resistance to
apoptosis in neoplastic cells (Comijn et al., 2001; Oft et al.,
2002; Yang et al., 2004; Huber et al., 2005; Savagner et al.,
2005; Hartwell et al., 2006; Cheng et al., 2007; Mani et al.,
2007; Peinado et al., 2007). Few of these transcription factors
might play important roles in wound healing (Savagner et al.,
2005). Due to their similarities with normal stem cells, CSCs
are believed to be the primary dragging force for tumorigenesis
(Medema, 2013). The conventional anticancer treatment like
radiotherapy and chemotherapy actually may enrich the CSCs
due to their natural longer lifespan and resistance toward
the conventional treatment modalities (Dean et al., 2005; Bao
et al., 2006a; Woodward et al., 2007). CSCs enrichment has
been associated with the ability of tumors to proliferate and
disseminate to remote lesions which result in the development
of metastasis and also may cause their relapse after initial
therapeutic success as reported by studies (Li Y. et al., 2015).
Collectively, these characteristics of CSCs make the tumor
more resistant toward most of the treatment modalities and a
major reason of cancer-related death (Figure 1). It is evident
that extensive efforts have been made to develop anti-CSCs
therapeutic modalities that can efficiently eradicate CSCs and
reduce the risks of metastasis and relapse (Chen et al., 2013).
In this direction inhibition of ABC transporters has been very
attractive. The ABC transporters notable on the CSC surface
and inhibition of these receptors make CSCs more sensitive to

FIGURE 1 | Illustration of various anti-CSCs modalities to cure different types of cancers. There have been accumulating study and clinical report about the various

mechanism for targeting CSCs and other cancer cells as indicated above. Various research/clinicians have also demonstrated different molecules or strategies with

variable efficiencies.
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the other therapeutic agents and thus improve overall efficiency
(Yang et al., 2014). Similarly, surface markers and blockade
of signaling pathways could be an effective anti-CSCs therapy
(Table 1). Another important strategy may be the demolition
or alteration of CSCs microenvironment or niche. Few novel
anti-CSCs strategies are also surfacing such as induction of
autophagy in CSCs and modulation of abnormal metabolism of
CSCs (Figure 2).

Strategies for Energy-Dependent Efflux
Mechanism to Target CSCs
CSCs are believed to occur in tumor tissues, and similar to
healthy stem cells CSCs also have a high expression level of
ABC transporters (Dean et al., 2005). This ABC transporter
expression is correlated with multidrug resistance in CSCs. The
ABC transporters are supposed to reduce cellular accumulation
of various types of therapeutic agents, and thus CSCs become
relatively more resistant to even higher doses of anti-cancer
agents (Gottesman et al., 2002). Stem cells are often defined by
their ability to get stained very lightly by Hoechst 33342 due
to overexpression of a drug efflux protein called BCRP (breast
cancer resistance protein) (or ABCG2) which actively pumps out
the dye molecules. Therefore, Hoechst 33342 dye efflux method
is a common method of choice for the isolation/identification
of stem cells as side-population’ and tumor cell identification
(Goodell et al., 1996; Hirschmann-Jax et al., 2004; Ho et al.,
2007; Britton et al., 2012). These findings prompted researchers to
develop the inhibitory strategies for the ABCG2 pump, andmany
such molecules have been evaluated including Fumitremorgin
C (Rabindran et al., 2000). Moreover, Tryprostatin (Woehlecke
et al., 2003) that are shown to be effective in sensitizing
and killing CSCs. There are other molecules which have been
associated with drug resistance in CSC, e.g., P-glycoprotein
(or ABCB1) and ABCB5 (Nobili et al., 2006; Angelastro and
Lame, 2010). PGP is reported as a primary reason for therapy
failures in leukemia and solid tumors patients. Similar reports
are available ABCB5 which is associated with MDR resistance in

TABLE 1 | Various cell surface marker used for identification and eradication of

CSCs.

Sr. no. Tumor/Cancer type Phenotype of CSCs markers

CSCs MARKERS

1 Colon cancer CD133þ, CD44þ, CD166þ, EpCAMþ,

CD24þ, CXCR4þ, CK20þ, CEAþ, LGR5þ

2 Pancreatic CD133þ, CD44þ, EpCAMþ, CD24þ,

ABCG2high

3 Lung cancer CD133þ, ABCG2high

4 Leukemia CD34þ, CD38–, HLA-DR–, CD71–,

CD90–, CD117–, CD123þ

5 Breast cancer ESAþ, CD44þ, CD24–/low, Lineage–,

ALDH1high

6 Multiple myeloma CD138–

7 Brain cancer CD133þ, BCRP1þ, A2B5þ, SSEA1þ

8 Liver cancer CD133þ, CD49fþ, CD90þ

9 Prostate cancer CD44þ, α2β1high, CD133þ

10 Head and neck cancer CD44þ, ALDHþ, YAP1þ, BMI1þ

human malignant melanomas patients (Frank et al., 2003). It is
necessary to notice that blockade of ABCB5 efflux activity by the
Monoclonal antibody can sensitize these cells against anti-cancer
drug doxorubicin (Frank et al., 2005). These studies indicate the
importance of transporters in MDR and targeting these efflux
pumps could be an efficient method to control MDR in cancer
treatments. Despite the knowledge of MDR for over 30 years,
the clinical success in regulating this phenomenon has been
insufficient. There have been various strategies proposed and
evaluated to overcome MDR such as direct or indirect inhibition
of ABC transporters. For example, direct inhibition strategies
demonstrated the development of small molecular weight
inhibitors or mABs, e.g., Cyclosporine A, VX710, Tariquidar,
and indirect inhibition strategies evolved various methods for
disrupting cell signaling pathways to inhibit ABC transporter
activities (Gottesman et al., 2002). However, all these strategies
have been suffering from low inhibition efficiency and unwanted
toxic effect which has significantly compromised their clinical
use. Therefore, it is evident from existing data that with the
presently limited effects all these approached may not be able to
overcome the CSC dependent drug resistance and more broad
spectrum strategies such as nanocarriers would be important in
developing optimal anti-CSCs strategies to explicitly control drug
resistance and improve the therapeutic efficacy of any anti-cancer
regime.

Blockade of CSCs-Related Signaling
Pathways
CSCs retain their hallmark stem cell-like properties (i.e., self-
renewal and differentiation) through the modified or deregulated
signaling pathways networks. Studies from several groups have
revealed a significant role of Wnt/β-catenin (Takahashi-Yanaga
and Kahn, 2010), Hedgehog (Merchant and Matsui, 2010),
Notch (Pannuti et al., 2010), Bcl-2, PI3K/Akt, PTEN and NF-
κB, in CSCs’ self-renewal and differentiation. Moreover, detailed
information of these molecules and their related signaling
cascade would be essential to develop any effective strategies
against CSCs mediated drug resistance or anti-cancer therapy
(Chen et al., 2013). Studies have shown significant role of
embryonic signaling pathways, e.g., Wnt, Notch, and Hedgehog
in maintaining the CSCs population in multiple melanomas
(Campbell et al., 2008; Takebe et al., 2011). These raised the
possibilities of the development of effective strategies to control
drug resistance, and several clinical trials are in progress targeting
the Pathways (Zhao et al., 2013). For example, blockade of
Notch-I signaling pathway has been demonstrated to reduce the
fraction of CD44+CD24 subpopulation and also decreased the
instance of brain metastasis of brain cancer (McGowan et al.,
2011). Similarly, many pharmaceuticals are being explored, e.g.,
Wnt signaling inhibitors which are responsible for regulation of
CSCs and tumorigenicity, and one such example is the use
of mAbs against Wnt signaling cascade is demonstrated to
be of significant value in the treatment of colorectal cancer
(He et al., 2005). Many independent reports are available on
the use of cyclopamine (an SMO signaling element inhibitor)
to block the Hedgehog-mediated signaling pathway resulting in
inhibition of growth/proliferation, invasion, and metastasis of
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FIGURE 2 | Various roles of CSCs in tumor progression. There are different types of roles which CSCs might play in tumor progression and cause them to become

resistant to the most of the conventional therapeutic modalities. Tumor progression: The inherent properties of CSCs to self-renew, proliferate, and differentiation

makes them eligible to support tumor progression. Drug resistance: the abilities of CSCs to survive against various cytotoxic insults including

chemotherapy/radiotherapy through different mechanism may cause the accumulation of them resulting in enrichment of CSCs within tumors making it harder to cure

cancers. Metastasis onset: Acquisition of mesenchymal cell-like features by CSCs it impossible that tumor cell starts migrating to the local and distant locations

causing the onset of metastases. Relapse: the remaining CSCs that may survive the anti-tumor treatment remedy can increase their population by proliferating and

may result to the relapse after an initial therapeutic success.

many malignancies an evident from both the in vitro and in vivo
studies (Karhadkar et al., 2004; Feldmann et al., 2008).

Apoptosis dysregulation is more often defined as a hallmark
of carcinogenesis and remains an important determinant of
the efficacy of chemotherapeutics to establish malignancy
(Brown and Attardi, 2005; Hanahan and Weinberg, 2011).
CSCs are reported to use several mechanisms to dysregulate
signaling pathways and enhance resistance against most of
the chemotherapeutic regimes. BCl-2 family of anti-apoptotic
proteins is the most studied and characterized regulators of
apoptosis. It would be interesting to notice that BCL-2 (an anti-
apoptotic protein) is very well known to regulate repopulation
potential and provides protection against apoptotic insults in
hematopoietic stem cells (Domen et al., 2000). BCL-2 expression
is reported to be significantly high in comparison to healthy
cells as demonstrated in an in vitro model of blast-crisis CML-
derived CSCs and their non-CSCs counterparts (Goff et al., 2013).
Whereas, the frequency of breast CSCs is highly reduced by
expression of a strongly active pro-apoptotic BIK mutant both
in cell lines and patient studies (Lang et al., 2011).

Recently, the relationship between CSCs and nuclear factor
kappa B (NF-κB) has been elucidated by several researchers. NF-
κB is a transcription factor, and it regulates the expression of
numerous genes and mediates various cellular responses such as
cytokines, radicals and UV irradiation induced pathways (Baud
and Karin, 2009). The constitutive activation of STAT-3/NF-
κB signaling cascade and enhanced expression of TAT-3/NF-κB
dependent gene has been demonstrated in glioma CSCs (Garner
et al., 2013). In similar stream, use of curcumin based approach

has been shown to reduce stem cell properties in breast CSCs
through modulation of TAT-3/ NF-κB signaling cascade (Chung
and Vadgama, 2015).

Additionally, secreted protein, e.g., cytokines have also had
a significant impact on CSCs survival, and some studies have
shown that strategies against these secretory proteins may
also be of importance in counseling resistance and sensitize
the CSCs against chemotherapeutics. This is evident from the
reports showing significant sensitization of colorectal CSCs
in the treatment of freshly isolated CD133+ cells with anti-
IL-4Ra antagonist or anti IL-4 neutralizing antibodies against
standard chemotherapeutic drugs (Todaro et al., 2007). Similarly,
inhibition of CXCR1 through small molecular inhibitor has
been demonstrated to diminish residual breast CSCs population
following docetaxel treatment in vivo (Ginestier et al., 2010). THE
IL-8 receptor CXCR1 is strongly expressed in breast cancer CSCs
(Ginestier et al., 2010).

Regulation through Tumor
Microenvironment/Niche Targeting
Studies on the tumor microenvironment have revealed their
similarity with stem cells and CSCs niche can be defined as an
anatomically distinct region which consists of various types of
cells, e.g., mesenchymal cells vascular cells and inflammatory cells
along with diffusible molecules and extracellular matrix proteins
(Plaks et al., 2015). These niches maintain the CSCs’ stem cell
properties. These niches preserve the various characteristic of
CSCs, e.g., phenotype, plasticity, and also protect them against
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drug-induced apoptosis and facilitate their metastatic potential
(Oskarsson et al., 2014; Ye et al., 2014). Thus, targeting CSC niche
could be a powerful tool in controlling the tumor progression and
their treatment. There have been few promising attempts to target
CSCs niche. It is reported that tumor angiogenesis may have a
direct relationship with the survival and drug resistance of CSCs.
Further, CSC in the vascular niche can comprise an autocrine
loop that involves VEGF-mediated promotion of CSCs activities
which are regulated through the formation of microvasculature
and intrinsic self-renewal pathways (Bao et al., 2006b; Beck
et al., 2011). Thus, inhibition of VEGF activities can normalize
tumor vasculature, and that can result in the disruption of
CSCs microenvironment/niche causing reduced tumor growth
(Vermeulen et al., 2010). Another useful modality to disrupt
CSC niche may be targeting tumor hypoxia. For instance, HIF-
1α and HIF-2α (regulators of the cell cycle through c-Myc) may
be targeted to control the growth of quiescent, drug-resistant
tumor cells in glioma patients (Li Z. et al., 2009). An alternative
approach may be targeting against tumor-associated stromal
cells (e.g., myofibroblast and tumor-associated macrophage) that
play a significant role in homeostasis regulation in various
tumors, and their inhibition may diminish CSCs growth also
(Raaijmakers et al., 2010; Vermeulen et al., 2010).

Targeting against Cell Surface Markers
Cell surfacemarker holds the key for generating specific strategies
against CSCs, and thus considerable efforts have been put in
the development of more precise therapeutic regimes in various
types of tumors. For example, use of an activating anti CD44
mAbs in a NOD/SCID-human AML transplant mice model
shown a significant reduction in the leukemic cell population
(Jin et al., 2006). Specific eradication of leukemic stem cells
in human have been demonstrated by targeting other surface
molecules also which are differentially expressed in normal and
CSCs such as IL-3R (Jin et al., 2009) and TIM-3 (Kikushige
et al., 2010). Similar reports are available from mice studies
where treatment with antibodies against IL-3R and TIM-3 has
managed to diminish leukemia cells. The self-renewal of tumor
cells and the tumor-initiating ability of the dormant CSCs were
significantly suppressed by targeting CD13 with the treatment
of anti-CD13 which is a specific liver CSCs marker (Haraguchi
et al., 2010). The significant anti-cancer therapeutic potential
is revealed by studies in which CD133 was targeted in lung
cancer (Bertolini et al., 2009), liver cancer (Rountree et al.,
2009), and glioblastoma (Brescia et al., 2013). Similar reports
are available on the inhibition of self-renewal and tumorigenic
capacity of neurosphere cells through down-regulation of CD133
gene excretion by short hairpin RNA (shRNA-mediated method;
Brescia et al., 2013).

Various Other Approaches
Targeting Autophagy Signaling Pathway in CSCs
Autophagy may be defined as an evolutionarily conserved
mechanism through which cells responds to the different types
of environmental stress such as starving, exposure to radiation,
hypoxia, and chemotherapeutic agents (Choi et al., 2013).
Inhibition of autophagy has been demonstrated to enhance the

sensitization of cancer cells (Yousefi and Simon, 2009; Sui et al.,
2013). However, similar effects on CSCs are not very much
clear and remain controversial. Recent studies have shown that
inhibition of autophagy through knock-down of autophagy-
associated genes or direct autophagy inhibitors may lead to
reduced stem cell self-renewal, differentiation, and ability to resist
various types of stresses which may result in reduced CSCs
population and enhanced sensitivity (Cufi et al., 2011; Zhuang
et al., 2011; Maycotte et al., 2015). The combination of autophagy
inhibition strategies along with standard anti-cancer therapeutic
agent may be more efficient in eradicating CSCs completely and
curing cancers (Zhou et al., 2007; Hirsch et al., 2009; Balic et al.,
2014).

Regulation of CSCs’ Metabolism
Cancer cells are defined as having deregulated proliferation
due to uncontrolled metabolic activities (Ward and Thompson,
2012). CSCs are also reported to exhibit distinctive metabolic
characteristics (Menendez et al., 2013). For example, tumor cells
(especially brain tumor cells) express high levels of Glucose
Transporter 3 (GLUT3). Moreover, it is known down through
shRNA can lead to significant drop in the frequency of brain
tumor stem cells (in vitro) and glioblastoma formation (in
vivo) (Flavahan et al., 2013). Furthermore, basal-like breast
CSCs are reported to have distinct glucose, and mevalonate
metabolism and metabolic drug metformin have been shown to
exhibit anti-CSCs properties and also can improve the efficacy
of chemotherapeutics (Ginestier et al., 2012; Hirsch et al., 2013;
Wurth et al., 2013).

NANOMEDICINE AS AN EFFECTIVE TOOL
AGAINST CSCs

The biodegradable and biocompatible nano molecules or
nanocarriers have been reported to deliver a broad range of
therapeutic molecules (Peer et al., 2007). This accumulating
list of therapeutic molecules includes hydrophobic/hydrophilic
drugs (Lei et al., 2013; Li et al., 2014; Zhu et al., 2014),
various types of peptides and proteins (Grenha et al., 2005),
imaging probes (Park et al., 2009), antibodies (McCarron et al.,
2008), nucleic acids (Tan et al., 2014), and even multiple
drugs simultaneously (Patil et al., 2010). Nanocarriers offer a
number of benefits to the active drug molecules by protecting
it from harsh biological conditions and thus enhance their
pharmacokinetic and pharmacodynamic profiles significantly
(Hamaguchi et al., 2005; Yuan et al., 2012). For example,
PEGylated nanocarriers (can evade reticuloendothelial system)
are reported to have prolonged circulation time and significantly
less accumulation in the healthy tissues in comparison to non-
PEGylated nanoparticles (Jokerst et al., 2011). Similarly, stimuli-
responsive nanocarriers are developed with the capacity to
respond to the various external stimuli such as pH, temperature
and light and thus provide a control over the release of
drugs/therapeutic molecules to the target sites only (Soppimath
et al., 2005; Li Y. Y. et al., 2009; Du et al., 2011; Gao et al.,
2011; Lee et al., 2011; Li et al., 2011). The nanoscale size of these
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carrier molecules provides them capabilities to get accumulated
in the tumors because of enhanced permeability and retention
(EPR) effect. Further, nanoparticles equipped with specific
targeting moieties, e.g., folate antibodies and aptamers, etc. can
become more precise in delivering their cargo. There have been
sufficient advancements in describing various drugs, protein, and
gene delivery using nanoparticles to target CSCs (Tables 2–5)
through conventional therapeutics by using different resistance
mechanism as discussed above. Nanomedicine, as discussed
below, offers various advantages over the conventional therapies,
and the importance of nanomedicine.

Bioavailability of CSCs Specific Drugs
Despite the fact that significant advancements in the knowledge
about CSCs various problem exist in tackling CSCs due to
limitations associated with different anti-CSCs agents which
suffer from problems of solubility, degradation, early clearance,
limited cellular uptake, and cytotoxicity (Minko, 2004; Sahay
et al., 2010).

Here, nanoparticles offer high-capacity carrier capabilities
for chemotherapeutic/nucleic acid drug molecules and exhibit
greater bioavailability and activity. The largest porosity of the
vasculature and impaired lymphatic drainage system in tumors
facilitates the passive accumulation of nanoparticles and thus
drugs molecules which are attached to them (Gao et al.,
2012). Alternatively, nanoparticles may be connected with high-
affinity molecules against specific receptors which are exclusively
expressed on the tumor cells or CSCs and thus may enhance
delivery specifically to these sites (Xia, 2014). Most studies

report that conventional therapeutic agents have limited access
to the CSCs due to their hypoxic microenvironment and distant
location away from the vasculature that retards the efficacy of
anti-CSCs drugs (Mohyeldin et al., 2010). However, rationally
designed nanoparticles may overcome this limitation and may
penetrate up to a deeper location and kill CSCs through anti-
CSCs drugs molecules.

Drug Resistance of CSCs vs. Nanoparticles
Rationally designed nanoparticles have been reported to
be effective against the MDR predominantly ATP-driven
transporters which remain an axial factor in most of the MDR
and the intractable obstacle of CSCs (Markman et al., 2013).
Studies reported so far on the use of chemotherapeutic agents,
which are either conjugated to nanoparticles or encapsulated
by nanoparticles, are not recognized as a solid substrate by
ABC transporters system and the can stay for longer periods.
Additional advantages are provided through cell penetrating
peptide- or targeting moiety-modified nanoparticles which
provide protection against receptor-mediated and energy drove
endocytosis or macropinocytosis that significantly increase
intracellular accumulation of drugs (Livney and Assaraf, 2013).
Thus, specifically designed nanoparticles may greatly enhance
intracellular accumulation/concentration of CSCs targeting
agents that would improve their cytotoxic effects.

Reduced Off-Target Effects
The field of identification of new CSC marker (biomarkers)
and signaling pathways facilitated by genome-wide screening

TABLE 2 | CSC specific small therapeutic agents and their delivery.

Sr.

no.

Anti-CSCs strategies Drugs/Therapeutic

agent

Nanocarriers based delivery system

used for the therapeutic agents

CSC source and specific marker References

1. Selective inhibition of

Human multiple CSCs

Phenformin Polymeric micelles using PEG-b-PAC

and PEG-b-PUC 102 nm particle

Lung cancer, H460 cells, CD133+

human lung cancer mouse model

Krishnamurthy et al.,

2014

2. Selective inhibition of

CSCs

Salinomycin SAL-SWNTCHI-HA complexes;

self-assembled nanoparticles from iTEP;

nanogel-drug conjugates based on

membranotropic CHA

Gastric cancer, AGS cells, CD44+;

murine breast cancer, 4T1 cells,

CD44+CD24–; breast cancer,

MDA-MB-231 cells, CD44+

Wei et al., 2013; Yao

et al., 2014; Zhao et al.,

2014

3. Enhanced accumulation

of drug molecules in

CSCs

Oxaliplatin CSO-SA polymeric micelles Colorectal cancer, HT29 and

SW620 cells, CD133+/CD24+

Wang et al., 2011

4. Suppression of IGF and

STAT3; blockage of

Hedgehog pathway

Curcumin NanoCurcTM; stearic acid-g-chitosan

oligosaccharide (CSO-SA) polymeric

micelles

Brain cancer, DAOY cells, etc.,

CD133+; colorectal cancer,

patient-derived cells,

CD133+/CD24+

Lim et al., 2011; Wang

K. et al., 2012

5. Inhibition Hedgehog (Hh)

signaling pathway

Cyclopamine HPMA-based delivery system Prostate cancer, RC-92a/hTERT

cells, CD133+/integrinα2β1hi

Zhou et al., 2012

6. Selective inhibition of

basal-like triple negative

breast cancer CSCs

Bortezomib Poly(ethylene glycol)-b-poly(d, l-lactide)

(PEG-PLA) nanoparticles

Breast cancer, SUM159, and

HCC1973 cells, ALDH+

Shen et al., 2015

7. Increased accumulation

of chemical drug within

CSCs

Doxorubicin Endosomal pH-responsive

DOX-Hyd@AuNPs

Breast cancer, MDA-MB-231 cells,

etc., CD44+CD24−ALDH+

Sun T. M. et al., 2014

8. Increased accumulation

of chemical drug within

CSCs

Epirubicin Nanodiamond drug complex Murine hepatocellular carcinoma,

LT2-MYC cells, MYC+

Wang H. X. et al., 2014
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TABLE 3 | CSCs-specific nucleic acid drugs and their implications.

Sr.

no.

Source and marker of CSC Therapeutic agent and drug delivery

system

Mechanism of CSC depletion References

1. HNSCC, patient-derived cells,

ALDH1+/CD44+

siEZH2/siOct4 Repression of EMT program Lo et al., 2010

PU-PEI

2. Gastric cancer, BGC823 cells, CD44+ microRNA-200c Regulation of self-renewal, invasiveness

and differentiation

Cui et al., 2014

Gelatinase-stimuli PEG-Pep-PCL nanoparticle

3. Melanoma, B16F10 cells, CD44+ microRNA-34a Regulation of CSC differentiation and

metastasis

Shi et al., 2013

Solid lipid nanoparticles (SLNs)

4. Non-small cell lung cancer, H1650 cells,

side population

shAnxA2 Inhibition of resistant phenotype of SP

cells

Andey et al., 2014

Liposomal (cationic ligand-guided, CLG)

5. Glioblastomas, U87MG and U251 cells,

CD133+

siGLUT3 Metabolism of glioma SC targeting Xu et al., 2015

Cationic lipid-assisted PEG-b-PLA nanoparticle

6. Colon cancer, CHOK1 cells, CD133+ siMDR1 Silencing of multidrug resistance gene Liu et al., 2009

Nanoparticle consisting of PEI(1200),

polyethylene glycol and lipid-based cross

linking moiety

7. HNSCC, CAL27 cell, etc., Nanog, Oct3/4,

and Sox2

Pre-miR-107 miR-107 mediated suppression of tumor

growth

Piao et al., 2012

Cationic lipid nanoparticles

8. Acute myeloid leukemia, KG-1 and KG-1a

cells, CD34+

siCD44 Inhibition of LSC interactions with

microenvironment

Gul-Uludag et al., 2014

Nanoparticle consisting of PEI2-caprylic acid

and PEI2-linoleic acid

9. Glioblastomas, patient-derived cells,

CD133+; lung cancer, patient-derived

cells, CD133+

microRNA-145 Regulation of stem cell-like genes;

Inhibition of the EMT program and

metastatic ability.

Chiou et al., 2012;

Yang et al., 2012Polyurethane-short branch polyethyleneimine

(PU-PEI) as delivery vehicle

methodologies are tremendously grown up in recent years.
Unfortunately, most of the biomarkers are also shared by normal
stem/progenitor cells, and drug targeted to these biomarkers
may also lead to acute and irreversible damage to the normal
tissues causing organ failure, etc. (Hu and Fu, 2012). More
comprehensive strategies would be essential to avoid these
shortcomings of the existing approaches. For designing specific
therapeutic agents, it would be essential to delineate among
the CSCs and other healthy stem cells so that only CSCs are
killed while other normal stem cells remain unaffected. Also,
the newer developed strategies should have the potential to
realize differential delivery of CSCs-killing drugs. Since tumors
have an impaired vasculature/lymphatic drainage system, the
drug-loaded nanoparticles are accumulated in a comparatively
higher concentration of tumor cells that prevent damage to the
normal stem cells to a limited extent. Whereas, free chemical or
biomolecules are distributed equally among tumor and healthy
stem cells that may damage to the normal stem cells causing
unwanted organ failure or other adverse symptoms (Davis et al.,
2008).

NANOMEDICINES: FEW EXAMPLES

Burgeoning knowledge of CSCs biology and recent developments
in the nanotechnologies has fed the development of a vast
array of anti-CSCs targeting systems. Here, is the summary of
nanomedicines reported so far and which have been categorized
on the basis of their introduction and evaluation in for desired
effects, type of cargo and modifications of the nanoparticles
(Figure 3).

Nanotechnology May Improve CSCs
Specific Therapeutic Agents’ Delivery
CSCs specific therapeutic agents’ physiological and
physicochemical characteristics can be analyzed similarly to
the traditional anti-cancer drugs in vivo. It is well established
that nanocarriers might be a useful tool in qualifying therapeutic
agents (Table 2).

The antibiotic salinomycin (SAL) could be a good example
which has been identified through high-throughput screening
methods as a potent anti-CSCs agent (Gupta et al., 2009) but
exhibit poor water solubility and high toxicity, which makes
it unsuitable for clinical uses. Nanocarrier offers a solution to
this problem, for example, SAL-SWNTCHI-HA (a gastric anti-
CSCs targeted drug delivery system) has been demonstrated
to acquire high bioavailability and limited toxicity of SAL.
This combination was shown to downregulate self-renewal
capability of the CD44+ cell population and also reduced
the formation of mammosphere by CSCs (Yao et al., 2014).
Another great example could be Curcumin which has high anti-
cancerous potential, but due to hydrophobicity, poor stability,
and pharmacokinetic characteristics in vivo applications are
limited.

Nanotechnology offers better utilization of these therapeutic
molecules as the development of curcumin nanoparticle
encapsulated in polymeric micelles could show increased
accumulation of curcumin in cancer cells resulting in effective
eradication of CSCs (CD44+CD24− subpopulation) both in
vitro and in vivo studies in colorectal cancer studies (Wang
K. et al., 2012; Li and Zhang, 2014). Similarly, nanoparticles
carrying embryonic signaling inhibitory agents in CSCs have
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TABLE 4 | Various strategies of combinational delivery of chemotherapeutics and CSC-specific agents.

S.

no.

CSC source and marker Drug delivery system and combined

chemotherapeutics

Mechanism of CSCs depletion References

1 Multiple myelomaJJN3 cells,

CD138−CD34–

Cremophor® EL Increased efficacy of conventional

chemotherapy

Yang et al., 2014

Anti-ABCG2 and paclitaxel

2 Breast cancer, MCF-7 cells,

CD44+/CD24–

PEG-b-PCL polymeric micelles Simultaneous killing of CSCs and

non-CSCs

Zhang Y. et al., 2012

Salinomycin and paclitaxel

3 Glioblastoma, U87 cells, etc., CD133+

and SSEA-1+

Liposome Sensitization of glioblastoma to

chemotherapy

Kim et al., 2014a

Wtp53 plasmid DNA and Temozolomide

4 Breast cancer, BT474 cells, etc.,

CD44+/CD24–

Nanoparticle consisting of PEG-PAC and

PEG-PUC

Simultaneous killing of CSCs and

non-CSCs

Ke et al., 2014

Thioridazine and doxorubicin

5 Colon cancer, HT-29 cells, CD133+ Biodegradable lipid nano complex Sensitization of CSCs to chemotherapy Liu et al., 2009

siMDR1 and paclitaxel

6. Breast cancer, MDA-MB-231 cells,

ALDH+

PEG-PLA nanoparticle Increased therapeutic response of CSCs Li S. Y. et al., 2015

Decitabine and doxorubicin

7. Breast cancer, MCF-7 and MDA-MB-231

cells, CD44+/CD24–

Liposome Simultaneous killing of CSCs and

non-CSCs

Liu et al., 2008

Vinorelbine and parthenolide

8. Breast cancer, MCF-7 cells,

CD44+/CD24–

Hyaluronan modified mesoporous silica

nanoparticle

Simultaneous killing of CSCs and

non-CSCs

Wang et al., 2013

8-hydroxyquinoline and docetaxel

9. Gastric cancer, BGC-823 cells, CD44+ Elatinases-stimuli nanoparticles miR-200c mediated inhibition of CSCs

and restoration of drug sensitivity

Liu Q. et al., 2013

miR-200c and docetaxel

10. Breast cancer, MDA-MB-231 cells,

ALDH+

PEG-PLA nanoparticle Differentiation of CSCs and increase of

chemosensitivity

Sun et al., 2015

All-trans-retinoic acid and doxorubicin

11. Prostate cancer, PC-3 cells, etc., CD133+ HPMA copolymers Simultaneous killing of CSCs and

non-CSCs

Zhou et al., 2013

Cyclopamine and docetaxel

TABLE 5 | Various types of targeted drug delivery systems for CSC therapy and their potential applications.

Sr.

no.

CSCs source and marker Ligand/Receptor Therapeutic agents and drug delivery system References

1. Breast cancer, MDA-MB-231 cells,

CD133+

Anti-CD133 antibody/CD133 Paclitaxel Nanoparticles formulated using PLGA

polymer

Swaminathan et al.,

2013

2. Non-small cell lung cancer, A549

cells, CD44+

Hyaluronic acid/CD44 SSB/PLK1 siRNA HA-PEI/PEG nanosystems Ganesh et al., 2013

3. Breast cancer, MCF-7 cells, CD44+ Chitosan/CD44 Doxorubicin Pluronic F127-Chitosan nanoparticles Rao et al., 2015

4. Hepatocellular carcinoma, HepG2

cells, CD44+

Anti-CD44 antibody/CD44 Doxorubicin Liposomal nanoparticle Wang L. et al., 2012

5. Colorectal cancer, etc., HT-29 cells,

etc., CD133+

Transferrin/transferrin receptor wtp53 gene Liposomal delivery complex Kim et al., 2014b

6. Glioblastoma, N08-74 cells, etc.,

CD133+

Cetuximab/epidermal growth

factor (EGFR)

Cetuximab Multifunctional magnetic iron-oxide

nanoparticles (IONPs)

Kaluzova et al., 2015

also been reported but with limited clinical utility due to
their poor solubility and diverse side effects. For example,
N-(2-hydroxypropyl) meth acrylamide (HPMA) conjugate of
cyclopamine (a Hedgehog pathway inhibitor) has been reported
showing potential to eradicate CD133+ cells in the human
prosthetic cancer epithelial cell line (RC-92a/hTERT) and exhibit
relatively decreased systemic cytotoxicity (Zhou et al., 2012).

Similarly, nanocarriers can improve the efficacy of
conventional chemotherapeutic agents by delivering them
to CSCs in a more efficient manner and may enhance their

anti-cancer activities. For instance, tethering of Doxorubicin
with the gold nanoparticles via a poly (ethylene glycol) spacer
and an acid-labile hydrazone bond (DOX-Hyd@AuNPs)
enhanced delivery of the drug molecules to breast CSCs and
reduced drug resistance in these cells through the inhibition of
their efflux by PGP. DOX-Hyd@AuNPs exhibited inhibition
of CSCs enrichment and tumor growth during or after the
treatment (Sun T. M. et al., 2014). Another excellent example is
shown use of stearic acid-g-chitosan oligosaccharide (CSO-SA)
polymeric micelles to deliver oxaliplatin exhibiting significantly
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FIGURE 3 | Illustration of various types of nanoparticles being explored for their efficiency to carry desired anti-CSCs/anti-cancer drug molecules. These nanocarriers

are often equipped with targeting moieties, e.g., antibodies, antigen, etc. the different types of nanoparticles are developed from many types of biomaterial, e.g., lipids,

metals, carbon, polymeric substances, etc. Acknowledgment: The various nanoparticles SEM/TEM figures are taken from the previously published work with prior

permission/OR accessible under open access. Carbon Nanotubes: Eatemadi et al. (2014) (Open Access). Dendrimers: Abd-El-Aziz et al. (2016) (Permission granted

by author). Liposomal: Lim et al. (2013) (Permission granted by author). Hybrid solid-liquid particles: Patel et al. (2016) (Open access). Polymeric particles: Halayqa

and Domańska (2014) (Open Access). Metal nanoparticles: Raj and Jayalakshmy (2015).

enhanced internalization of OXA-loaded CSO-SA micelles in
colorectal CSCs causing reversal in chemoresistance abilities
of CD133+/CD24+ CSC subpopulations and enhanced
cytotoxicity both in vivo and in vitro studies (Wang et al., 2011).

Nucleic Acids Dependent Anti-CSCs Drugs
and Nanomedicines
Nanocarriers are helpful in increasing the solubility, stability, and
bioavailability of various macromolecular drug agents (Kalota
et al., 2004). One of the important nucleic acid family playing
crucial roles in post-transcriptional regulations is small RNA
molecules, e.g., micro RNA (miRNA) that regulates various
cellular functions. miRNA have recently been evaluated for their
abilities to provide a prognostic marker for CSCs and anti-cancer
agent in different tumors (Ma et al., 2010; Liu et al., 2011).
RNA interference (RNAi) possessing capabilities of specifically
regulating targeted gene offer potential treatments for a broad
range of diseases including cancers (Pai et al., 2006). Specifically
designed RNAi to suppress the cancer-promoting key molecules
may be an important method for their treatment. For instance,

suppression of OCT-4 gene through RNAi technique could
result in the induction of apoptosis in CSCs breast cancer and
lung carcinoma cells (Hu et al., 2008). However, poor cellular
intake, off-target activity, sensitivity to nucleases, and risks of
systemic toxicity may limit their therapeutic potential (Muthiah
et al., 2013). Similar to other anti-cancer drugs nucleic acids
related therapeutic agents require the development of strategies
for their protection from nuclease-driven degradation and
enhancement of tissue-specific penetration and accumulation
causing improved anti-cancer activity (Wu et al., 2011).

A significant reduction in the tumorigenicity of CD133+
improved differentiation of them into healthy cells (CD133- non-
CSCs) on using polyurethane-short branch polyethyleneimine
(PU-PEI) as a nanocarrier for delivering miRNA-145
into glioblastoma cells. The delivery of PU-PEI/miR-145
nanoparticles in these studies effectively blocked the expression
of drug-resistance associated genes and thus improved the
sensitivity of drug-resistant CSCs against other anti-cancer
agents (Yang et al., 2012). Similar studies reported using cationic
lipid nanoparticles for the delivery of pre-miRNA-107 (regulator
of proliferation and survival related genes) as an effective
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tumor suppressing agents in model head and neck squamous
cell carcinoma (HNSCC) showing decrease tumor sphere-
forming capabilities through the down-regulation of stem cell
transcription factors (Piao et al., 2012). Delivery of miRNA-34a
through solid lipid nanoparticles was also demonstrated to
downregulate differentiation and metastasis of CSC by direct
repression of CSCs marker CD44 in lung cancer cells (Shi
et al., 2013). Similar studies with siRNA indicated enormous
therapeutic potential but limited due to several obstacles that
can be overcome by using nanoparticles based delivery systems
(Williford et al., 2014). In an orthotopic lung cancer mouse
model, the cationic lipid nanoparticles carrying shAnxA2 (CLG-
shAnxA2) showed a significant reduction in drug resistance
phenomenon of CSC through suppression of AnxA2 (Andey
et al., 2014). An effective anti-cancer strategy could be directed
targeting GLUT3 by siRNA-based nanomedicines which block
self-renewal and bulk glioma cells in glucose-restricted tumor
niche. Further, these GLUT3 blocking nanoparticles could also
diminish tumor growth in a U87MG xenograft model (Xu et al.,
2015).

In addition to these strategies, another unusual approach
is silencing the genes regulating drug efflux transporters and
thereby increasing the drug sensitivity of CSCs against anti-
cancer agents. For example, employing MDR-1 silencing siRNA-
based PEI-Lipid cross-linked (1:16 ratio) nanocarriers shown
increased sensitivity of CD133+ human colon cancer cells to the
paclitaxel (Liu et al., 2009; Table 3).

Anti-CSCs Specific Other Combinational
Delivery Approaches
Since tumors consist of heterogeneous tissue and various types
of cells have a difference in their abilities to respond to these
anti-cancer agents. Further, CSCs are capable of showing the
reversible transition between stem cell and non-stem cell state
(Meacham and Morrison, 2013) which increase the complexity
of determining the most suitable anti-CSC strategies. Ther are
a clear indication of the fact that eradication of CSCs only may
not be sufficient to suppress tumor progression entirely. Residual
differentiated tumor cells can be converted into CSCs and may
sustain tumor growth even after the complete eradication of
CSCs (Bu and Cao, 2012). Thus, a combined approach which
can tackle both bulk non-CSCS and reminiscent rare CSCs
would be of more importance providing better therapeutic effects
(Table 4).

One notable example of this approach could be the
demonstrated by using a combination of paclitaxel [(octreotide
(Oct)-modified paclitaxel (PTX)-loaded PEG-b-PCL polymeric
micelles (Oct-M-PTX)] and salinomycin [(SAL)-loaded PEG-
b-PCL polymeric micelles (M-SAL)] based nanomedicine
molecules. The combined effects of paclitaxel (against bulk
cancer cells) and salinomycin (anti-CSCs effect) boosted the
anti-cancer implications of these drugs in vivo and in vitro
(Zhang Y. et al., 2012). The study of combined effects of
HPMA copolymer-cyclopamine conjugate (P-CYP) (anti-CSCs
effects), and HPMA copolymer-cyclopamine conjugate (P-
CYP) (effective against bulk tumor cells) showed significant
enhancement in their tumor growth inhibiting activities (Zhou

et al., 2013). Similar intense anti-CSCs activity and anti-bulk
tumor cells capability demonstrated by the combined use of other
therapeutic molecules. For instance, doxorubicin (DOX) [via
acid-functionalised poly(carbonate) (PAC) and poly(ethylene
glycol) diblock copolymer (PEG-PAC)] and thioridazine (THZ)
[via urea-functionalised poly(carbonate) (PUC) and PEG diblock
copolymer (PEG-PUC)] in BT-474 xenografts studies shown
stronger effects (Ke et al., 2014). Nanoparticles can function
as a carrier for simultaneous delivery of multiple anticancer
agents to exhibit better anti-cancer efficacy. For example,
simultaneous encapsulation of all-trans retinoic acid (ATRA)
(differentiation inducer of CSCs) and Dox and their systemic
delivery for breast cancer treatment have been demonstrated
to significantly downregulate both the CSCs resistance and
tumor growth (Sun et al., 2015). Similar to conventional anti-
tumor agents, the nucleic acid drugs are also reported to be co-
delivered through nanocarriers based delivery system (e.g., miR-
200c, effective anti-CSCs, and docetaxel) with spectacular effects
on CSCs proliferation and decrease the migration/invasion
and expression of cadherin/CD44 surface adhesion molecules
(Shimono et al., 2009). Further, the systemic administration of
miR-200c/DOC combined nano-medicine resulted in prolonged
retention and more efficient anti-tumor activities in xenograft
gastric cancer mice models (Liu Q. et al., 2013). In another
approach, the chemotherapeutic agent loaded nanoparticles
combined with anti-ABC transporter antibodies and employed
on CD130-CD34-CSCs in multiple myelomas showed the
enhanced efficiency of PTX and reduced CSCs proliferation and
migration (Yang et al., 2014).

Targeted Therapies of Anti-CSCs Drugs
Anticancer antibodies are useful in inducing tumor regression
through their anti-CSCs potency as shown in clinical reports
(Vinogradov and Wei, 2012). Apart from that, antibodies are
helpful in directing the therapeutic agents to the CSCs, e.g.,
antibody-drug conjugates antibodies conjugated nanoparticles
which can recognize various specific cell surface antigens on
CSCs. This approach was used by few researchers to conjugate
anti-CD133mANs with the polymeric PLGA nanoparticles
bearing paclitaxel drug molecules (CD133BNPs), and these
conjugated particles were demonstrated to have significant
reducing effects on the number of mammospheres and colonies
formation through in vitro assays. Comparison of CD133NPs
with free drug molecules and non-antibody conjugated
nanoparticles in MDA-MB-231 xenograft mice model has shown
a significantly higher adverse effect on the CSCS population
and improved therapeutic efficacy (Swaminathan et al., 2013).
Similarly, the extracellular glycosaminoglycan matrix protein
Hyaluronic acid recognizes CD44 which is overexpressed in
most of the CSCs (Wei et al., 2013). This specific binding
capability of HA is useful in developing CD44-targeted
HA-based self-assembling nanosystems for siRNA delivery.
This nanoparticle was reported acquiring higher delivery
rate and more efficient gene silencing activities in CD44+
(overexpressing) drug resistant tumor cells (Ganesh et al.,
2013). Similar molecule chitosan (chemically resembles HA)
was useful for targeted delivery of nano doxorubicin or nDox
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(Dox molecules encapsulated in PluronicF127 nanoparticles)
(Rao et al., 2015). nDOX was demonstrated to exhibit a higher
cytotoxic effect in comparison to free doxorubicin in CD44+
CSCs residing in 3Dmammary spheroids. Further, nDox showed
the significant negative effect on the tumor size progression
in orthotopic xenograft tumor model. Similar reports are
available where anti-CD44 antibodies conjugated with liposomal
nanoparticles carrying doxorubicin drug molecules can
selectively target CD44+ CSCs in hepatocellular carcinomas and
limiting the side effects of conventional chemotherapy (Wang L.
et al., 2012).

Epidermal growth factor receptor-2 (EGFR-2) and transferrin
receptor (TfR) is also useful biomarkers for targeting both cancer
cells, and CSCs and delivery of nanoparticles carrying drug
molecules specifically to these cells would be an intelligent
approach to eradicating them simultaneously. Both the CSCs and
non-CSCs are reported to express TfR. There are reports from
both in vitro and in vivo studies by using particles which can
recognize TfR and thus deliver desired anti-CSCs agents [(TfR-
targeting nano-complex (Scl)-carrying wtp53 gene)] to them in
mouse model studies (Table 5).

Another important study using Cetuximab (binds to an
extracellular region of EGFR/EGFRvIII) in GBM CSCs and non-
CSCs has provided insight. The Cetuximab-conjugated iron-
oxide nanoparticles were used to define their efficacy against
tumors in intracranial rodent GBM model. These studies could
help in the animal survival after treatment (Kaluzova et al., 2015).

FUTURE DIRECTIONS

Altogether, the various types of nanomedicine discovered so far
by exploring different tumor models are greatly promising. Many
of these nanomedicine approaches have high positive impact on
the specificity and efficacy of the conventional anti-tumor/anti-
CSCs agents. This influence can boost the probabilities of
their use in clinics also. However, the development of most
effective clinical regimen needs more detailed insights to solve
various relevant issues as discussed above. Many nanomedicines
have already received clinical approval and seek an urgent
attention toward more comprehensive research for their further
advancevements. In this virtue, few potential directions are
discussed here to get some more attention for the development
of most advanced technology.

Optimal Nanomedicine with Higher
Efficiency Is Essential for Regulation of
CSCs/Tumor Growth
Since payload carrying capacity and other relevant issues
are crucial in determining the efficacy of any nanomedicine,
the development of efficient nanocarriers would improve
the therapeutic effectiveness of them. In addition to the
identification of CSCs drug resistance mechanistic and
focusing on identification of more CSC specific targeting
molecules/markers, designing/synthesis and optimization of
nanocarriers application should be of more importance in
this context (Table 2: A summary of innovative and potential

drug delivery systems for efficient CSCs elimination). Various
issues seek immediate attention to developing more efficient
nanomedicines which are discussed as followings:

Specificity or Targeted Nanocarriers
Related Issues
Deposition of anti-tumor/CSCs agents should be precisely in
desired tumor sites/CSCs subpopulation, and there are increasing
reports on various types of targeted nanoparticles based anti-
tumor therapeutic approaches, which have been encouraging
researcher to develop more efficient similar nanoparticle based
delivery systems (Wang K. et al., 2012). But these methods
suffer frommany problems such as modification of nanoparticles
(to make them targeted)would add further complexities to
the synthesis processes, increase production cost and some
regulatory barriers may need to be overcome (Cheng et al.,
2012). Further, few research groups have criticized the ability of
targeted nanomedicine to deliver the anti-tumor/CSCs moieties
into desired sites. It is argued that addition of targeting moieties
would compromise the stealth feature of nanoparticles and
may suffer from enhanced clearance rate by host clearing
system (McNeeley et al., 2007). For example, non-targeted
liposomal nanoparticles may exert higher accumulation potential
comparable to functionalized-liposomal nanoparticles due their
longer circulation time and greater EPR (McNeeley et al.,
2007). Another paradox is associated with the high avidity of
nanoparticle which is believed to be advantageous but targeted
high avidity nanoparticles have been demonstrated to exert
reduced penetration in the deep tumor layers (Lee et al., 2010).
It is believed that targeted nanoparticles may find it difficult
to reach all the CSCs which are residing in the necrotic areas
of tumors (Keith and Simon, 2007) and targeted nanoparticles
would be more useful against those cancers where they can
easily reach to the CSCs, e.g., hematological malignancies.
Other difficulties appear due to the non-expression of most
common cancer cell surface markers (e.g., HER2 receptor,
Transferrin receptor) by CSCs and common expression of
most cell surface markers by both the CSCs and healthy
stem cells. The common expression profile makes the use
of present targeted-nanocarriers less specific which can elicit
undesired side-effects (Xia, 2014). These pitfalls indicate the
end of the most elaborated definition of CSCs specificity
and identification of more stringent anti-CSCs specific marker
which would help us in developing most effective targeted
nanomedicines.

Enhanced Cellular Intake Would be Required to

Increase the Potency of Nanocarriers
As discussed above rationally designed nanocarriers holds
the key for efficient delivery of anti-CSCs agents to the
specific sites with longer retention/circulation time and sufficient
cellular internalization that can completely eradicate tumors.
Rationale designing requires the development of intelligent
and versatile delivery systems (e.g., nanoparticle with the
capability to respond to the tumor microenvironmental stimuli).
One good example could be given as PEGylation (and other
hydrophilic modifications) which are proposed to enhance the
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stability, reducing non-specific protein interactions and also
retard the clearance through immune cells (Knop et al., 2010).
Unfortunately, PEGylation has been shown to impede the cellular
uptake of nanoparticles and cause limited intracellular trafficking
that limits their anti-CSCs activities (Mishra et al., 2004).
However, efforts are made to overcome these limitations such
as PEG moieties should be detached from the nanoparticles
after cellular intake by using specific microenvironmental
stimuli within tumor cells. For example, there are nanoscale
changes in neoplastic disorders such as pH changes and
altered expression of matrix metalloproteinases (Hanahan and
Weinberg, 2011; Huang et al., 2013; Mura et al., 2013). For
example, phospholipids attached to cell penetrating peptides and
further coated with pH sensitive PEG. This PEG coating degrades
at low pH and liposomes are taken up by cells through their
cell-penetrating peptide moieties (Kale and Torchilin, 2010).
Other than pH change, proteases and MMP-2 also have been
reported to be of use in developing similar environment stimuli-
sensitive nanoparticles (Kessenbrock et al., 2010). The micellar
nanoparticles are responsive to MMP-2 can form a micelle-
plex with siRNA by using a copolymer of PEG/PCL. The
PEG/PCL attached through MMP-2 sensitive peptide bridge
shown enhanced intracellular intake of micellar-plex due to
exposure of cationic peptide polyarginine (r9) after removal of
PEG shell in the tumor microenvironment (Wang H. X. et al.,
2014). To be noticed, the tumor microenvironment sensitive
nanocarriers were equally efficient in getting accumulated
(passive) within tumor without having any significant EPR
effect on their clearance as compared to non-degradable
PEGylated nanoparticles. Similar concept for microenvironment
responsive nanocarriers and their interactions with CSCs are not
vastly evaluated and need to be explored in more elaborated
manner.

Nanocarriers with the Capabilities of
Penetrating into the Deepest Interior
Population Are Essential for Enhancement
of Their Anti-CSCs Activities
There are two anatomically distinct regions in tumor
microenvironment or niche termed as outer perivascular
region and interior hypoxic regions which are mostly populated
by CSCs (Li Z. et al., 2009; Charles et al., 2010; Mohyeldin et al.,
2010). For example, aldehyde dehydrogenase (ALD) labeled
highly proliferating epithelial-like breast CSCs are demonstrated
to be located in the interiors of tumors (Liu et al., 2014).

The accessibility to the peripherally located CSCs by
therapeutic agents due to the fully developed vasculature in
these regions make them an easy target. Whereas, another
interior regions remain poorly vascularised and characterized
by hypoxic environment due to the immature vasculature and
immense interstitial matrix causing the reduced penetration
of therapeutic agents and comparable higher survival rate of
CSCs in them (Mohyeldin et al., 2010). The rationale to
improve penetration capability of nanocarriers loaded with anti-
CSCs agents could be a better option to target these CSCs.
In fact, various methods are demonstrated to improve the

penetration and subsequent retention of nanocarriers based
drugs in the desired tumor tissues. For example, PEGylation,
manipulating surface charge of nanoparticles, particle size, and
tissue penetrating peptide attachments are some good examples
(Kim et al., 2010; Cabral et al., 2011; Jokerst et al., 2011; Ruoslahti,
2012). Another smart delivery system may involve changeable
properties (e.g., structure, size) according to variables in the
microenvironment such as low pH, low oxygen concentration,
and high concentration of proteases in the interiors of the
tumor microenvironment. These smart nanoparticles would
be carrying multiple components and can control the release
and penetration/accumulation of therapeutic agents in tumor
niche. Development of pH sensitive liposome-based dendrimer
nanocarriers have been a good example of this approach showing
enhanced circulation and accumulation in the tissue. After
initial accumulation in tumor tissues, these nano-assemblies
were capable of penetrating tightly packed tumor cellular
microenvironment (containing a dense array of extracellular
matrix) resulting in increased drug intake by tumor cells even in
the distant regions (Sun Q. et al., 2014).

Genome Editing Aided Nanomedicine for
CSCs Eradication
In addition to existing RNAi approaches (e.g., siRNA andmiRNA
therapeutic agents) more efficient gene editing strategies might
open a new door of hope for generating most effective anti-
CSCs remedies. The RNAi-based approaches rely upon the
RNA degradation/inhibition of translation of genes supporting
CSCs survival/function without having any effect on the gene
expression as such (Castanotto and Rossi, 2009). Therefore,
disease seeking permanent shut down of specific gene expression
may not be benefitted from this approach. Also, RNAi-related
poor specificity and other off-target effects may also decrease
the overall therapeutic value of these strategies (Mittal, 2004;
Jackson and Linsley, 2010). Genome editing technology provides
a platform for the development of newer and better approach.
It involves programmable nucleases [e.g., meganucleases, zinc-
finger nucleases (ZFNs), transcription activation like effector
nucleases (TALENs), and the clustered regularly interspaced
short palindromic repeat (CRISPR) associated nuclease Cas9]
(Wolfe et al., 2000; Bibikova et al., 2003; Smith et al.,
2006; Christian et al., 2010; Miller et al., 2011; Cong et al.,
2013; Ran et al., 2013; Boissel et al., 2014) for editing
genome in diseased cells/tissues to cause inactivation/correction
of malfunctioning gene(s) due to mutations, generation of
proactive mutations and addition of therapeutically effective
transgenes (Boettcher and McManus, 2015; Cox et al., 2015).
Most importantly, CRYPT based strategies are grabbing more
attentions of the researchers across the globe for the study of
gene functions, genomic rearrangement, disease progression in
both cancer and other disorders, and corrections of inhered
genetic disorders (Ran et al., 2013; Cox et al., 2015). CRISPR/Cas9
based approached are more efficient in disruption of gene
function in targeted gene knockdown as compared to RNAi-
based approaches which rely upon protein depletion related
cellular inadequacies (Qi et al., 2013; Shalem et al., 2014).
Use of CRISPR-based genome editing technology for the
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suppression of ABC transporters cassette through targeted
nanocarriers would be an efficient method for improved
accumulation of anti-CSCs drug molecules (Platt et al., 2014;
Aida et al., 2015). For instance, BMP-4 gene addition by
genome editing technology promoted differentiation ofCD133+
HCC CSCs while blocking it self-renewal and make them
sensitive to the chemotherapeutic agents (Zhang L. et al.,
2012).

Although promising the delivery of various editing systems to
the particular cell or sites would remain major barriers in the way
of their clinical translation.

Due to their low packaging capacity, high expression of
nucleases and marked immunogenic effect, the virus-based
delivery system are significantly avoidable in the most clinical
setting. On the contrary, polymer or liposomal-based methods
seems to grab more attention in clinical settings due to their
comparatively small toxicity range (Bessis et al., 2004; Wu et al.,
2010; Cox et al., 2015; Zuris et al., 2015).

Improvements in the Immunotherapy of
CSCs
Different types of immune cells (e.g., T cells, macrophages,
natural killer cells, etc.) are known to affect the CSCs (both
inhibitory/stimulatory effects) in tumormicroenvironment along
with other types of cells such as mesenchymal stem cells, tissue
associated fibroblast, and endothelial cells (Korkaya et al., 2011).
Recent advancements in the identification of tumor cells and
infiltrating immune cells have raised the potential use of immune
therapeutics in clinics (Pan et al., 2015).

Endogenous immune response regulators (e.g., cell surface
molecules) functions as immunity checkpoint and can regulate
autoimmune responses through their regulatory effects on the
various co-inhibitory signaling pathways (Nirschl and Drake,
2013). However, in the case of cancer, these inhibitory pathways
facilitate tumor immune resistance (Naidoo et al., 2014). Various
research groups have demonstrated major immunoinhibitory
pathways. For instance, programmed cell death-1 (PD-1)/PD-
L1 axis, and the cytotoxic T-lymphocyte antigen 4 (CTLA-
4)/B7 axis, which contribute cancer cell protection through their
suppressive role in tumor microenvironment and negatively
regulate cancer cell eradication by immune destruction methods
(Pardoll, 2012; Lyford-Pike et al., 2013). Since stem cells
are immune-privileged and have an active role in immuno-
regulations In CSC niche. The secretion of various paracrine
factors by CSCs can reciprocally modulate the immune cells
(Frank and Sayegh, 2004; Le Blanc et al., 2004; Le Blanc and
Ringden, 2007; Schatton et al., 2008; Maccalli et al., 2014).
IT is demonstrated that CSC can negatively regulate T-cell
activities (Schatton and Frank, 2008; Schatton et al., 2010). By
expression of the chemoresistance determining factor ABCB5 a
novel type of CSCs has been identified that is known as malignant
melanoma initiating cells (MMIC). The MMICs preferentially
express PD-1 and B7.2 but significant decrease in the expression
level of PD-L1 compared to ABCB5-cells (Schatton and Frank,
2008). Reports are showing the clinical use of anti-PD-1/PDL-1
monoclonal antibodies in various cancers including melanomas
and lung cancer (Sharma et al., 2011; Topalian et al., 2012),

and in refractory Hodgkin’s disease (Ansell et al., 2014). In
these clinical studies, few patients had considerably prolonged
responses in comparison to cytotoxic/targeted therapies, and
as per assumption activation of T-cell may decline by PD-
1/PD-L1 expression in tumor cells. For instance, head and neck
carcinoma cells are reported to have high expression level of
PD-1/PD-L1 (Lee and Sunwoo, 2014). Thus, it is postulated
that in future clinical trials assessment of CSCs’ ability to
respond immune blockade checkpoint can be an important
determining factor. Also, the combined use of immune-
checkpoint therapies and CSCs targeting immunotherapy (e.g.,
vaccine) may be a useful tool to enhance their clinical
utility.

Studies reported that EMT program has positive effect o
the expression level of CD90 and EphA4 which are known to
participate in interactions among CSCs and tumor-associated
monocytes and macrophages (TAMs) and these TAMs create
a CSCs niche causing enhanced CSCs activities of carcinoma
cells (Lu et al., 2014). In another study, breast cancer cells
were shown to have resistance against autologous/allogeneic
natural killer cells due to reduced expression of MICA and
MICAB (two ligands for the stimulatory receptor NKG2D)
(Wang B. et al., 2014). In a mouse study, the potential of
ALDH1A1-based immunotherapy (via adoptive cell therapy
causing the elimination of ALDH bright+ population) have been
demonstrated to be of therapeutic importance (Visus et al., 2011).

Implementation of CSCs-based dendritic cell vaccine has also
been useful in developing anti-CSCs immunity. For example, DV
vaccination by neurosphere showed stronger anti-tumor effects
on in comparison to conventionally grown cells in a mouse
glioma model (Ning et al., 2012; Toda, 2013). In similar studies
to evaluate the preventive effect of CSC-based vaccination on the
liver metastasis development in a rat colon cancer model shown
a significant reduction in the tumor volume incidence (Duarte
et al., 2013).

Nanoparticles are useful as a carrier for vaccine antigen
and have been promising in the development of cancer
immunotherapy (Park et al., 2013; Goldberg, 2015). The
rationally designed nanoparticles have been shown to reduce
the accumulation of TAMs or can destroy TAMs which is
defined as an essential component of CSCs niche (Leuschner
et al., 2011; Zhu et al., 2013). Another report indicates more
encouraging results showing a role as an adjuvant for the
nanoparticles which can stabilize the vaccine antigens boost
the response of antigen-specific CD8+ T cells and therefore
enhancing the anti-cancer immunity. Further, changing the size,
charge and hydrophobic characteristics of nanoparticles and
equip them with suitable targeting moieties may improve their
accessibility to the antigen presenting cells (APCs) and modulate
the immune response to an antigen resulting to improved anti-
cancer therapy (Cruz et al., 2012). Also, use of high-through
screening methods may help in identifying new and more
accurate anti-CSCs antigens to improve the development of
more targeted nanomedicines. A more interesting combination
would be the nanotechnology and immunotherapeutic holding
greater promises to achieve success in most efficient anti-cancer
remedies.
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CONCLUSION

The article entails various approaches to tackle CSCs/tumor
cells while describing in-depth knowledge of their biological
parameters and significance in tumors. The primary focus
was on the use of different nanotechnology-based therapeutic
approaches for the effective eradication of CSCs within the
tumor to completely cure cancers. Nanomedicines may be the
treatment of choice for all the different types of cancer due
to their excellent efficacy in penetration, specific retention and
killing of tumor cells/CSCs. However, a lot of many issues which
should be dealt in priority to ensure the maximum benefit from
the recent advancements in the field of nanomedicine is essential.
Also, use of multidisciplinary tactics for the enhancement of
the efficiency of both conventional and nanotechnology based
and cancer therapeutics regime would be substantial asset. In
short, nanomedicine is the future of cancer treatment and would
require more in-depth knowledge of basic information of cancer
cells and other allied subjects (such as chemical synthesis of

optimal nanocarriers) to improve the existing barriers in this field
further.
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