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ABSTRACT
In viral binding and entry, the Spike(S) protein of SARS-CoV-2 uses transmembrane serine protease 2
(TMPRSS2) for priming to cleavage themselves. In this study, we have screened ‘drug-like’ 7476 ligands
and found that over thirty ligands can effectively inhibit the TMPRSS-2 better than the control ligand.
Finally, the three best drug agents L1, L2, and L6 were selected according to their average binding
affinities and fitting score. These ligands interact with Asp435, Cys437, Ser436, Trp461, and Cys465
amino acid residues. The three best candidates and a reported drug Nafamostat mesylate (NAM) were
selected to run 250ns molecular dynamics (MD) simulations. Various properties of ligand-protein inter-
actions obtained from MD simulation such as bonds, angle, dihedral, planarity, coulomb, and van der
Waals (VdW) were used for principal component analysis (PCA) calculation. PCA discloses the evidence
of the structural similarities to the corresponding complexes of L1, L2, and L6 with the complex of
TMPRSS2(TM) and Nafamostat mesylate (TM-NAM). Moreover, Quantitative structure-activity relation-
ship (QSAR) pattern recognition was generated using PCA for the investigation of structural similarities
among the selected ligands. Multiple Linear Regression (MLR) model was built to predict the binding
energy compared to the binding energy obtained from molecular docking. The MLR regression model
reveals an accuracy of 80% for the prediction of the binding energy of ligands. ADMET analysis dem-
onstrates that these drug agents are appeared to be safer inhibitors. These three ligands can be used
as potential inhibitors against the TMPRSS2.
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1. Introduction

A major viral respiratory disease appeared in Wuhan, Hubei
Province, China, in December 2019 (Jaimes et al., 2020; Wu
et al., 2020; Yuan et al., 2020). The initial cluster of infections
known as Coronavirus infected not only animals but also
humans. Later, it occurred transmission at human-human
and spread quickly from China to over the world (Hoffmann
et al., 2020; Gorbalenya et al., 2020; L. Zhang et al., 2020).
This new corona type virus is known as Severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) since eighty-two
percent of similar RNA genome analogous found to the SARS
coronavirus (SARS-CoV), and both viruses belong to the
Betacoronavirus b gene clade (L. Zhang et al., 2020).

The human host cell transmembrane protease serine 2
(TMPRSS2, Uniprot-O153934) which belongs to the trans-
membrane serine protease (II) family is found in epithelial
cells of the human respiratory and gastrointestinal tracts
(Bertram et al., 2012; Shrimp et al., 2020). It plays an import-
ant role in viral entry and spread in the host (Iwata-

Yoshikawa et al., 2019). The predominant coronavirus antigen
is a surface spike glycoprotein (S) which facilitates viral entry
by activating the host receptor and negotiating virus-host
membrane fusion (Yuan et al., 2020). A two steps mechanism
is followed here to activate SARS CoV-2. In the first step,
facilitating host-cell entry, viral entry hemagglutinin protein
is connected with angiotensin-converting enzyme 2 (ACE2),
encoded by the ACE2 gene, that is expressed on respiratory
epithelial cells. In the second step, cleavage of hemagglutinin
is occurred to activate the internalization of the virus. This
second step is proceeded through proteases particularly
TMPRSS2, on the host cell (Walls et al., 2020).

It is also assumed that the S protein of SARS CoV-2 is acti-
vated by TMPRSS2 and furin. SARS-CoV-2 S protein is cleaved
by furin at the S1/S2 site. The S20 site of S protein is cleaved
by TMPRSS2 (Bestle et al., 2020). Here, spike protein interacts
with ACE2 as the passage receptor and utilizes the cell serine
protease TMPRSS2 for S protein preparation (Hoffmann et al.,
2020; Kumar et al., 2020). Thus, TMPRSS2 is also responsible
for SARS-CoV-2 replication.
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It has already been shown that TMPRSS2 and HAT split
and activate 229E- for cathepsin L- host cell entry. TMPRSS2
triggers diverse human respiratory viruses, therefore, it may
stimulate viral propagation in humans (S. Bertram et al.,
2013). Nafamostat mesylate, a serine protease inhibitor,
inhibits TMPRSS2-dependent host cell entry of MERS-CoV
(Yamamoto et al., 2016). Recently, SARS-CoV-2 infection of
human lung cells is highly blocked by nafamostat mesylate
than camostat mesylate while these compounds had inactive
against vesicular stomatitis virus infection (Hoffmann et al.,
2020). In light of the proven safety of nafamostat mesylate,
we consider this as a standard drug for COVID-19 treatment.

This study is conducted to screen a large chemical data-
base with the final goal of identifying the best ligands for
design an effective drug for COVID-19. We explore potent
ligand candidates, which are found to be more effective than
nafamostat mesylate to inhibit the activation of TMPRSS2,
and this is primarily responsible for the entrance of SARS
CoV-2 (Figure 1).

2. Methodology

2.1. Modeling of protein structure and
structural validation

The 3D structure of the TMPRSS2 protein was unavailable in
the PDB database (http://www.rcsb.org/) (Berman et al., 2002).
Therefore, the amino acid sequences of the protein were col-
lected from the UniProt database (UniProtKB ID O15393)
(Apweiler, 2009), and the 3D structure of TMPRSS2 was gener-
ated by using the SWISS-MODEL server (Waterhouse et al.,
2018). Further, the structure validation of the predicted model
was investigated by the Phi/Psi Ramachandran plot using
PROCHECK Figure 3 (R. A. Laskowski et al., 1993). The quality of
the protein model was calculated by employing the Protein
Structure Analysis (ProSA) Figure S1 (Wiederstein & Sippl, 2007).
Then, the generated structure of targeted protein TMPRSS2 was
modelled using the template of Serine protease hepsin (PDB
ID:5CE1) (Meng et al., 2020) as shown in Figure S2. Moreover,
Secondary structure analysis carried out by discovery studio
and PDBsum shown in Figure 2A and 2B (Laskowski et al.,
2005). Finally, TM-align algorithm was also employed and the

best model was selected based on TM-score (Y. Zhang &
Skolnick, 2005).

The predicted model structure does not provide informa-
tion on the location of hydrogens, commonly referred to as
the protonation state. The accurate prediction of the correct
protonation state, especially within the binding interface, is
crucial to accurately predict the correct binding mode and,
binding affinity (Onufriev & Alexov, 2013; Petukh et al.,
2013). The protonation state of ionizable residues (Asp, Glu,
Arg, Lys, Tyr, His, Cys) was set under pH 6.5 based on the
pKa values calculated by the Hþþ server (Anandakrishnan et
al., 2012; Gordon et al., 2005).

2.2. Virtual screening

Total ‘drug-like’ 7476 ligands were predicted against the
TMPRSS2 gene (UniProtKB ID O15393) in the ZINC15 data-
base (http://www.zinc15.docking.org/) (Apweiler, 2009;
Glowacka et al., 2011; Sterling & Irwin, 2015). Zinc15 per-
formed the prediction with a combined method of Similarity
Ensemble Approach (SEA) and maximum Tanimoto similarity.
It also uses compound annotations from ChEMBL Version
21(Irwin et al., 2018). In addition, these ligands have the for-
mula mass of less than 700 g/mol, calculated partition co-effi-
cient (clogP) ranges from �1 to �5, and hydrogen bond
donors and acceptors are less than 5 and 10, respectively. To
optimize the ligands, UFF (universal force field) (Artemova et
al., 2016; Zorn et al., 2008) was used with the steepest des-
cent optimization algorithm along with the 2000 number of
minimization steps. Using MGL software package in
AutoDock Tool (ADT), the protein and ligands PDB files are
converted into pdbqt formats. After preparing of protein and
ligands, the grid box of AutoDock Vina (using PyRx-0.8 ver-
sion) was created counting the active binding sites of the
targeted TMPRSS2 Model (TM) in which centers were 15.98 Å,
–7.27 Å, 24.45 Å, and the dimensions were 18.33 Å, 19.42 Å,
17. 66Å for X, Y, Z directions respectively. The exhaustive-
ness number is 8, and nine binding modes for every
tested ligand.

The ligand’s binding affinities were measured in kcal/mol
as a negative score unit in which the higher negative score
was equal to the more binding affinity. The preliminary vir-
tual screening of 7476 ligands was conducted by AutoDock
Vina (Trott & Olson, 2010) docking protocol. Molecular dock-
ing simulation of every drug candidate was performed
against the targeted active binding sites (HIS296, ASP435,
SER436, CYS437, GLN438, GLY439, TRP461, GLY462, GLY464,
and CYS465) of TM protein, and the binding sites were col-
lected from various literatures (Hempel et al., 2021; Hussain
et al., 2020; Kumar et al., 2020; Singh et al., 2020). According
to the measured binding affinity, the top thirty-one potential
drug candidates were selected for further study.

To get more insight about the docking analysis of top
thirty-one ligands obtained AutoDock Vina, GOLD 5.7
(Genetic Optimization for Ligand Docking) docking (Jones et
al., 1997) was also performed to support the AutoDock Vina
results. The Hermes visualizer in the GOLD suite was applied
to prepare the ligand and protein. For further analysis of

Figure 1. An overview between Spike protein with TMPRSS2 and small molecule.
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docked protein-ligand complexes, Discovery Studio Software (ver-
sion 19.1.0.18287) was used. AutoDock Vina result showed that
L1 (ZINC000116505796, (R)-N-(4-carbamoylbenzyl)-1-(1-hydroxy-2-
naphthoyl) pyrrolidine-2-carboxamide), L2 (ZINC000436573789,
(R)-N-(3-carbamoylbenzyl)-1-(1-hydroxy-2-naphthoyl)pyrrolidine-2-
carboxamide) and L6 (ZINC000026291155, N-(4,6-diphenylpyrimi-
din-2-yl)cyclohexanecarboxamide obtained more binding affinity
as well as non-covenant interaction compared to NAM

(Nafamostat). Moreover, the pKa values of the potent three
ligands were calculated by the chemaxon server (https://www.
chemaxon.com) shown in Table 1. Therefore, these three and
NAM were selected for molecular dynamics simulation.

2.3. Molecular dynamics (MD) simulations and binding
free energy

Molecular dynamics simulation was performed using the
YASARA Dynamics software (Krieger et al., 2004) for Apo
form (without ligand) and holo forms (ligand-protein) of
TMPRSS2 model to understand their conformational dynam-
ics. The AMBER14 force field was used for all calculations
(Dickson et al., 2014). The total system had 52, 583 atoms
where water molecules were included, which was neutralized
by adding NaCl salt at 0.9% concentration (Krieger et al.,
2006) at 298 K temperature. At physiological conditions, the
Berendsen thermostat was used to control the simulation
temperature and it was carried to the short-range Van der
Walls and Coulomb interactions, and long-range electrostatic
particle-mesh Ewald (PME) method (Darden et al., 1999) was
utilized at a cut-off radius of 8 Å.

For the simulation, the periodic boundary condition was
included, where the box size was (88.42Åx76.53Åx76.89 Å).
Using the time stage 1.25 fs (Krieger & Vriend, 2015), simula-
tion snapshots were saved at every 100 ps. The primary
energy minimization process of each simulation system was
continued to carry out using the simulated annealing
method, the steepest gradient approach was applied in 5000
cycles. Molecular dynamics simulations were performed over
250 ns at constant pressure and Berendsen thermostat.

Figure 2. (A) 3 D structure of TMPRSS2 Model (TM) protein indicating helix, beta-sheet, and loop as green, cyan, and purple color respectively. (B) Secondary struc-
ture visualization created by PDBSum.

Figure 3. Ramachandran plot of TMPRSS2 protein. The plot calculations on the
3 D models of TMPRSS2 protein were calculated with the PROCHECK server.
Most favored regions are represented by colored red and additional allowed,
generously allowed, and disallowed regions are designated as yellow, light yel-
low, and white fields, respectively.
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Energy, bond distance, bond angle, dihedral angle, hydrogen
bond, solvent accessible surface area (SASA), radius of gyr-
ation (Rg), root mean square fluctuation (RMSF), and root
mean square deviation (RMSD) values for backbone and
heavy atoms were collected throughout the analysis for fur-
ther calculations.

PCA is one of the most recognizable and best-known
techniques of multivariate analysis. In our study, the main
objective of applying this method is to express the correl-
ation among the variables in the collected energy profile of
MD trajectory data (R. Islam et al., 2020). PCA represents the
multivariate response that is arranged in an X matrix into a
product of two new matrices as indicated in the following
equation:

X ¼ TKPTK þ E

Here, Tk is the matrix of scores which represents how
samples relate to each other, Pk is the matrix of loadings
which contains information about how variables relate to
each other, k is the number of factors included in the model
and E is the matrix of residuals, which contains the informa-
tion not retained by the model. Different energy profiles
may be observed between complexes of four ligands with
protein and main protein, i.e. apo-protein during MD simula-
tion. Through the PCA algorithm, the difference in energy
profile can be identified (J. Islam et al., 2019). R platform was
used to perform all calculations using in-house developed
codes (Team, 2014). The ggplot2 package (Wickham, 2008)
was used to generate the plot. Before applying the PCA algo-
rithm (Martens & Nï, 1992), autoscale function was used to
preprocess data. The PCA was analyzed by taking the final
150 to 250 ns of MD trajectory data.

Then binding free energy was calculated using PRODIGY-
LIG webserver (Vangone et al., 2019). In this server, they pre-
dicted the binding free energy based on the number of
atomic contacts (ACs) within the distance threshold of 10.5Å
and classified the ACs according to the atom involved in the
interaction (C¼Carbon, O¼Oxygen, N¼Nitrogen, X¼ all
other atoms). The calculation was conducted for the last
100 ns from MD simulation results of selected three and
NAM complexes. The free energy calculation results were
obtained using this equation 1:

DGnoelec ¼ 0:0354707 ACNN � 0:1277895 ACXX
� 0:0072166 ACCN � 5:1923181

(1)

where, ACNN, ACCN, and ACXX, are the ACs between Nitrogen-
Nitrogen, Carbon-Nitrogen, and between all other atoms and
polar hydrogens, respectively. DGnoelec is the electrostatic
energy calculated through the HADDOCK (van Zundert &
Bonvin, 2014) refinement protocol.

2.4. Quantitative structure-activity relationships (QSAR)
of ligands

Out of 7476 ligands, the top potential ligands were selected
based on the binding energy for the QSAR study. Initially, 21
ligands were arbitrarily selected as the ‘training set’ and 10
ligands were utilized as the ‘test set’ or ‘validation samples’.

Multiple linear regression (MLR) analysis was applied to find
the fundamental correlation between the structure-activity
relationships with the calculated binding energy values
obtained from molecular docking (Fakayode et al., 2009;
2014; Liu et al., 2017). In addition to binding energy, some
other important variables like TPSA (topological polar surface
area, Å2), molecular weight, XLogPs-AA, ROTB count, number
of H, C, O, Cl, N, and F atoms, single bonds (SB) count, dou-
ble bonds (DB) count, and the number of benzene ring were
taken into consideration. MLR data processing was carried
out using the XLSTAT software package (Adinsoft, 2010).

2.5. Pharmacokinetic properties

The best possible pharmacokinetics and lethality profile
alongside viability are the significant determinants owing to
effective medication improvement (Dirar et al., 2016). ADMET
(Absorption, Distribution, Metabolism, Excretion & Toxicity)
study validates the pharmacokinetics parameters of a drug
molecule (Nisha et al., 2016). ADMET structure-activity rela-
tionship database, known as AdmetSAR is an online service
that gives the data in regards to the lethality, cancer-causing
nature of the medications and discovers whether the poten-
tial drug candidates follow the Lipinski Rule. In our study,
admetSAR 2.0 (http://lmmd.ecust.edu.cn/admetsar2/) was
used as a platform to predict ADMET properties. The server
was being used by uploading structure data file (sdf) and
simplified molecular-input line-entry system (SMILES) strings
for the modified drug. Here, the simplified molecular-input
line-entry system (SMILES) of the settled ligands was submit-
ted in the admetSAR program to check for lethality. ADMET-
related properties were calculated by counting the molecular
formula (MF), the blood-brain barrier (BBB), Human either-a-
go-go inhibition (hEGI), Human intestinal absorption (HIA), P-
glycoprotein inhibitor (PGI), Alogp, Caco-2, Carcinogenicity
(binary), mol MW. Due to having significant impacts on the
performance and pharmacological activity of the drug of
these properties, they were considered in our study.

3. Results and discussion

3.1. Validation of predicted TMPRSS2 structure

Model validation is an essential part of homology modeling.
The secondary structure analysis shows that the similarity
between TMPRSS2 and hepsin is 33.82% with a Q mean

Table 1. Calculated pKa values of potent ligands.

Ligands Breakdown pKa Nature

L1 Naphthol 14.59
Tertiary amine 15.59 Basic
Carbonyl (amide) 13.95

L2 Carbonyl �0.70
Tertiary amine 15.58
Naphthol 14.58 Basic
Carbonyl (amide) 13.94
Amide (NH2) �1.36

L6 Carbonyl �0.66 Basic
¼NH (carbamimidoyl) 12.78

Nafamostat ¼NH (carbamimidoyl) 12.81 Basic
Amino 11.65

4 A. A. MAMUN ET AL.
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value of –1.43. The structural analysis shows that there are 5
sheets, 10 helices, 6 disulphides, and 21 strands are present
in the model structure of TMPRSS2 as shown in Figure 2A
and 2B.

The stereochemical qualities of the predicted model of
TMPRSS2 protein obtained from the SWISS-MODEL server are
validated by generating a Ramachandran plot using the
PROCHECK (R. A. Laskowski et al., 1993; Waterhouse et al.,
2018). The shading on the Ramachandran plot showing in
Figure 3 for TMPRSS2 protein is used to indicate different
regions such as the red areas reveals the most favorable
region for phi-psi combination. In case of better stereochem-
ical quality of any model, maximum residues of protein
(about 90%) in the core regions should be found. The plot
statistics for TMPRSS2 protein showed 253 residues (84.6%)
in the most favored regions, 44 residues (14.7%) are in the
additional allowed regions, and also 1 residue (0.3%) in gen-
erously allowed regions whereas only 1 residue (0.3%) is in
disallowed regions showing in Figure 3 and Table S1. Table
S2 represents the main and side chain parameters which also
indicates the accuracy of the structure prediction. Other

main chain parameters including omega angle standard devi-
ation, bad contacts/100 residues, zeta angle standard devi-
ation, hydrogen bond energy standard deviation, and overall
G factor are determined by PROCHECK. These results also
reveal that the SWISS-MODEL generated structure has better
structural qualities (Table S2). Side-chain parameters are sum-
marized as chi1-chi2 side-chain torsion angle combinations
for all residues in Table S3 indicate SWISS-MODEL generated
structure exhibited a higher score in terms of overall struc-
tural accuracy.

A better quality structure typically contains a much lower
residue fraction in disallowed regions (Gunasekaran et al.,
1996). Therefore, the stereochemical quality of the predicted
TMPRSS2 protein model is considered appropriate. The
ProSA server is used to recognize the potential errors in the
predicted model. Z-score obtained from this server represents
the quality of the whole model and the total energy deviation
of the structure can be measured from an energy distribution
that is derived from random conformations. The Z-score
obtained from the server is plotted compared to experimentally
found Z-scores of all similar size proteins through NMR and X-

Table 2. Docking results of three ligands along with fitting score with TM (AutoDock Vina scores are in kcal/mol).

Entry Structures
Auto Dock Vina with
protonated protein GOLD

L1 –9.5 74.05

L2 –9.8 68.03

L6 –9.4 88.15

Standard –8.5 69.51

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 5



ray (Wiederstein & Sippl, 2007). The z-score obtained for
TMPRSS2 protein is –8.67 denoting no significant deviation
from the scores calculated for the proteins of closure structure
of PDB database showing in Figure S1. Finally, the model struc-
ture from SWISS-MODEL is also aligned with the PDB ID:5CE1
by using TM-align server, where amino acid residues are
aligned relatively better with SWISS-MODEL (TM-score: 0.96;
RMSD 0.91Å) model. In summary, the results from PROCHECK,
ProSA, and TM-align analysis clearly reported that the modeled
structure of TMPRSS2 generated by using SWISS-MODEL pro-
gram was superior in quality. Therefore, further study of the
modeled structure of TMPRSS2 is carried out with SWISS-
MODEL generated structure.

In the modeled TMPRSS2 structure, Asp, Glu, Arg, Lys, Tyr,
His, and Cys residues were protonated under pH 6.5 based on
the pKa values. Further, during the protonation state, His296
residue switches to the Hip296 after protonation of the
TMPRSS2 model which has a pKa value of 8.91. Histidine (His)
residue exhibits three different conformations which can be
protonated. The imidazole ring of the His side-chain can be
protonated in a neutral confirmation at the e-nitrogen (HIE) or
the d-nitrogen(HID) or in a charged (þ1) conformation (HIP)
where both the e- and d-nitrogens are protonated (Kim et
al., 2013).

3.2. Virtual screening and molecular interactions

Structure-based virtual screening is performed to screen
about 7476 ligands. A cut-up value –8.7 (the binding affinity
of NAM, control ligand) is applied. Thirty-one ligands are
shown better binding affinity than the control ligand and
they are selected for further analyses. Again, selected 31
compounds were screened three times by AutoDock vina
and reported their average binding affinity. At that time, the
GOLD suit was used to support the Audock Vina docking
results. Higher fitness scores in GOLD docking, as well as

higher binding affinities in AutoDock, refer to the better
docking interaction between ligand and protein. Three
ligands L1, L2, L6, and NAM are docked with protonated pro-
tein TM to compare the binding affinity (Table 2). The bind-
ing affinity and fitness score of the top thirty-one ligands are
shown in and Table S4. Besides, a standard TMPRSS2 inhibi-
tor such as NAM is subjected to dock to compare the find-
ings with the zinc database ligands. In this study, the
binding affinity of 31 ligands is compared to NAM. Docking
results show that three ligands have more binding affinities
than NAM. The highest binding affinities are observed from
the corresponding complexes of L1, L2, and L6 and while
NAM shows the binding affinity of –8.5 kcal/mol. The results
of the selected ligands are expected as the possible inhibitor
of TMPRSS2, clearly representing the selected ligands will dis-
play stronger inhibitory effects than standard drugs.

A significant number of non-covalent interactions such as
hydrogen bond, hydrophobic and electrostatic interactions are
detected in three ligands with TMPRSS2 as shown in Figure 4
and Table S5. Among the selected three ligands, the L1 shows
binding affinity –9.5 kcal/mol. In the TM-L1 complex, five hydro-
gen bonds, eight hydrophobic interactions stabilize the ligand.
Three hydrogen bonds and nine hydrophobic interactions sta-
bilize the TM-L2 complex where the TM-L6 complex shows four
hydrogen bonds, eight hydrophobic and one electrostatic inter-
action. Two hydrophobic interactions and one electrostatic
interaction are observed for the TM-NAM complex and it shows
the lowest binding affinity –8.5 kcal/mol. In the TM-NAM com-
plex, three hydrogen bonds (C-O…H-N) are detected with vari-
ous amino acids including ASP435 (2.114), TRP461 (2.777), and
GLY464 (2.314).

Interestingly, it is observed that the ligands only show
hydrogen bonds with the binding site residue ASP435, and
GLY464 (Figure 5A). All ligands show important hydrophobic
interactions with the active residues. More specifically, the
best 3 ligands and NAM form important non-covalent bonds
with common residues (TRP461 and GLY462 through pi-Alkyl
interaction), and while LYS342, LEU 419 shows Pi- amide
interaction (Figure 5B).

3.3. Molecular dynamics simulations and free energy
calculations

250ns molecular dynamics simulation was performed for three
protonated TM-ligand and TM-NAM complexes. Nafamostat
complex (TM-NAM) is used as a control. To recognize the stabil-
ity of the TM-ligand complexes, the RMSDs of the Ca atoms for
the protein were measured and plotted. The protein’s activity
during the simulation time is depicted in Figure 6 and Table 3.

Table 3. The average value of RMSD (Å), SASA (Å2), Radius of gyration (Å), Number of hydrogen bonds, and Binding free energy (kcal/mol) from 250 ns
MD results.

Complex RMSD (Å) SASA (Å2)
The radius of
gyration (Å)

Number of H-bonds
(with ligand)

Binding free
energy (kcal/mol)

Apo 2.79 ± 0.29 17414.24 ± 274.14 22.06 ± 0.20 – –
TM-L1 3.70 ± 0.57 16757.20 ± 274.69 22.29 ± 0.19 5 ± 1 –7.67 ± 0.02
TM-L2 3.81 ± 0.43 16890.20 ± 347.80 22.11 ± 0.25 3 ± 1 –8.01 ± 0.24
TM-L6 8.26 ± 1.10 18169.17 ± 330.63 23.72 ± 0.29 4 ± 1 –8.69 ± 0.02
TM-NAM 6.49 ± 1.55 16853.36 ± 401.73 23.09 ± 0.41 3 ± 1 –7.84 ± 0.12

Table 4. Predicted binding energy by MLR regression and actual binding
energy from molecular docking.

Sample
Predicted binding
energy (kcal/mol)

Actual binding
energy (kcal/mol) %RE

L2 �9.25 �9.70 �1.75
L5 �8.96 �9.30 �1.31
L11 �8.95 �9.10 �0.54
L13 �9.07 �9.10 �0.09
L17 �8.71 �8.90 �0.73
L25 �9.16 �8.80 1.42
L26 �9.15 �8.80 1.38
L29 �8.98 �8.70 1.11
L7 �9.13 �9.10 0.13
L14 �8.82 �8.90 �0.28
RMS%RE 1.61
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In Figure 6A, RMSDs of apo-form are reported and found
lowest of any other complexes (average RMSD 2.79 Å). Lower
RMSDs show greater stability. A higher fluctuation of RMSD
value is observed in the TM-L6 complex in comparison to
other complexes. The average RMSD value of TM-L6 is 8.26 Å.
The average RMSD of TM-L2 is 3.81 Å, and little fluctuation is
noticed in RMSD value, however, the ligand significantly
changes its position from the initial binding pose over the
simulation period (Figure S4A). It is also showed that the

average RMSD value of TM-L1 is 3.70 Å, and it fluctuates very
little throughout the MD simulation period. The average
RMSD value of TM-NAM is detected at 6.49 Å. Figure 6B
shows the RMSDs of the ligand. The average RMSD of the
NAM ligand (average RMSD 3.16 Å) shows the lowest value
compared to the average RMSD of other ligands including
L1 (9.09 Å), L2 (7.86 Å), and L6 (7.74 Å).

The RMSF of TM, TM-L1, TM-L2 and TM-L6 shows little
fluctuation throughout the simulation period whereas TM-

Figure 4. Non-bonding interactions of top three ligands with TM (Pose predicted by AutoDock Vina).

Table 5. Pharmacokinetic properties of selected three ligands.

Drug candidate MF AlogP hEGI Caco-2 (cm/s) BBB
CYP2D6
inhibition HIA PGI

Carcinogenicity
(binary)

Acute oral
toxicity

L1 C24H23N3O4 2.57 –0.481 –0.839 þ0.886 –0.847 þ0.962 þ0.768 –0.903 III
L2 C24H23N3O4 2.57 –0.441 –0.833 þ0.886 –0.847 þ0.962 þ0.780 –0.903 III
L6 C23H23N3O 4.00 þ0.929 –0.729 þ0.990 –0.848 þ0.885 þ0.844 –0.914 III
NAM C19H17N5O2 2.25 –0.438 –0.697 þ0.967 –0.880 þ0.974 –0.528 –0.745 III

MF-molecular formula; BBB- blood brain barrier; HIA- human intestinal absorption; PGI- p-glycoprotein inhibitor; hEGI- Human either-a-go-go inhibition.

Figure 5. Common (A) H- bond (B) Hydrophobic interaction for selected compounds. Here, white color means no residues.
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NAM shows the higher fluctuation (Figure 6C). RMSF helps to
assess the dynamic activity of amino acid residues in the pro-
tein. The flexibility of amino acid residues is measured to
provide a deeper insight into the degree to which protein
flexibility is influenced by ligand binding. The RMSF of resi-
dues (146–255) fluctuated substantially during the interaction
between protein and ligands. The average RMSF value of
apo-protein, TM-L1, TM-L2, TM-L6, and TM-NAM are 1.82 Å,
1.78 Å, 1.84 Å, 2.89 Å, 3.74 Å respectively. For the majority of
residues, a small RMSF (within 1.84 Å) in the TM-L2 complex
is found, a high fluctuation of 2.74 Å is identified in the loop
region adjacent to the residue 150, and a maximum fluctu-
ation of 5.11 Å is noticed in the helix region of residues
220–230. Overall, RMSF of the residues, HIS296, ASP435,
CYS437, GLN438, GLY439, TRP461, GLY462, GLY464, and
CYS465 are lower for all ligand-bound complexes and apo-
protein. It can also be said that the RMSF value of TM-L2 is
lower than TM-NAM. The radius of gyration (Rg) is used to
measure protein structural compactness. The lower degree of
fluctuation in the simulation with its consistency implies the
increased compactness and rigidity of a system. In Figure 6D;
the Rg of apo-protein (average Rg �22.06) is the most stable
concerning the consistency of fluctuations in the simulation.
The average Rg value of TM-L1, TM-L2, TM-L6, and TM-NAM
is 22.29, 22.11, 23.72, 23.09, respectively. Often the binding
of a small molecule could have a significant impact on the
structure of the protein and could alter SASA. For all com-
plexes and apo-protein almost equal value of SASA is
reported (Figure 6E). The average SASA value of apo-protein,
TM-L1, TM-L2, TM-L6, and TM-NAM are 17414 Å2, 16757 Å2,

16890 Å2, 18169 Å2, 16853 Å2, respectively. Therefore, it can
be proposed that the binding of TM-L2 may decrease the
expansion of protein. Intermolecular hydrogen bonds play a
role in conformational stability. For all complexes, the num-
bers of hydrogen bonds are determined. In Figure 6F, the
total number of hydrogen bonds is calculated for all com-
plexes. The average total hydrogen bond numbers for apo-
protein, TM-L1, TM-L2, TM-L6, and TM-NAM complexes are
680, 637, 650, 687, and 631 respectively. For apo-protein, the
highest number of hydrogen bonds is reported. The total
hydrogen bond numbers found for TM-L2 are nearly analo-
gous to TM-NAM.

Over the MD simulation period, the hydrogen bond (HB)
and hydrophobicity of the corresponding active residues are
demonstrated in Figure S3 reveals that during simulation
time ASP435 and GLY464 residues always interact with the
ligand through HB. On the other side, SER436 and GLY462
amino acids also show the same interaction in MD simulation
but exceptions are noticed at 20 ns for SER436 and 10 ns and
70 ns for GLY462 (Figure S4). The TRP461, CYS437, and
GLN438 residues show hydrophobic behavior almost continu-
ously during MD simulation time. The rest of the residues
are also shown hydrophobicity but comparatively less and
follow the discontinuity.

To evaluate the structural quality of protein-ligand com-
plexes, principal component analysis (PCA) is utilized to
explore the energy and structural information of four pro-
tein-ligand complexes along with apo obtained from MD
simulation. The energy and structural information vary with
some parameters including bond energies, bond angle

Figure 6. (A) Root-mean-square deviation (RMSD) of the Ca atoms, (B) Ligand RMSD of each docked complex, (C) RMSF values of the alpha carbon over the entire
simulation, where the ordinate is RMSF (Å), and the abscissa is residue, (D) Radius of gyration (Rg) over the entire simulation, where the ordinate is Rg (Å), and the
abscissa is time (ns) and (E) Solvent accessible surface area (SASA), where the ordinate is SASA (Å2) and the abscissa is time (ns) throughout the simulation, (F)
Total number of Hydrogen bonds formed, (G) Molecular Surface Area (MolSA) values of apoprotein in the complexes with selected ligands (TM-L1, TM-L2, and TM-
L6) and TM-NAM along the 250 ns MD simulations.
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energies, dihedral angle energies, planarity energies, Van der
Waals energies, and Columbic interaction energies are here
considered as a variable. Different cluster formation on the
PCA plot as shown in Figure 7A reveals the similarity and dis-
similarity between apo and protein-ligand complexes. The
PC1 and PC2 score plots are considered in this study. From
Figure 7A, it has been observed that the first principal com-
ponent analysis (PC1) describes 45.53% of the variability and
the second principal component (PC2) covers 23.74% of the
variability. The scores plot shows that clusters of apo, L2
ligands are overlapped to each other to a great extent. In

addition, by maintaining a small difference from apo and L2
clusters, clusters of L1 and NAM are also overlapped.
Interestingly, it is shown from the loading plot (Figure 7B)
that bond energies, bond angle, VdW are found in the same
distinct area where the clusters are formed on the scores
plot (Figure 7B). This reveals that these variables may have
influenced the formation of different clusters in the scores
plot. However, the cluster of L6 shows a noticeable deviation
from apo’s cluster. During MD simulation both TM-L6 com-
plex exhibit the fluctuating nature that could be responsible
for wider distribution in the score plot. Both the TM-L1 and
TM-L2 complexes are in the lowest deviation compared to
other complexes, especially the TM-L2 complex approxi-
mately overlaps with the cluster of apoprotein. Hence, it can
be considered as a potential candidate.

Figure 7C illustrates the binding free energy of all the
ligands which are obtained from the prodigy-ligand web ser-
ver. Here, the TM-L6 complex shows greater stability (around
�8.9 kcal/mol) than any other complex.

3.4. Quantitative structure-activity relationships (QSAR)

Generally, Quantitative structure-activity relationships studies
have been broadly used popular theoretical method for
modelling and pattern recognition analysis in drug design
for the pharmaceutical industry, toxicology prediction of
drug, clinical research, bioinformatics, petrochemical, food,
and agrochemicals industry (Alam & Khan, 2017; Berhanu et
al., 2012; Luco & Ferretti, 1997; Misra et al., 2017). To get

Figure 7. (A)The score plot presented five data clusters in a different color, where each dot represented a one-time point. (B) Loading plot from principal compo-
nents analysis of the energy and structural data, and (C) Binding free energy.

Figure 8. Score plot of PCA regression of quantitative structure-activity rela-
tionship (QSAR) of ligands.
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more insight into the correlation of molecular structure with
biological and pharmaceutical activities, multiple linear
regression (MLR) has been employed for further analysis. For
developing multiple linear regression (MLR), all QSARs of
ligands are significant. QSAR study on thirty-one ligands
shows that molecular weight, TPSA (Å2), XLogP3, H-bond
donor count, and H-bond are vital QSAR contributors to the
MLR listed in Table S6 and these may play an important role
in binding affinity and non-covalent interaction against
the TM.

Principal component analysis (PCA) is used for revealing
the pattern recognition of potential ligands Figure 8. The first
principal component (F1) describes 57.32% of the variability
in ligand QSAR. The second principal component (F2) reveals
15.97% in QSAR variability of ligands.

By close observation of the score plot, an interesting
grouping is noticed. The ligands which have identical func-
tional groups and rings are assembled on the score plot.

Ligands L1, L2 and L6 show more binding affinity com-
pared to NAM from molecular docking results. Thus, three
ligands can be used to design a potential drug to target TM.
The ligands L1, L2, L4, L5, L6, L10, L13, L16, L21, and L26
comprise some important groups and rings listed as amide
and formamidine groups as well naphthalene, biphenyl, and
pyrrolidine rings. These groups and rings are themselves
bonded together through a single bond and connected to
the benzene ring, hence the ligands are positioned together
on the first and second quadrants of the QSAR pattern. It
can be concluded that their position in the same quadrants
is due to having structural similarities. Therefore, the binding
energies are also observed in the range of –8.8 and
–9.8 kcal/mol. It is explored that L1, L2, and L6 give the best
performance against the targeted protein that supports the
generated QSAR pattern. On the other side, L12, L14, L17,
L24, L27, L30, and L31 are containing formamidine, diphenyl-
methyl and propylguanidine groups along with naphthalene,
biphenyl, pyrrolidine, and benzothiazole rings. These chem-
ical fragments are attached to the secondary amide group in
the corresponding ligand structures and the ligands are clus-
tered together on the third and fourth quadrants for their
structural similarities. QSAR pattern reveals that L17 is quite
different from the others located on the first quadrant which
is compatible with the lower binding affinity obtained from
molecular docking. The reason can be due to the presence
of more branching in the ligand structure resulting in a
larger size, therefore, the interaction between ligand and
protein becomes less as ligand size does not fit the binding
pocket of the targeted protein. In contrast, L14, L27, and L24
give comparatively more binding energy and lie in the same
quadrant of the QSAR pattern. For instance, the presence of
dioxosulfide and sulfur groups might enhance the possibility
of more interactions. However, L6 is analyzed as the best
candidate from molecular dynamics. The reason might be
having of formamidine group which contains two nitrogen
atoms and one double bond; hence, the density of electrons
can be higher and can influence the physical and chem-
ical properties.

The main target of any MLR model is to predict the bind-
ing energy of future drug candidates. The training set is
used to build an MLR model and therefore it is used to pre-
dict the binding energy of the test set for validation of drug
candidates. The validation result shows similar binding
energy obtained from molecular docking.

BindingAffinity ¼ �9:35574þ 0:04011� nN

� 0:24726� n double bond

� 0:15161� n single bond

� 0:00575� TPSA Å
2

� �

þ 0:01638�MW g=molð Þ (2)

The binding energy obtained from molecular docking and
the predicted binding energy by MLR regression for each lig-
and of validation ligands are exhibited in Table 4. The cap-
ability of MLR regression to predict accurately the binding
energy of the validated ligands is estimated by root-mean-
square-relative percent errors (RMS%RE). The MLR regression
revealed a high accuracy of 80% for the prediction of the
binding energy of ligands compared with the binding energy
obtained from molecular docking.

3.5. Pharmacokinetic properties

Pharmacokinetic properties (absorption, distribution, metab-
olism, excretion, and toxicity) of the top-ranked three ligands
are listed in Table 5 and the rest are in Table S7 by using
the admetSAR server (http://lmmd.ecust.edu.cn/admetsar2/).
Recently, drug discovery emphasizes pharmacokinetically
good drugs. Structural optimization is an essential computa-
tional feature in the way to design a new drug. It is very
important to optimize the pharmacokinetic parameters to
find out a promising drug agent that can pass standard clin-
ical trial criteria.

Following the calculation of admetSAR, the selected three
ligands are found to be non-carcinogenic as well as show
good human intestinal absorption (HIA) which is a major
step for transporting drugs to their targets. Again, the
pharmacokinetics and pharmacodynamics profile of a drug is
greatly affected by a drug transporter called Phosphorylated
glycoprotein (P-gp) and also the absorption and bioavailabil-
ity of a drug are boosted by the P-gp inhibitors. The ligands
might have the potential to interact with p-glycoprotein
which is characterized as ABC transporter. On the other
hand, blood-brain barrier (BBB) is a serious obstacle to drug
distribution to the central nervous system (CNS).
Approximately the square route of molecular weight is
inversely related to the BBB. The drugs having higher
molecular weight cross the BBB sufficiently to affect the cen-
tral nervous system (CNS) (Banks, 2009). From the calculation,
it has been found that the selected three ligands L1, L2, and
L6 have relatively good BBB penetration probability and thus
may not affect CNS function. From the observed data, it can
be predicted that the selected ligands may be safe
for humans.
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4. Conclusions

In this study, molecular docking, molecular dynamics, QSAR
analysis, PCA, and ADMET tools are employed to detect
potent ligands for TMPRSS2, analyzing 7476 ligands from the
zinc database. A strong binding affinity is obtained for three
ligands (L1, L2 and L6). Significant number of non-covalent
interactions such as hydrogen bonding, hydrophobic and
electrostatic interactions are detected. MD simulation is con-
ducted to verify the stability of ligands, and found to be
more stable, making more hydrogen bond interactions with
TMPRSS-2, than the control NAM ligand. Here, L1, L2, L4, L5,
L6, L10, L13, L16, L21, and L26 ligands contain amide as well
as formamidine groups, naphthalene, biphenyl, and pyrroli-
dine rings. These groups and rings are themselves bonded
together through a single bond and connected to the ben-
zene ring, hence the ligands are positioned together on the
first and second quadrants. On the other side, L12, L14, L17,
L24, L27, L30, and L31 ligands have formamidine, diphenyl-
methyl and propylguanidine groups along with naphthalene,
biphenyl, pyrrolidine, and benzothiazole rings. These chem-
ical fragments are attached to the secondary amide group in
the corresponding ligand structures and therefore, the
ligands are clustered together on the third and fourth quad-
rants. The capability of MLR regression to predict accurately
the binding energy of the validated ligands is measured by
root-mean-square-relative percent errors (RMS%RE). The MLR
regression revealed a high accuracy of 80% for the predic-
tion of the binding energy of ligands compared with the
binding energy obtained from molecular docking. It can be
concluded that most of the selected ligands have shown
promise and can be used to design effective antiviral drugs
against the SARS-CoV-2.
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