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Abstract

We aimed to investigate metabolites associated with the 28-joint disease activity score

based on erythrocyte sedimentation rate (DAS28-ESR) in patients with rheumatoid arthritis

(RA) using capillary electrophoresis quadrupole time-of-flight mass spectrometry. Plasma

and urine samples were collected from 32 patients with active RA (DAS28-ESR�3.2) and

17 with inactive RA (DAS28-ESR<3.2). We found 15 metabolites in plasma and 20 metabo-

lites in urine which showed a significant but weak positive or negative correlation with

DAS28-ESR. When metabolites between active and inactive patients were compared, 9

metabolites in plasma and 15 in urine were found to be significantly different. Consequently,

we selected 11 metabolites in plasma and urine as biomarker candidates which significantly

correlated positively or negatively with DAS28-ESR, and significantly differed between

active and inactive patients. When a multiple logistic regression model was built to discrimi-

nate active and inactive cohorts, three variables—histidine and guanidoacetic acid from

plasma and hypotaurine from urine—generated a high area under the receiver operating

characteristic (ROC) curve value (AUC = 0.8934). Thus, this metabolomics approach

appeared to be useful for investigating biomarkers of RA. Combination of plasma and urine

analysis may lead to more precise and reliable understanding of the disease condition. We

also considered the pathophysiological significance of the found biomarker candidates.

Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease which involves inflammation of

the synovium and destruction of joint cartilage and bone [1,2]. RA is pathologically heteroge-

neous, with many suspected triggers for development of the disease, including environmental

[3], epigenetic [4], and genetic factors [5–7] as well as several types of post-translational modifi-

cations of proteins [2]. The complexity of the disease is further suggested by the various clinical
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features of RA, as well as the differences in response to therapies among patients treated with

synthetic and/or biological disease modifying anti-rheumatic drugs (DMARDs) [2,8,9].

To date, various omics studies have aimed to better understand the molecular pathophysiol-

ogy of RA and explore the disease condition in individual patients. In recent years, metabolo-

mics has been acknowledged to be a powerful tool for identifying potential biomarkers in RA

patients using different types of samples such as plasma, serum, urine, and synovial fluids [10–

14]. The advantages of metabolomics may not only be in the discovery of biomarkers but also

in the identification of rapid physiological responses according to disease activities, as well as

in evaluation of the prognosis and therapeutic response to treatment and understanding the

pathophysiology of the disease. However, the correlation of the dynamics of metabolites with

the disease activity of RA has not been well investigated.

In this study, we obtained urine and plasma samples from biologics-naive RA patients, and

searched for metabolites associated with disease activity using capillary electrophoresis quad-

rupole time-of-flight mass spectrometry (CE-Q-TOFMS). This method allows almost any

polar and charged species to be analyzed, combines high-resolution separations with high

detection selectivity and sensitivity, and maintains high reproducibility [15,16].

Materials and methods

Study cohorts

The study protocol was approved by the Ethics Committee, Kyoto University Graduate School

and Faculty of Medicine. We collected blood and urine from 50 RA patients diagnosed with

RA based on the American College of Rheumatology guidelines at the Rheumatic Disease Cen-

ter, Kyoto University Hospital. The data of one male patient was omitted because he was

receiving hemodialysis. No patient had received treatment with biologics, and RA disease

activity was categorized based on the 28-joint disease activity score based on erythrocyte sedi-

mentation rate (DAS28-ESR). Patients with DAS28-ESR�3.2 and those with DAS28-ESR<3.2

were defined as active and inactive patients, respectively. Other clinical information was

obtained from the medical records. Blood was collected from 10 non-RA volunteers matched

for age and gender who served as controls. All RA patients and control subjects were recruited

from November 2012 to May 2013, and written informed consent was obtained from all par-

ticipants on the day of sampling.

Sample preparation

All blood and urine samples were kept at 4˚C immediately after collection and processed

within 1 hour. Plasma were prepared from EDTA-anticoagulated blood. All plasma and urine

samples were aliquoted and stored at -80˚C until further analysis.

Metabolomics analysis

Plasma or urine samples (50 μL) were added to 450 μL of methanol (134–14523, FUJIFILM

Wako Pure Chemical Corporation [Wako], Osaka, Japan) containing internal standards

(H3304-1002; Human Metabolome Technologies, Inc. [HMT], Tsuruoka, Japan), 200 μL of

Milli-Q water and 500 μL of chloroform (033–08631, Wako). The samples were then thor-

oughly mixed by vortex mixer and centrifuged at 9,100 × g at 4˚C for 20 min. Subsequently,

350 μL of the upper aqueous layer was centrifugally filtered through a 5-kDa cutoff filter (pro-

vided by HMT) at 9,100 × g overnight at 4˚C to remove proteins and macromolecules. The fil-

trate was evaporated and resuspended in 50 μL of Milli-Q water containing internal standards

(H3304-1004, HMT) for CE-Q-TOFMS.
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A Capillary Electrophoresis System (Agilent Technologies, Santa Clara, California) with an

Agilent 6510 Q-TOF mass spectrometer (Agilent Technologies) was used for CE-Q-TOFMS.

The fused silica capillary and analysis reagents were provided by HMT. To analyze cationic

metabolites, the sample solution was injected at a pressure of 50 mbar for 10 s, and the applied

voltage was set at 27 kV. Capillary and fragmenter voltage in positive ion mode were set at

4000 and 80 V. A flow rate of heated dry N2 gas (heater temperature, 300˚C) was maintained

at 5 psig and 7 L/min. The spectrometer was scanned from m/z 100 to 3000. To analyze anionic

metabolites, the sample solution was injected at a pressure of 50 mbar for 25 s, and the applied

voltage was 30 kV. Capillary and fragmenter voltage in negative ion mode were set at 3500 and

125 V. A flow rate of heated dry N2 gas (heater temperature, 300˚C) was maintained at 5 psig

and 7 L/min. The spectrometer was scanned from m/z 100 to 3000. Other conditions were as

described previously [17], with slight modifications.

Data processing of MS was started by extracting peaks using MasterHands automatic inte-

gration software (Keio University, Tsuruoka, Japan) to obtain peak information, including m/
z, migration time (MT), and peak area [18]. Signal peaks corresponding to isotopomers,

adduct ions, and other product ions of known metabolites were excluded, and remaining

peaks were annotated with putative metabolites from the MasterHands database based on

their MTs and m/z values. The tolerance range for the peak annotation was configured at ±0.2

min (Anion)/±1.0min (Cation) for MT and ±40 ppm for m/z. In addition, peak areas were

normalized against those of the internal standards, and relative area values of urine samples

were further normalized by creatinine 13C peak. The metabolite IDs were adopted from the

Kyoto Encyclopedia of Genes and Genomes database (KEGG, https://www.genome.jp/kegg/).

Statistical analysis

Student’s t test or Welch’s t test was performed to assess statistical significance of differences

between the two groups using Genedata Analyst (Genedata AG., Basel, Switzerland). Fisher’s

exact test was performed to assess categorical variables with JMP Pro 12.2.0 (SAS Institute Inc.,

Cary, NC, USA). Correlation of metabolites with DAS28-ESR was analyzed by the Spearman

rank correlation test with JMP Pro. Principal component analysis (PCA), partial least-squares

discriminant analysis (PLS-DA) and validation of the PLS-DA model by permutation tests were

conducted with normalize metabolomics data using MetaboAnalyst 4.0 (ref [19], http://www.

metaboanalyst.ca/). A multiple logistic regression (MLR) model to discriminate active and inac-

tive cohorts was developed by a stepwise variable selection method (forward and backward selec-

tion), conducted with a threshold of p<0.1 for adding and eliminating features with JMP Pro.

Results

Subject characteristics

The primary characteristics of the RA patients and control subjects are shown in Table 1. We

recruited 32 active (DAS28-ESR�3.2) and 17 inactive (DAS28-ESR<3.2) RA patients. Most

RA patients had been treated with methotrexates and/or glucocorticoids, and none had been

treated with biologics.

Comparison of metabolites in plasma between RA patients and control

subjects

Using the CE-Q-TOFMS method, 104 metabolites in plasma and 217 metabolites in urine

were identified and quantified (S1 Dataset). Since ketoprofen found in urine was an exogenous

metabolite, we excluded it from the following analysis.
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First, to evaluate the validity of the collected patient samples, principal component analysis

(PCA) was performed using plasma metabolites from RA patients and control subjects, but the

results showed no solid separation between the two groups (S1 Fig). However, when PLS-DA

was performed, results demonstrated an acceptable cluster between the two groups (Fig 1)

with good model parameters (R2 = 0.75529, Q2 = 0.4068). Validation of the PLS-DA model by

permutation tests showed p = 0.022 (S2 Fig), which indicated that the separation was

significant.

When the metabolites from RA patients and controls were compared, we found 24 metabo-

lites that were significantly different (Welch t-test with p<0.05) between the two groups

(Table 2). Some of the metabolites were in agreement with previously published data that com-

pared RA patients and control subjects, such as decreased levels of histidine, methionine, and

serine, and increased levels of glyceric acid, phenylalanine, and tyrosine in RA patients

[12,14,20–22]. Moreover, the identified metabolites were major intermediates of metabolic

pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and pathways involving

amino acid metabolism, which were also in agreement with previous reports [12,14]. These

data suggest that the collected samples were not derived from exceptional RA patients.

Metabolites associated with DAS28-ESR

Next, we sought biomarkers that were associated with RA disease activity. We performed PCA

between active (DAS28-ESR�3.2) and inactive (DAS28-ESR<3.2) patients based on metabolic

profiles in plasma and urine, but no solid separation was seen (S3 Fig). PLS-DA apparently

showed a clear separation, but the result suggested overfitting (S4 Fig). Thus, we decided to

search for metabolites that significantly correlated with DAS28-ESR. As a result, we found 7

and 8 metabolites that positively and negatively correlated with DAS28-ESR, respectively, in

patient plasma samples (Table 3), and 16 and 4 in urine, respectively. There were no overlap-

ping metabolites in both plasma and urine.

Further, we compared metabolites between active and inactive patients. As shown in

Table 4, 9 metabolites in plasma and 15 metabolites in urine were identified to be significantly

different (Welch t-test with p<0.05) between active and inactive RA patients. Again, there

were no metabolites that were detected both in plasma and urine.

Table 1. Profiles of control subjects and RA patients.

Control All RA P-value2) Active RA1) Inactive RA1) P-value3)

Number 10 49 32 17

Age 63 ± 14 60 ± 13 0.540 61 ± 13 59 ± 12 0.492

(range) (51–86) (34–81) (34–81) (34–81)

Sex ratio 10/0 43/6 0.577 27/5 16/1 0.650

(female/male)

DAS28-ESR - 3.71 ± 1.23 4.38 ± 0.94 2.46 ± 0.54 <0.001

(range) (1.12–7.62) (3.23–7.62) (1.12–3.11)

Treatment - MTX: 39 MTX: 27 MTX: 12 0.285

GCs: 22 GCs: 17 GCs: 5 0.140

RA, rheumatoid arthritis; DAS28-ESR, disease activity score using 28 joint counts based on erythrocyte sedimentation rate; MTX, methotrexate; GCs, glucocorticoids.
1) Active patients and inactive patients was defined as patients with DAS28-ESR�3.2 and those with DAS28-ESR<3.2, respectively.
2) Student’s t test or Fisher’s exact test between control and RA groups.
3) Student’s t test or Fisher’s exact test between active and inactive RA groups.

Values are expressed as mean ± standard deviation (SD) and ranges (minimum to maximum).

https://doi.org/10.1371/journal.pone.0219400.t001
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Consequently, we selected 11 metabolites as biomarker candidates, which significantly cor-

related with DAS28-ESR, either positively or negatively, as well as those that were significantly

different between active and inactive patients. The 11 metabolites were as follows: guanidoace-

tic acid, histidine, homoarginine or N6,N6,N6-trimethyllysine, N,N-dimethylglycine, and urea

in plasma, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 2-quinolinecarboxylic acid, gibber-

ellic acid, hypotaurine, N-acetylglucosamine 1-phosphate, and riboflavin in urine.

Fig 1. PLS-DA score plot between RA patients (n = 49) and control subjects (n = 10) based on metabolic profiles in plasma. The green and red dots

represent RA patient and control samples, respectively.

https://doi.org/10.1371/journal.pone.0219400.g001
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MLR analysis

We developed MLR model to search for potential biomarkers of RA disease activity. First, we

selected three metabolites, histidine and guanidoacetic acid in plasma and hypotaurine in

urine, as MLR variables, which were metabolites that both correlated significantly with

DAS28-ESR and significantly differed between active and inactive patients, by stepwise feature

selection. Taking these three factors, the model yielded a high value of area under the receiver

operating characteristic (ROC) curve (AUC = 0.8934), as shown in Fig 2. This result indicated

that combining plasma and urine metabolomics analysis also identified biomarkers that corre-

lated closely with the disease activity of RA patients.

Discussion

In this study, we found several candidate biomarkers of RA disease activity from metabolites

in plasma and urine by the CE-Q-TOFMS method. Interestingly, only a few common metabo-

lites were found in plasma and urine, which implied that different biomarkers could be found

from the two biofluids. Indeed, we identified two metabolites in plasma, histidine and

Table 2. Metabolites in plasma that were significantly different between RA patients and control subjects.

Metabolite KEGG ID Mode m/z MT P-value1) Fold change2)

RA/Control

Azelaic acid C08261 A 187.097 12.583 <0.001 -2.98

N-Acetylleucine C02710 A 172.098 8.229 <0.001 -2.21

Pyruvic acid C00022 A 87.009 13.462 <0.001 1.99

Phenylalanine C00079 C 166.087 12.137 <0.001 1.36

Glycerol-3-phosphate C00093 A 171.006 12.623 0.001 1.89

Cysteine-glutathione disulphide N/A C 427.096 12.759 0.002 -1.69

Glutamic acid; threo-beta-methylaspartic acid C00025; N/A C 148.061 11.953 0.002 1.44

Glyceric acid C00258 A 105.019 10.814 0.002 1.26

Tyrosine C00082 C 182.082 12.438 0.005 1.19

Cysteine-glutathione disulphide–Divalent N/A C 214.052 12.757 0.005 -1.56

Glucuronic acid; Galacturonic acid C00191; C08348 A 193.035 8.302 0.006 1.99

3-Methylhistidine C01152 C 170.093 8.046 0.007 1.70

Gluconic acid C00257 A 195.051 8.344 0.017 1.25

Threonic acid C01620 A 135.030 9.518 0.020 1.32

Pelargonic acid C01601 A 157.123 8.331 0.023 1.14

gamma-Butyrobetaine C01181 C 146.118 8.714 0.024 -1.34

Asymmetric dimethylarginine C03626 C 203.149 8.251 0.026 1.11

Serine C00065 C 106.050 10.844 0.028 -1.19

Histidine C00135 C 156.077 7.824 0.029 -1.11

N,N-Dimethylglycine C01026 C 104.071 11.945 0.032 1.25

1-Methylnicotinamide C02918 C 137.069 7.882 0.037 -1.57

Mucic acid; Glucaric acid C00879; C00818 A 209.030 14.658 0.039 1.77

Lactic acid C00186 A 89.025 11.226 0.043 1.23

2-Hydroxybutyric acid; 2-Hydroxyisobutyric acid C05984; N/A A 103.040 10.084 0.049 1.22

A, anion mode; C, cation mode; MT, migration time; N/A, not applicable
1) P-values are calculated by Welch’s t test between RA patients and control subjects.
2) Fold changes are shown as ratio of mean value of RA patients versus that of control subjects. If the number was less than one, the negative value is shown.

https://doi.org/10.1371/journal.pone.0219400.t002
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guanidoacetic acid, and one metabolite, hypotaurine, in urine, as possible biomarkers that may

be closely associated with RA disease activity.

As in our study, low histidine concentration has been previously reported in RA [20–22], as

well as in other diseases, such as chronic kidney disease and gallbladder inflammation with

chronic cholecystitis [23, 24]. Since histidine is considered to be an anti-inflammatory and

antioxidant factor [25, 26], it may be associated with the inflammation state. However, we

found no other metabolites in histidine-related metabolic pathways that are associated with

Table 3. Metabolites in plasma and urine of RA patients which significantly correlated with DAS28–ESR.

Metabolite KEGG ID Mode m/z MT Spearman ρ P-value

Plasma

Glucuronic acid; Galacturonic acid C00191; C08348 A 193.035 8.302 0.378 0.007

Urea C00086 C 61.041 24.252 0.376 0.008

N,N-Dimethylglycine C01026 C 104.071 11.945 0.365 0.010

Gluconic acid C00257 A 195.051 8.344 0.354 0.013

Cysteine C00097 C 122.027 12.045 0.298 0.038

Sarcosine C00213 C 90.055 10.268 0.292 0.042

3-Methylhistidine C01152 C 170.093 8.046 0.287 0.046

4-Methyl-2-oxopentanoic acid; 3-Methyl-2-oxovaleric acid C00233; C03465 A 129.055 9.865 -0.298 0.038

Cysteine-glutathione disulphide N/A C 427.096 12.759 -0.306 0.033

Homoarginine; N6,N6,N6-Trimethyllysine C01924; C03793 C 189.141 7.718 -0.318 0.026

Cysteine-glutathione disulphide -Divalent N/A C 214.052 12.757 -0.323 0.023

Citric acid C00158 A 191.020 27.938 -0.324 0.023

Methionine C00073 C 150.059 11.709 -0.361 0.011

Guanidoacetic acid C00581 C 118.062 8.874 -0.400 0.005

Histidine C00135 C 156.077 7.824 -0.477 0.001

Urine

2-Quinolinecarboxylic acid C06325 A 172.044 9.215 0.378 0.008

4-Hydroxy-3-methoxymandelic acid; Syringic acid C05584; C10833 A 197.047 8.349 0.360 0.011

N-Acetylneuraminic acid C00270 A 308.099 7.282 0.350 0.014

p-Hydroxyphenylacetic acid; p-Anisic acid C00642; C02519 A 151.040 8.898 0.340 0.017

Homoserine C00263 C 120.064 10.947 0.325 0.023

Riboflavin C00255 C 377.135 25.500 0.322 0.026

2’-Deoxycytidine C00881 C 228.090 10.184 0.319 0.026

Gibberellic acid C01699 A 345.153 7.101 0.318 0.026

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine C04599 C 174.124 9.769 0.311 0.030

gamma-Glu-2-aminobutanoic acid N/A C 233.113 13.643 0.307 0.032

Methylguanidine C02294 C 74.071 6.578 0.306 0.033

3-Hydroxy-3-methylglutaric acid C03761 A 161.045 16.032 0.302 0.035

Hypotaurine C00519 C 110.027 20.735 0.298 0.038

N-Acetylglucosamine 1-phosphate C04256 A 300.041 9.910 0.285 0.047

4-Oxovaleric acid N/A A 115.040 9.912 0.284 0.048

Threonic acid C01620 A 135.030 9.479 0.284 0.048

N6,N6,N6-Trimethyllysine C03793 C 189.160 7.636 -0.283 0.049

Hypoxanthine C00262 C 137.046 12.041 -0.304 0.034

gamma-Butyrobetaine C01181 C 146.118 8.695 -0.304 0.034

Alanine C00041 C 90.056 9.758 -0.310 0.030

A, anion mode; C, cation mode; MT, migration time; N/A, not applicable

https://doi.org/10.1371/journal.pone.0219400.t003
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RA disease activity. Thus, further investigation is needed to find the underlying mechanism of

how histidine level decreases in RA patients.

Guanidoacetic acid is involved in the arginine metabolism pathway. It is synthesized by the

enzyme arginine:glycine amidinotransferase (AGAT) from arginine or glycine. Homoarginine

is also synthesized by AGAT from arginine or lysine [27], and both guanidoacetic acid and

homoarginine were inversely correlated with DAS28-ESR and decreased in active RA patients

(Tables 3 and 4). In the pathway, guanidoacetic acid is then synthesized into creatine by guani-

doacetic acid N-methyltransferase, which is subsequently catalyzed by creatinase to produce

urea and sarcosine, both of which correlated significantly with DAS28-ESR in plasma

(Table 3). These data suggest that the metabolism of arginine/glycine/lysine-guanidoacetic

acid/homoarginine-urea/sarcosine pathway may be dysregulated as RA disease activity

increases. Although only a few reports have reported a decrease in guanidoacetic acid level in

disease, low homoarginine concentration is reported to be associated with myocardial dys-

function [28, 29] and renal failure [29, 30], and also affects the production of vasodilator nitric

Table 4. Metabolites in plasma and urine that were significantly different between active RA patients and inactive RA patients.

Metabolite KEGG ID Mode m/z MT P-value1) Fold change2)

Active/inactive

Plasma

Histidine C00135 C 156.077 7.824 0.003 -1.13

Urea C00086 C 61.041 24.252 0.004 1.26

N,N-Dimethylglycine C01026 C 104.071 11.945 0.007 1.33

Guanidoacetic acid C00581 C 118.062 8.874 0.010 -1.30

Homoarginine; N6,N6,N6-Trimethyllysine C01924; C03793 C 189.141 7.718 0.011 -1.24

3-Phenylpropionic acid C05629 A 149.059 8.998 0.022 1.44

Phenylalanine C00079 C 166.087 12.137 0.024 1.27

3-Indoxylsulfuric acid N/A A 212.002 9.883 0.031 1.77

beta-Alanine C00099 C 90.055 7.868 0.049 1.27

Urine

2-Quinolinecarboxylic acid C06325 A 172.044 9.215 0.002 3.85

Gibberellic acid C01699 A 345.153 7.101 0.002 3.52

Riboflavin C00255 C 377.135 25.500 0.006 9.95

N-Acetylglucosamine 1-phosphate C04256 A 300.041 9.910 0.009 3.10

3-Indoxylsulfuric acid N/A A 212.003 9.821 0.013 1.74

m-Hydroxybenzoic acid C00587 A 137.023 9.555 0.013 2.50

5-Methoxyindoleacetic acid C05660 C 206.077 25.628 0.017 2.76

Hypotaurine C00519 C 110.027 20.735 0.017 1.59

Anserine; Homocarnosine C01262; C00884 C 241.130 7.354 0.023 2.60

4-Guanidinobutyric acid C01035 C 146.094 8.892 0.023 1.48

Ophthalmic acid N/A C 290.135 14.578 0.024 1.48

Azetidine 2-carboxylic acid C08267 C 102.055 9.568 0.030 1.72

2,6-Diaminoheptanedioic acid C00666 C 191.102 9.574 0.036 3.09

Betonicine C08269 C 160.097 14.514 0.038 4.12

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine C04599 C 174.124 9.769 0.039 2.08

A, anion mode; C, cation mode; MT, migration time; N/A, not applicable
1) P-values are calculated by Welch’s t test between active and inactive RA patients.
2) Fold changes are shown as ratio of mean value of active RA patients versus that of inactive RA patients. If the number was less than one, the negative value is shown.

https://doi.org/10.1371/journal.pone.0219400.t004
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oxide (NO) and mineral metabolism [29]. As it is well-known that RA is sometimes comorbid

with cardiovascular or renal diseases, dysregulation of the arginine metabolism pathway, rep-

resented by lower homoarginine and guanidoacetic acid in active patients, may be closely asso-

ciated with the risk of these comorbidities.

Hypotaurine, another potential biomarker identified in urine, is reported to be involved in

protection against oxidative stress [31]. Interestingly, we found in this study that several

metabolites in the cysteine and methionine metabolism pathway, which is upstream of the tau-

rine and hypotaurine metabolism pathway, is associated with RA disease activity. For example,

cysteine and methionine in plasma positively and inversely correlated with DAS28-ESR,

respectively (Table 3). Also, in urine, homoserine and gamma-glutamyl-2-aminobutyrate posi-

tively correlated with DAS28-ESR (Table 3), and ophthalmic acid was elevated in active RA

Fig 2. ROC curve of the metabolites that correlated with DAS28-ESR and significantly differed between active and inactive patients. The selected

metabolites in this model were histidine and guanidoacetic acid in plasma and hypotaurine in urine.

https://doi.org/10.1371/journal.pone.0219400.g002
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patients (Table 4). These are also involved in the cysteine and methionine metabolism path-

way. Furthermore, cysteine is known to be a component of the antioxidant glutathione and is

involved in the transsulfuration pathway, which consists of interconversion of cysteine and

homocysteine through the intermediate cystathionine [32]. Since some of the intermediates in

this pathway correlate with DAS28-ESR, our study strongly suggests that the reverse transsul-

furation pathway is actively induced as RA disease activity increases. Hydrogen sulfide (H2S),

which is also produced from cysteine, is known as a signaling molecule that regulates the phys-

iological process in inflammations [33, 34], and is reported to be increased in synovial fluids in

RA patients [35]. Therefore, some pathways downstream of cysteine might be activated and

the increase in urinary hypotaurine may represent these metabolic changes in active RA

disease.

Taken together, we were able to discover the metabolites from plasma and urine that could

be a combinatorial biomarker for RA. This finding supports the use of metabolomics analysis

as a promising way to search for disease biomarkers, and to obtain deep insights into the dis-

ease pathophysiology, especially with multiple fluid/tissue samples. Metabolomics in combina-

tion with other omics methods, such as transcriptomics and proteomics, and the combination

of the information obtained with that of other diseases would be beneficial for the better

understanding of the state and course of individual RA patients such as with regard to the risk

of comorbidity. However, confirming the validity of the biomarker candidates and the signifi-

cance of the metabolic pathway in RA pathophysiology found in this study requires further

study with a new and different set of samples and a larger sample size. We should also confirm

whether or not the candidates were specific for RA, because we could not exclude the possibil-

ity that the metabolites correlated with the general inflammation process.

Conclusions

We employed metabolic profiling using the CE-Q-TOFMS method to identify metabolites

that were associated with disease activity in plasma and urine of patients with rheumatoid

arthritis. As a result, we generated a list of metabolites that correlated significantly with

DAS28-ESR, as well as metabolites that significantly differed between patients with active and

inactive RA. Using both lists, three metabolites—histidine and guanidoacetic acid in plasma

and hypotaurine in urine—were selected as MLR variables. Thus, this study demonstrates that

the combination of metabolomics analysis of both plasma and urine samples is a useful

approach to predicting biomarkers for RA and obtaining deep insights into the pathophysiol-

ogy of this disease.

Supporting information

S1 Dataset. Metabolomics data with clinical data of RA patients and control subjects.

(XLSX)

S1 Fig. PCA score plot of control subjects and RA patients based on plasma metabolic pro-

file. The green and red dots represent RA patient and control samples, respectively.

(TIF)

S2 Fig. PLS-DA model validation by permutation tests (n = 1000) based on the plasma

metabolic profile of RA patients and control samples. The p value was p = 0.022 (22/1000).

(TIF)

S3 Fig. PCA score plot of active RA patients (n = 32) and inactive RA patients (n = 17)

based on metabolic profiles in plasma and urine. The red and green dots represent samples
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of active patients (DAS28-ESR�3.2) and inactive patients (DAS28-ESR<3.2), respectively.

(TIF)

S4 Fig. PLS-DA score plot of active RA patients (n = 32) and inactive RA patients (n = 17)

based on metabolic profiles in plasma and urine. The red and green dots represent samples

of active patients (DAS28-ESR�3.2) and inactive patients (DAS28-ESR<3.2), respectively. R2

= 0.95405 and Q2 = 0.12656 indicate that the model was overfitted.

(TIF)
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