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MAX inactivation is an early event in GIST
development that regulates p16 and cell
proliferation
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KIT, PDGFRA, NF1 and SDH mutations are alternate initiating events, fostering hyperplasia in

gastrointestinal stromal tumours (GISTs), and additional genetic alterations are required for

progression to malignancy. The most frequent secondary alteration, demonstrated in B70%

of GISTs, is chromosome 14q deletion. Here we report hemizygous or homozygous

inactivating mutations of the chromosome 14q MAX gene in 16 of 76 GISTs (21%). We find

MAX mutations in 17% and 50% of sporadic and NF1-syndromic GISTs, respectively, and we

find loss of MAX protein expression in 48% and 90% of sporadic and NF1-syndromic GISTs,

respectively, and in three of eight micro-GISTs, which are early GISTs. MAX genomic

inactivation is associated with p16 silencing in the absence of p16 coding sequence deletion

and MAX induction restores p16 expression and inhibits GIST proliferation. Hence, MAX

inactivation is a common event in GIST progression, fostering cell cycle activity in early GISTs.
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A
ctivating mutations of the receptor tyrosine kinases KIT1

or PDGFRA2 are initiating or early events in most
gastrointestinal stromal tumours (GISTs) and indeed are

present in micro-GISTs, which are asymptomatic subcentimetre
GIST lesions found in one-third of the general population3.
Genetic progression from micro-GIST to malignant GIST results
from stepwise accumulation of deletions in chromosome arms
14q, 22q, 1p and 15q, together with cell cycle dysregulating
events and dystrophin inactivation4–8. These highly recurrent
chromosomal deletions implicate losses of yet-unidentified
tumour suppressor mechanisms in GIST progression. Of these,
the 14q deletions are most frequent, observed in 60–70% of GISTs
(including neurofibromatosis type 1 (NF-1)-associated GIST) as
an early event in genetic progression4–6,9,10.

Here we show that 14q deletions target the MAX transcrip-
tional regulator gene in early GISTs of various molecular origins
(KIT-mutant, PDGFRA-mutant or NF1-mutant). These MAX
genomic-inactivating mutations are driver events, enabling GIST
progression by loss of MAX expression, and consequent p16
silencing and cell cycle dysregulation.

Results
Genomic studies. Targeted sequencing of 812 cancer-associated
genes demonstrated somatic homozygous inactivating MAX
mutations in three of ten GISTs (Supplementary Data 1 and
Supplementary Fig. 1a). The ten GISTs in this discovery set had
KIT mutations (seven cases), PDGFRA mutations (two cases) and
NF1 mutation (one case) (Supplementary Data 1). Apart
from KIT and PDGFRA, MAX was the only other gene with
demonstrable recurrent mutations in this discovery set. MAX
evaluations by Ion AmpliSeq sequencing, Sanger sequencing
(Supplementary Fig. 1b), quantitative PCR (Supplementary
Fig. 1c) and single-nucleotide polymorphism (SNP) arrays
(Supplementary Fig. 1d) were performed in the same 10 GISTs
and in 66 additional GISTs (Supplementary Data 2). This total set
of 76 GISTs was shown to have mutually exclusive mutations
involving the KIT, PDGFRA, NF1 and SDH genes in 52 (68%), 8
(11%), 11 (14%) and 2 (3%) cases, respectively (Supplementary
Data 2). These assays demonstrated somatic hemizygous or
homozygous MAX-inactivating mutations in 16 of the 76 GISTs
(21%), including 8 mononucleotide mutations and 8 larger-
scale intragenic deletions (Fig. 1 and Supplementary Data 2).
Non-neoplastic companion DNAs were MAX wild type for seven
of eight GISTs with mononucleotide MAX mutations, showing
that these were somatic mutations, and the MAX mutation allelic
frequency in the remaining case (case 19) was 0.7, consistent with
a hemizgyous or homozygous somatic mutation. The MAX
mononucleotide mutations were nonsense (N¼ 3), loss of start
codon (N¼ 1), frame-shift (N¼ 1), splice site (N¼ 2) and
50-untranslated region (N¼ 1). The two splice-site mutations

(cases 7 and 59) destroyed invariant splicing motifs, creating
inactive MAX transcripts with loss of exon 3 (case 7) or retention
of intron 4 (case 59), as confirmed by reverse transcriptase–PCR,
and—for case 7—also confirmed by genome RNA sequencing
(Supplementary Fig. 2). The 50-untranslated region mutation
(case 19) was predicted to be functionally relevant by the
PROMO.3 tool, with predicted disruption of transcription factor
binding sites in the MAX promoter. Multiple anatomically
distinct specimens were studied in five patients (pts) with
MAX-mutant GISTs and all had identical mutations, as shown by
comparisons of primary GIST and subsequent metastases in two
pts, and by comparisons of multiple metastases (two–ten
metastases analysed per pt) in three pts (Supplementary Data 2
and Supplementary Fig. 3).

Among the overall study group of 76 GISTs, the GIST primary
site was known for 71 pts, whereas primary site could not be
determined in the remaining 5 pts who presented with
disseminated intra-abdominal disease. MAX genomic mutations
were more common in non-gastric than gastric GISTs (P¼ 0.001
for the 71 pts with known GIST primary sites, two-tailed Fisher’s
exact test) and this association remained significant when GISTs
with NF1 mutations—which are generally of small bowel origin—
were removed from consideration (P¼ 0.004 for 61 pts with NF1-
wild type GISTs of known primary sites).

Protein studies. MAX was assessed in each of the 76 GISTs by
immunoblotting (N¼ 75) and/or immunohistochemistry (IHC)
(N¼ 22). MAX inactivation was demonstrated in 38 of 75 GISTs
(51%) by immunoblotting (Fig. 2) and was associated with MAX
genomic mutation (Po0.0001, two-tailed Fisher’s exact test).
Likewise, MAX inactivation, as demonstrated by IHC in 14 of 22
GISTs (63%) (Fig. 3), was associated with MAX genomic inacti-
vation (P¼ 0.0062). Loss of MAX expression, when detected in
any GIST metastasis, was detected in all others from the same pt
(Supplementary Data 2 and Supplementary Fig. 4). Forty per cent
of the GISTs with loss of MAX expression were classified,
according to well-established clinicopathological criteria11,
as ‘low-risk’ and ‘intermediate-risk’ cases (Fig. 4), which are
stages of GIST development that precede transition to clinically
aggressive ‘high-risk’ GIST. These findings show that MAX
inactivation can be an early event in GIST biological and clinical
progression. Further, MAX inactivation was detected in three
of eight micro-GISTs, each of which had 14q deletion
(Supplementary Fig. 5), confirming MAX dysregulation as an
early event in GIST progression (Supplementary Table 1).
Hemizygous or homozygous inactivating MAX mutations were
demonstrated in sporadic GISTs (11 of 64¼ 17%) and in
syndromic GISTs in individuals with NF-1 (5 of 10¼ 50%)
(Fig. 4 and Supplementary Data 2). Likewise, loss of MAX protein
expression was demonstrated in both sporadic (31 of 64¼ 48%)
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Figure 1 | Genomic MAX mutations in 76 GISTs. Inactivating MAX mutations were intragenic homozygous deletions (blue lines indicate deleted exons)

and hemizygous mononucleotide alterations. Mutations are described according to international guidelines for sequence variant nomenclature by the

Human Genome Variation Society (http://varnomen.hgvs.org). Annotations in blue are the nucleotide coding sequence mutations (indicated by ‘c.’),

whereas annotations in green are the resultant protein sequence mutations (indicated by ‘p.’). All mutations affect both alternatively spliced forms of MAX,

which encode 151 and 160 amino acid MAX isoforms.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14674

2 NATURE COMMUNICATIONS | 8:14674 | DOI: 10.1038/ncomms14674 | www.nature.com/naturecommunications

http://varnomen.hgvs.org
http://www.nature.com/naturecommunications


and NF-1-associated GISTs (9 of 10¼ 90%). GISTs occur in up to
25% of NF-1 pts, predominantly in the small intestine and often
as multicentric tumours12–14. Our studies credential MAX

inactivation, as an early step in GIST progression, associated
with KIT and PDGFRA gain-of-function mutations and NF1 loss-
of-function mutations.

Functional studies. The GIST48 cell line has MAX inactivation
due to homozygous deletion of MAX exons 1 and 2, and has loss
of p16 (p16INK4A) expression. This cell line shows a localized
CDKN2A deletion, which affects the p14ARF coding sequence
(Supplementary Fig. 6) but lacks genomic alterations of the p16
coding sequence in CDKN2A and lacks CDKN2A methylation.
CDKN2A ranked in the top 0.1% of genes differentially expressed
after MAX restoration in GIST48 and was the highest ranking
cancer-associated gene (Supplementary Data 3). In keeping with
this evidence, p16 protein expression was strong and diffuse in
GISTs lacking MAX or p16INK4A coding sequence mutations,
but was undetectable in MAX-mutant GISTs, even in the absence
of p16 coding sequence mutation (Supplementary Fig. 7). Indu-
cible restoration of MAX expression in GIST48 upregulated
CDKN2A transcript expression, restored p16 protein expression
and inhibited RB1 phosphorylation (pRB1Ser795) (Fig. 5a) and cell
proliferation (Fig. 5b,c). MAX restoration in GIST48 was not
associated with significant enrichment of MYC-related expression
signatures or with altered sensitivity to MYC:MAX inhibitor
drugs (Supplementary Fig. 8), suggesting that MAX tumour
suppressor roles in GIST are not necessarily MYC dependent.

Discussion
All MAX-inactivating point mutations in this series were
hemizygous, with allelic frequencies typically B0.67 in GISTs
known to have loss of the other MAX allele and containing
B20% non-neoplastic cells. Similarly, all MAX intragenic
deletions were homozygous. These findings indicate that GIST
progression is best served by complete loss of MAX function.
Although the Ion AmpliSeq and HaloPlex assays detect Z5%
mutant alleles15,16, we found no evidence for multiple
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Figure 2 | Loss of MAX expression in both sporadic and NF-1-associated

syndromic GISTs. MAX protein inactivation is demonstrated by

immunoblotting GIST snap-frozen biopsies from sporadic (a) and NF-1-

associated (b) cases. MAX wild-type GIST430 cell line and MAX-mutant

GIST48 cell line are positive and negative controls, respectively. MAX

inactivation was defined by expression level o0.4, normalized to GIST430.

‘L’ denotes low risk, ‘I’ intermediate risk, ‘H’ high risk and ‘M’ metastatic.
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Figure 3 | Loss of MAX protein expression can be present in cell subpopulations in early GISTs but is present in all cells from affected metastatic

GIST. Haematoxylin and eosin stains (a,c,e,g) and MAX IHC (b,d,f,h): case 67 with wild-type MAX (a,b) has retained MAX expression; case 29 (c,d), low-risk

GIST with MAX mutation, has diffuse loss of MAX expression; case 3 (e,f), intermediate-risk GIST, has mosaic loss of MAX expression with admixed MAX-

positive and MAX-negative cells; case 51 (g,h), metastatic GIST with MAX mutation, has diffuse loss of MAX expression. Positive internal controls for MAX

expression in all cases are scattered inflammatory cells and fibrovascular cells, and—in case 51—a lymphoid aggregate at the upper left. Scale bar, 50 mm.
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MAX-mutant subclones within primary GISTs or between
different metastases in a given pt. These observations indicate
that a single KIT/PDGFRA-mutant/MAX-mutant or NF1-mutant/
MAX-mutant subclone fosters biological and clinical progression
in MAX-mutant GISTs. MAX is a helix-loop-helix leucine zipper
transcription factor, which regulates cell proliferation,
differentiation and apoptosis through heterodimerization with
MYC-family proteins17–19, but MAX homodimers also regulate
transcription in a MYC-independent manner20,21. MAX has

tumour suppressor roles in a small subset of hereditary
pheochromocytomas and in small cell lung cancer21,22, and a
recent report demonstrated MAX mutation in one KIT/PDGFRA
wild-type, NF1-mutant, GIST23. Our study demonstrates that
MAX mutations are common alterations in GIST, occurring at
early stages of GIST development. We detected hemizygous and
homozygous MAX-inactivating mutations in 21% of the 76 GISTs
in this study, thereby demonstrating that GIST is the neoplasia
with the highest known frequency of MAX tumour suppressor
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mutations. Further, the true frequency of MAX mutations in
GIST is likely to be 421%, given that homozygous deletions were
a common mechanism of MAX inactivation. Homozygous
deletions, particularly if small, will be difficult to detect in some
early GISTs, where they are present in a subclone of the overall
neoplastic proliferation.

We show MAX protein inactivation in B50% of GISTs,
including micro and low-risk GISTs, which is additional evidence
for MAX dysregulation as an early event in GIST development.
MAX restoration in GIST48 cells inhibited GIST cell growth and
upregulated CDKN2A expression, accompanied by p16 upregula-
tion and inhibition of pRB1Ser795. These findings suggest that
MAX inactivation causes cell cycle dysregulation at an early point
in GIST progression, probably enabling progression to GIST
stages with greater proliferative potential. Altogether, our studies
demonstrate frequent disruption of MAX tumour suppressive
roles during early progression of KIT-mutant, PDGFRA-mutant
and NF1-mutant GISTs.

Methods
Tumour and tissue samples. Discarded, de-identified tumour specimens were
obtained at Brigham and Women’s Hospital and Memorial Sloan-Kettering Cancer
Center, under protocols approved by the Dana-Farber/Brigham and Memorial
Sloan-Kettering Cancer Center Institutional Review Boards. Informed written
consent was obtained from all human participants.

Cell lines. GIST cell lines were established in the Fletcher laboratory and were
validated against the initial biopsy material by molecular cytogenetics and
sequencing verification of known unique gene mutations. Daudi cells were
obtained from ATCC (Manassus, VA, USA). All cultures were shown to be
mycoplasma free.

Targeted sequencing. Targeted sequencing was performed using the HaloPlex
Target Enrichment System for Illumina sequencing (Agilent Technologies, Santa
Clara, CA, USA) for a custom-designed set of 812 cancer-related genes. Data
were analysed by SureCall software (version 2.0.7.0, Agilent Technologies) and
Integrative Genomics Viewer (IGV) (version 2.3.25, Broad Institute). Targeted
highly multiplexed PCR with semiconductor-based sequencing using the Ion
AmpliSeq assay was performed as described previously15, analysing the MAX gene
(NM_002382) coding sequence, an additional two nucleotides adjacent to each
exon, and 1 kb of upstream sequence. Amplicon size ranged from 125 to 275 bp
(including primers) with an average of 243 bp. Inserts ranged in size from 77 to
230 bp (excluding primers), with an average of 194 bp. Ion AmpliSeq detection for
homozygous deletions was performed after normalization to non-neoplastic DNA
sequences and establishing cutoffs based on estimated presence of 30% non-
neoplastic cells in low-/intermediate-risk GISTs and 20% non-neoplastic cells in
high risk/metastatic GISTs. Deletion of at least nine consecutive amplicons and/or
a ratio of o0.4 for markers located at either the 30- or 50-end of the gene in relation
to all markers in a given case were defined as criteria for homozygous deletion.

PCR analysis. Genomic PCR and Sanger sequencing of MAX exons 1–5
(NM_002382) was performed using primers shown in Supplementary Table 2.
Reverse transcription from tumour RNA was performed using the iScript cDNA
Synthesis kit (Bio-Rad Laboratories, CA) and followed by PCR using Platinum
PCR Super Mix (Life Technologies, Grand Island, NY, USA) with analysis by
Sanger sequencing.

Quantitative PCR. Quantitative PCR of MAX exons 1, 3 and 4, and the flanking
genes FNTB and FUT8 was performed using 25ml volume per reaction, containing
5 ng of genomic DNA, 100 nM forward primer, 100 nM reverse primer and 1� iQ
SYBR Green Supermix (Bio-Rad). The MyiQ single colour real-time detection
system (Bio-Rad) was used for thermal cycling. Samples were run in triplicate with
non-template control, human non-neoplastic cell DNA and GIST48 DNA with a
known homozygous MAX deletion. Mixtures of non-neoplastic and MAX-mutant
GIST48 DNA (30:70 and 20:80) were controls modelling detection of MAX
homozygous deletions in human GIST biopsies (in which 10–30% of cells are
nonneoplastic). Amplification accuracy was verified by melting curve analysis. The
minimum threshold cycle (Ct value) generated by the MyiQ software (Bio-Rad) for
each sample was used to calculate MAX copy number using Ct values for normal
tissue and adjacent genes as reference.

SNP arrays. High-molecular-weight gDNA was isolated using QIAamp DNA
Mini Kit (Qiagen, Valencia, CA, USA) and analysed by Affymetrix Cytoscan HD

2,600 K SNP array (Affymetrix, Santa Clara, CA, USA) with Affymetrix
Chromosome Analysis Suite 2.0.

Array comparative genomic hybridization. Micro-GIST gDNAs were obtained
from microdissected tissues and extracted using QIAamp DNA FFPE Tissue kits
(Qiagen) following the manufacturer’s protocol. Amplification was performed
using a GenomePlex Tissue Whole Genome Amplification WGA5 kit (Sigma, Saint
Louis, MO, USA). The post-WGA products were purified using a QIAquick
PCR Purification Kit (Qiagen) and quantified using a NanoDrop ND-1000
Spectrophotometer. Comparative genomic hybridization was performed using a
customized human array comparative genomic hybridization platform with
2� 415 K coverage (Agilent Technologies). Four independent experiments were
concurrently performed per template amplification and then mixed, to minimize
amplification bias and allele dropout. Data were analysed using Agilent Technol-
ogies 10.5.1.1 Software.

Protein blotting. Whole-cell lysates were prepared as described previously24

and protein concentrations were determined using the Bio-Rad protein assay
(Bio-Rad). Electrophoresis, immunoblotting and chemiluminescence detection
were as described previously8. Primary antibodies were directed against MAX
(Santa Cruz Biotechnology, Dallas, TX, USA, C-17, 1:200 dilution), p16INK4A/
CDKN2A (R&D Systems, Minneapolis, MN, USA, AF5779, 1:200 dilution),
pRB1Ser795 (Cell Signaling Technology, Danvers, MA, USA, 9301, 1:1,000 dilution)
and GAPDH (Sigma, GAPDH-71.1, 1:5,000 dilution). Full-length blottings can be
viewed in Supplementary Fig. 9.

Immunohistochemistry. Immunohistochemical staining for MAX was performed
with the MAX C-17 antibody (Santa Cruz) at dilution of 1:1,500 on 4 mm thin
sections prepared from formalin-fixed, paraffin-embedded tissue blocks after
antigen retrieval using a citrate buffer pressure cooker protocol. Staining for p16
(p16INK4A) was performed using a mouse monoclonal antibody (dilution 1:2;
clone E6H4, Ventana Medical Systems, Tucson, AZ, USA).

MAX restoration. Lentivirus preparations were produced by cotransfecting MAX
construct (Broad Institute, clone ID BRDN0000560330, NM_002382.3) introduced
into a destination vector pLXI_TRC401 (Alias pCW57.1 Dest, TRE-Gateway-No
Tag) by LR Clonase (Thermo Fisher Scientific, Waltham, MA, USA) reaction and
helper virus packaging plasmid pCMVDR8.91 and pMD.G into 293T cells, as
described previously25. Lentivirus was harvested at 24, 36, 48 and 60 h post
transfection and virus titres were quantified and stored at � 80 �C. GIST48
transductions were carried out overnight with polybrene 8 mg ml� 1 (Sigma) and
transduced cells were selected for 9 weeks with puromycin (0.125 mg ml� 1), which
was discontinued 7–10 days before analyses. MAX expression was induced in stably
transduced cells with doxycycline (2.5 mg ml� 1) every 36 h.

Gene expression profiling. RNA sequencing was performed 24 h after MAX
restoration in GIST48 cells using an Illumina HiSeqTM 2000 platform (Beijing
Genomics Institute, Hong Kong). Parental GIST48 cells treated with doxycycline
for 24 h served as control. Data analyses were with BGI-Tech Pipeline Version 3.1
and differentially expressed genes were identified using criteria false discovery rate
r0.001 and abs(log2(MAX-/MAXþ ))Z1.

BrdU uptake and CellTiter-Glo analyses. Cells were plated in 96-well plates at
20,000 cells per well in growth medium and incubated overnight. Cells were treated
with 2.5 mg ml� 1 doxycycline for 24 h (MAX-restoration) and parental GIST48
was the untreated comparator. For 5-bromodeoxyuridine (BrdU) incorporation
proliferation analyses, BrdU was added to the cells for 24 h. BrdU incorporation,
fixation and detection were performed using a BrdU Cell Proliferation ELISA as
per the manufacturer’s protocol (Roche Diagnostics, Indianapolis, IN, USA).
BrdU incorporation was presented as % of untreated control. For CellTiter-Glo
(Promega, Madison, WI, USA) viability analyses, MYC inhibitors versus dimethyl
sulfoxide-only control were added for 3 days and ATP incorporation was then
measured using a luminometer. All cell response assays were performed in
triplicate wells, with the entire study replicated at least once.

Cell counts. Cells were trypsinized, resuspended in media and counted by
haemocytometer.

Statistical analyses. Statistical analyses were performed using GraphPad Prism
Software and Student’s t-test and two-tailed Fisher’s exact tests to compare two
data sets.

Data availability. Haloplex targeted DNA sequencing data of the discovery
cohort, Ion Ampliseq MAX sequencing data of all cases and gene expression data
have been deposited in the Sequence Read Archive (accession number SRP096291).
Cytoscan HD SNP array data have been deposited in the Gene Expression
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Omnibus database (accession number GSE93077). All remaining data are available
within the article and Supplementary Information files or available from the
authors upon request.
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