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Riverine and atmospheric inputs are often considered as the main terrestrial sources of dissolved 
inorganic nitrogen (DIN), phosphorus (DIP), and silicon (DSi) in the ocean. However, the fluxes of 
nutrients via submarine groundwater discharge (SGD) often exceed riverine inputs in different local 
and regional scale settings. In this study, we provide a first approximation of global nutrient fluxes to 
the ocean via total SGD, including pore water fluxes, by combining a global compilation of nutrient 
concentrations in groundwater and the SGD-derived 228Ra fluxes. In order to avoid overestimations in 
calculating SGD-derived nutrient fluxes, the endmember value of nutrients in global groundwater was 
chosen from saline groundwater samples (salinity >10) which showed relatively lower values over all 
regions. The results show that the total SGD-derived fluxes of DIN, DIP, and DSi could be approximately 
1.4-, 1.6-, and 0.7-fold of the river fluxes to the global ocean (Indo-Pacific and Atlantic Oceans), 
respectively. Although significant portions of these SGD-derived nutrient fluxes are thought to be 
recycled within sediment-aquifer systems over various timescales, SGD-derived nutrient fluxes should 
be included in the global ocean budget in order to better understand dynamic interactions at the land-
ocean interface.

In the coastal ocean, nutrients could be supplied by advective inputs from aquifers and pore water, in addition to 
atmospheric and riverine inputs (Fig. 1). The advective fluxes may include nutrients from terrestrial sources and 
the remineralization of organic matter within the sediments (Fig. 1). In this study, we define submarine ground-
water discharge (SGD) as any water advection into the ocean through the submarine ocean boundaries, which 
includes the discharge of fresh and saline groundwater as well as pore water advection1–3.

While global estimates are now available on the fluxes of nutrients to the global ocean via rivers and atmos-
pheric deposition, no estimates are available for the SGD contribution to nutrient cycles in the global ocean. The 
total SGD flux has been revealed to be comparable to the river discharge to the Atlantic4 and global oceans5,6 using 
228Ra (half life: 5.75 years) as a tracer. Several local studies have suggested that saline groundwater often delivers 
larger fluxes of solutes to the ocean than fresh groundwater7–10. From a basin scale perspective, nutrient inputs 
through total SGD were found to be comparable to those via rivers in the Mediterranean Sea11 and Yellow Sea12. 
Although saline groundwater is the dominant component of SGD globally1,7, estimates only exist for the contri-
butions of “fresh” groundwater to dissolved inorganic nitrogen (DIN)13 and dissolved silicate (DSi)14,15 fluxes.

Here, we provide a first approximation of total SGD-derived nutrient fluxes to the global ocean using a simple 
mass balance approach. The main challenge to assess this flux is to determine a globally-significant groundwater 
endmember concentration for estimating SGD-derived nutrient fluxes. To do this, we combine a global compi-
lation of nutrient data with the observationally constrained 228Ra flux estimate through SGD5 and compare the 
estimated fluxes with the better quantified river sources.
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Figure 1.  A schematic of biological production in the euphotic zone supported by nutrient inputs from 
atmosphere, rivers, and groundwater in the coastal ocean. F. Nut., R. Nut., and S. Nut. denote the nutrient 
sources from meteoric groundwater, recirculating seawater, and sediments and rocks, respectively. 
Nut.* denotes total nutrient inputs via SGD to coastal waters. The total flux includes the nutrients in fresh and 
salty groundwater resulting from reactions with rocks, sediments, and organic matter, except the nutrients 
included in seawater recirculating. In the coastal ocean, the diffusive fluxes of nutrients from bottom sediments 
in the euphotic zone are included in regenerated nutrients.

Figure 2.  The distributions of data collection sites and concentrations for (a) DIN (n = 966), (b) DIP 
(n = 1001), and (c) DSi (n = 784), respectively, in world-wide coastal groundwater. The plots were created using 
Ocean Data View software version 4.7.6. (http://odv.awi.de).

http://odv.awi.de
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Results and Discussion
The global groundwater endmember.  Data for DIN (n = 966), dissolved inorganic phosphorus (DIP, 
n = 1001), DSi (n = 784), and 228Ra (n = 552)6 for global coastal groundwater (Fig. 2) and seawater were compiled 
(see Supplementary Note and Fig. S1). Approximately 800 sampling sites for groundwater nutrients (Nutrientgw) 
clustered along the east coasts of Asia and North America as well as the Mediterranean Sea, with scarce data else-
where (Fig. 2). This clustering can affect the endmember concentrations of nutrients in groundwater. Therefore, 
a gridding method was used to examine the effect of the heterogeneity of geographical data distributions on 
determining the nutrient endmember values in groundwater. This method divides the globe into the horizontal 
resolution of 2° × 2° grid points, as examined previously for 228Ra6. All of the data within each grid point were 
averaged to represent the mean value at each grid point, assuming lognormal distributions of the tracer (see for 
example Figs 3 and 4 in Kwon, et al.5). No discernible difference was observed between the gridded global mean 
endmember and a bulk average without gridding (mean of the lognormal distribution; Supplementary Note and 
Fig. S2). Thus, in this study, the global mean groundwater endmember obtained by the mean of the lognormal 
distribution without gridding was used for the calculation of SGD-derived nutrient fluxes.

The sampling sites for the compiled Nutrientgw data cover a wide range of environments including beach pore-
water, seepage zone, and inland wells near marginal seas, corresponding to a wide range of salinity (Fig. 3). The 
concentrations of DIN and DSi are much higher in fresh groundwater (salinity < 10) relative to saline ground-
water (Supplementary Fig. S3). The higher DIN concentrations in lower salinity groundwater (Supplementary 
Fig. S3) may be associated with anthropogenic inputs, such as waste materials, fertilizers, manure, etc16,17. 
However, the higher concentrations of DSi in lower salinity groundwater (Supplementary Fig. S3) are more likely 
due to natural processes such as rock weathering and the dissolution of biogenic silica in sediments18. In contrast, 
the activity of 228Ra is much higher in saline groundwater (salinity >10; Supplementary Fig. S3) as explained 
by Cho and Kim6. The concentrations of DIP are highest and relatively constant in groundwater with salinity 
between 10 and 30 (Supplementary Fig. S3). The difference in DIP concentrations for different salinity ranges 
is unclear because it is affected by various factors: (1) groundwater contamination with DIP, (2) effects of DIP 
adsorption-desorption equilibria at the ambient salinity, (3) DIP remineralization by decomposing organic mat-
ter in coastal aquifers. Overall, the compiled data show that nutrient concentrations are remarkably constant at 
salinity values over 10 (Supplementary Fig. S3 and Table S1).

In the subterranean estuary, mixing of recirculating seawater with fresh groundwater creates an active bioge-
ochemical reaction zone19. Thus, this zone significantly influences the fate of nutrients in the course of terrestrial 
nutrient transport from coastal aquifers to the ocean20. For example, redox conditions can affect the transforma-
tion processes and mobility of nitrogen (N) and phosphorus (P) in coastal aquifers21. Although these transforma-
tion processes influence most of the SGD-derived nutrient flux estimations so far reported in SGD studies11,22–25, 

Figure 3.  Plots of the concentrations of (a) 228Ra, (b) DIN, (c) DIP, and (d) DSi versus the salinities of 
groundwater samples from world-wide coastal aquifers. The arrows denote the endmember values.
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the impact is still poorly understood. Further, biogeochemical conditions for the compiled nutrient samples are 
not well documented. Thus, instead of taking into account regional environmental conditions, we sort the nutri-
ent samples according to the corresponding salinity values assuming that the groundwater salinity provides a 
first order criteria by which each nutrient sample can represent the globally averaged groundwater end member 
discharged into the marginal seas. As a first-order estimate of the global SGD endmember, we excluded fresh 
groundwater (salinity < 10) from the dataset (Fig. 4) under consideration, the approach taken by Cho and Kim6. 
For the chosen salinity range (>10), coastal aquifers may be less affected by biogeochemical transformation and 
anthropogenic contamination. Indeed, consistent values of our compiled data from global aquifers for this salin-
ity range indicate that nutrients in this zone are mostly in equilibrium between sediments and pore water. This 
choice is also supported by the fact that fresh groundwater is a minor fraction of SGD (<10%)1,7, although several 
local studies have shown that fresh groundwater can seep directly in the mixing zone especially in porous volcanic 
and oceanic island environments26–29 and also karstic environments30.

Figure 4.  The histograms represent the distributions of (a) DIN, (b) DIP, and (c) DSi in coastal groundwater of 
the global ocean. The white and black bars represent salinity values lower and higher than 10, respectively.
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Calculation of the SGD-derived nutrient fluxes.  The total SGD-derived nutrient fluxes (mol yr−1) are 
calculated using equation (1) (see also Supplementary Note)

−

−
× =

Nutrient Nutrient

Ra Ra
Ra flux Total Nutrient Fluxgw sw

gw sw
228 228

228

where Nutrientgw (mol m−3) and 228Ragw (dpm m−3) are the concentrations of DIN, DIP, and DSi and the end-
member value of 228Ra in coastal groundwater aquifers, respectively. 228Ragw is obtained from Cho and Kim6. 
Nutrientsw and 228Rasw are the concentrations of nutrients and 228Ra in the coastal seawater, obtained from Garcia 
et al.31 (Supporting Information Text S1 and Fig. S1) and Kwon, et al.5, respectively. The recirculated seawater 
component of SGD-derived nutrient and 228Ra fluxes are important, since we assume that the SGD fluxes are 
dominated by saline rather than fresh SGD1,7. 228Ra flux (dpm yr−1) is the flux of 228Ra into the global ocean 
through SGD, which was estimated to be 1.3 ± 0.3 × 1017 dpm yr−1 using a numerical model combined with a 
global compilation of 228Ra observations5.

Global total nutrient fluxes.  Our calculations show that total SGD-derived DIN, DIP, and DSi fluxes into 
the global ocean of 2.3 ± 0.6 Tmol yr−1, 0.06 ± 0.02 Tmol yr−1, and 3.8 ± 1.0 Tmol yr−1, respectively. The uncer-
tainty represents one standard error from the average. These estimated SGD nutrient fluxes represent the total 
advective transport from continental margins to the coastal oceans through aquifers and pore waters. A signif-
icant fraction of the DIP and DIN in SGD may originate from the remineralization of organic matter within 
the sediments as observed in regional investigations32,33. Therefore, only small fractions of the total estimated 

Figure 5.  A comparison of global inputs of (a) DIN, (b) DIP, and (c) DSi to the ocean via SGD and river 
discharge. Fluxes via riverine inputs were obtained from the literatures35,36.
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SGD-derived DIP and DIN fluxes may be contributed by the net terrestrial fluxes to the ocean. However, a large 
portion of the DSi in SGD is likely to be released from aquifer solids34.

Our first order estimates provide an opportunity to compare SGD and river nutrient inputs to the ocean on 
a global scale for the first time, building on previous regional and local investigations. The estimated nutrient 
inputs through river discharge are from the Global Nutrient Export from Watersheds (Global NEWS) model, 
which includes river-basin-scale models that can predict export of dissolved and particulate nutrients using a 
function of natural and anthropogenic biogeophysical properties of 5761 exoreic basins35,36. The fluxes of riverine 
DIN, DIP, and DSi are approximately 1.6 ± 0.2 Tmol yr−1, 0.04 ± 0.006 Tmol yr−1, and 5.1 ± 0.1 Tmol yr−1, respec-
tively35,36. Therefore, total SGD-derived fluxes of DIN, DIP, and DSi are approximately 1.4-, 1.6-, and 0.7-fold of 
the riverine fluxes to the global ocean, respectively (Fig. 5). Assuming that the nutrients supplied by total SGD are 
fully utilized by biological production, production supported by the total SGD-derived DIN flux (2.3 Tmol yr−1) 
could be potentially 15 Tmol C yr−1. These values are likely an underestimate of the actual fluxes since we use 
lower nutrient endmember ranges and higher Ra endmember ranges (data for salinity >10). Dissolved organic 
nitrogen and phosphorus would also increase the contribution of SGD to marine nutrient budgets33,37.

Estimates of nutrient fluxes from fresh groundwater have been attempted in previous studies13–15. Based on 
our compiled dataset, combining the globally averaged fresh SGD21,38 of 1.85 Tm3 yr−1 with the endmember 
value of DIN in fresh groundwater (salinity = 0; 56 ± 23 μM), the resulting DIN flux from fresh component of 
SGD is 0.10 ± 0.04 Tmol yr−1. This value agrees with the N input to the global ocean estimated by a land- and 
process-based modeling study (0.1 Tmol yr−1)13. Using the same method, the DIP (salinity = 0; endmember value 
of DIP = 0.6 ± 0.2 μM) and DSi (salinity = 0; endmember value of DSi = 131 ± 18 μM) fluxes via fresh-SGD are 
estimated to be 0.0012 ± 0.0004 Tmol yr−1 and 0.24 ± 0.03 Tmol yr−1, respectively. The DIP flux through fresh 
SGD is reported here for the first time. The DSi flux estimated in this study is approximately 30% of that reported 
by upscaling results14 from the two regional studies, which used an average groundwater DSi value of 340 μM 
from southern Brazil39 and Bengal Basin40. However, our estimated global DSi endmember value in coastal 
groundwater (salinity = 0) is approximately 130 μM, which is much lower than the value in the previous studies. 
The general consistency with the previous estimates for the fresh-SGD provides confidence that our globally 
compiled nutrient dataset is reasonable even though it assumes no biogeochemical transformations within coastal 
aquifers.

Our results suggest that saline groundwater plays a dominant role in the SGD-derived nutrient fluxes to 
the coastal ocean and that the SGD nutrients so far reported13–15 based on fresh groundwater discharge sig-
nificantly underestimate the actual fluxes by total SGD. As is the case for the recirculating saline groundwater, 
large fractions of the SGD-derived nutrient fluxes are thought to be recycled through food webs in costal marine 
ecosystems and sedimentation processes (Fig. 1). This recycling can occur on various timescales ranging from 
hours to geological timescales associated with tides and long-term changes in sea levels, and hence has important 
implications for the marine biogeochemical responses to environmental and climate changes. The combined 
effects of riverine, atmospheric, and SGD-derived nutrient inputs are crucial for sustaining marine productivity 
in marginal seas and possibly in the open oceans. A full understanding of the dynamic interactions among lands, 
marginal seas, and the open ocean and their responses to human activities can only be achieved by including SGD 
fluxes to local, regional, and global budgets.
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