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Abstract

The structure and function of a protein is dependent on coordinated interactions between its residues. The selective
pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites.
Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary
interactions. Here, we introduce a refinement of the mutual information method that: 1) removes a significant, non-
coevolutionary bias and 2) accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments,
we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution
potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary
interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate
that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to
distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which
selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting
the set of admissible neutral mutations.
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Introduction

A complete understanding of protein evolution will require full

characterization of the many factors that determine the selective

forces acting on each amino acid of a protein. Although it has long

been hypothesized that the residues within a protein interact and

influence each other’s evolution, models of protein evolution, for

simplicity and lack of sufficient data, have traditionally assumed

that residues evolve independently of each other. However, the

increasing power of bioinformatics and the increasing availability

of genomic data offer a new opportunity to search for specific

signals of coevolution.

The covarion (concomitantly variable codon) hypothesis, put

forth by Fitch and Markowitz [1], postulated that, at any point

during the evolution of a protein, only a small fraction of its

residues are free to vary. As the freely varying sites mutate,

however, interacting sites can switch between variable and

invariant states. While Fitch and Markowitz emphasized this

binary switching, they acknowledged that more subtle changes in

selective pressures might occur. For example, in response to a

mutation at a neighboring site, a residue might switch from

varying among one set of amino acids to varying among another

set. To encompass this broader conceptualization of coevolution,

the covarion hypothesis can be restated as: at any point during the

evolution of protein, only a small fraction of possible mutations are

admissible, but as one site changes, it can alter the selective forces

associated with other sites, thus altering the set of mutations that

are selectively admissible at those site. This form of coevolutionary

interaction could be recognized within a protein as residue pairs in

which the variability at one site is dependent upon the amino acid

state of the other.

Mutual information (MI) is a statistical measure of the

codependency between two random variables. By considering

the final amino acid states of a protein’s residues, after a span of

evolution, as discrete random variables, MI becomes a natural

method for detecting codependencies between them. Using

multiple sequence alignments (MSAs) to estimate the amino acid

distribution at each site, MI quantifies how much uncertaintiy in

the amino acid state at one site can be removed by knowledge of

the amino acid state at another site.

The application of MI to sequence alignments was first

introduced by Korber et al. as a means of identifying covarying

sites in a viral peptide [2]. This approach was later extended to

general proteins as a measure of coevolution [3]. Without

refinement, however, MI yielded limited success and several

attempts have been made to improve the measure [4–8].

Wollenberg and Atchely, for example, used parametric bootstrap

simulations to model the effect of phylogenetic relationships on MI

in the absence of coevolution [4]. Their approach, however, could

not separate this global phylogenetic influence from the specific

coevolutionary signal between a pair of sites [4]. Tillier and Lui

attempted to capture biases acting on each site of a protein
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through an analysis of the total amount of interdependencies each

site had across all other sites [5]. They, however, did not

characterize the correlation between MI and their measure of this

bias. Their method of removing this bias from MI may, therefore,

have been suboptimal and may have hindered the accuracy of

their algorithm. These and the other researchers have emphasized

the need to quantify and effectively remove the poorly understood

biases that are hindering the efficacy of MI as a measure of

coevolution [4–9].

Since the ‘‘true’’ coevolutionary history of a protein cannot be

experimentally determined, measures of coevolution cannot

currently be directly tested. This complicates the validation of

any measure and necessitates the use of indirect evidence. A

correlation between predicted coevolving residue-pairs and

protein structure is the most common evidence offered to support

the accuracy of an algorithm [2,4–8,10–17]. Indeed, many

researchers who develop algorithms for quantifying covariability

between sites abandon coevolution as their primary goal and

instead focus on the algorithm’s potential as a tool for structure

prediction, in particular contact prediction [12,13,18,19]. Still, the

correlation that these algorithms yield with protein structure is

likely mediated by their capacity to accurately measure coevolu-

tion combined with an inherent tendency for physically close

residues to interact evolutionarily.

Demonstrating that a measure’s predicted coevolving residues

are further correlated to additional relevant protein features aside

from structure can, by an argument of parsimony, greatly increase

the support for that measure as it limits the range of potential non-

coevolutionary explanations. Towards this end, researchers

occasionally offer examples of coevolving residues that they

consider to be functionally relevant or near functionally relevant

sites [8,14–16]. Such correlations should, however, be evaluated

carefully and with consideration of two factors. First, site-specific

biases, such as conservation, may artificially conflate the

coevolutionary measure of functionally relevant residues. Second,

the appropriate controls are rarely given to demonstrate that the

highlighted examples represent a true trend. Once a correlation is

shown to be statistically significant and not the result of artifactual

biases, it not only supports the accuracy of a measure but also

provides insight into the nature of coevolution.

In this article, we offer a refinement of MI as a measure of

coevolution that removes a strong non-coevolutionary influence and

accounts for differences in within-site variability. We demonstrate a

high correlation between our predicted coevovling residues and

protein structure, which even extends to quaternary structures. We

also demonstrate a significant trend for those residues that are

annotated as participating directly in a protein’s catalytic activity to

coevolve with each other. Going beyond these two more commonly

considered correlations, we offer a novel measure of the propensity

for each pair of the 20 amino acids to be found at coevolving sites,

which we term their ‘‘coevolution potentials’’. We found that amino

acid pairs known to interact in bond formation exhibited the

strongest coevolution potentials, providing a unique correlation for

our measure with the known biochemistry of proteins that had not

previously been explored. We concluded by demonstrating directly

that our measure surpasses previous methods in its degree of

structural correlation, a standard comparison for evaluating

measures of coevolution [6,11,20].

Results

Refining mutual information as a measure of coevolution
To develop a statistical framework for measuring coevolution,

we began by modeling the propensity for each amino acid to

evolve at a site in a protein as a discrete random variable with 20

possible outcomes representing the 20 amino acids. To look for

interdependencies between two sites (i.e. two random variables),

we then considered their joint distributions. If the propensity for a

particular amino acid to evolve at one site is completely

independent from the amino acid state of the other site, then

the joint distribution will simply be a product of the two single

distributions, and the entropy (a statistical measure of disorder) of

the joint distribution will equal the sum of the entropies for the two

single distributions. If, however, the propensity for a particular

amino acid to evolve at one site is completely determined by the

amino acid state at the other site, then the two single distributions

and their joint distribution will all be equivalent with equal

entropies. MI is a statistical quantity that measures the

codependency of two random variables by examining how much

less entropy (i.e. more order) there is in their joint distribution than

would be expected if the two distributions were completely

independent.

In order to calculate a reliable numerical estimate for MI, many

instances of the random variables are necessary (i.e. many copies

of a protein evolving independently but under the same selective

pressures). We approximated this by considering the sequences of

an MSA as instances of our random variable. The sequences of an

MSA, however, fail to meet the assumption of independent

evolution. While the stabilization of a mutation in an ancestral

protein represents only one evolutionary event, it would be

considered, under MI-analysis, as representing an independent

event for each descendant protein of that ancestor in the MSA.

This treatment of a single event as multiple independent events

should act as a source of bias that increases the mutual information

among residues. By independently mixing the amino acids at each

site among the sequences of an MSA, we can calculate random

mutual information (RI) scores in which all coevolutionary signals

and potential phylogenetic biases have been removed. As an

example, we plotted the MI scores for each pair of amino acid sites

in the Pfam full alignment of 5612 PDZ domains against their

average RI scores from 300 randomizations (Figure 1A; Pfam ID:

PF00595 [21]). The RI score for two sites was almost never higher

than their MI score (Figure 1B; less than 1 residue pair out of all

2193 pairs per randomization). Since we would expect most

residues to have strong evolutionary interactions with only a

limited number of sites [6], the increased mutual information

scores of the unperturbed MSA relative to the randomized MSA

likely represent the influence of phylogenetic relationships.

Surprisingly, we also noticed that MI is significantly correlated

to RI (R = 0.7892) despite having removed the coevolutionary and

phylogenetic interactions. This suggests that MI is further subject

to additional, non-phylogenetic biases, which we term the

stochastic bias.

Gloor et al. and Martin et al. noted that MI is highly correlated

to joint entropy (Hi,j; R = 0.7323, Figure 1C), and thus chose to

normalize their measure by dividing MI by Hi,j [8,9]. However,

when we applied the same randomizing method to this derived

measure, we found that the normalized measure and its

randomization were still highly correlated (R = 0.5669,

Figure 1D). Normalizing MI by Hi,j thus failed to completely

remove the stochastic biases. Furthermore, the tendency for a

measured MI/Hi,j value to be higher than the randomized

measure was equivalent to that of the MI values (Figure 1B; this

equivalency is a mathematical consequence), suggesting that the

phylogenetic biases were still to some degree present. MI/Hi,j is

therefore an inefficient normalization method, and a variable

with greater explanatory power over the biases would be

preferred.

Residue Coevolution
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A colorimetric representation of the MI scores for the PDZ

alignment (relative to the Human Erbin 2nd PDZ domain whose

structure has been solved) exhibited a striated appearance,

indicative of dramatically varying general levels of MI at different

sites (Figure 1E). We captured the basal MI level for a site by

averaging the MI scores for all residue pairings with that site

(MIi~average MI across row i in Figure 1E). Large differences in

the MI of different sites are unlikely to represent true

coevolutionary patterns since most sites should only coevolve

strongly with a limited set of partner sites and the basal

coevolutionary interactions between sites should be similar [6].

MI is therefore likely to capture site-specific biases. Such biases

could potentially arise from the positioning within the phylogenetic

tree of the mutations at a particular site. For example, a site that

that mutates just after a branching point that evenly bifurcates the

tree (and thus yields a more even distribution of the two alleles) is

likely to have higher MI than a site that mutates at a more distal

branch point where the allelic distributions would be more skewed.

Other uncharacterized stochastic biases may also be contained in

MI . We used the product of the MI
0
s at two sites

(MIi|MIj~average MI across row i x average MI across

column j in figure 1E) to capture the combined bias for that pair of

sites. In order to evaluate the influence of the combined biases on

the MI scores, we plotted MI against MIi|MIj for all pair of sites

Figure 1. Measuring coevolution without bias. (A) MI scores are correlated to random information scores (RI) in which all coevolutionary and
phylogenetic relationships have been removed by random perturbations (RI is an average over 300 randomizations). This demonstrates that MI
suffers from a non-phylogenetic bias. (B) The percentage of tested residue pairs that have coevolution measures higher than their average random
measure (Standard deviations over 300 randomizations are plotted but are too small to be visualized). Phylogenetic biases induce high MI and MI/Hi,j

scorings, which are unobtainable from randomized results. (C) MI is correlated to Hi,j. (D) MI/Hi,j is correlated to its randomized values (same MI/Hi,j

measure but with all coevolutionary and phylogenetic relationships removed from sites by random perturbation of amino acids). MI/Hi,j is therefore
subject to non-phylogenetic biases. (E) A colorimetric representation of MI scores between pairs of residues in the 2nd PDZ domain of the Human
Erbin protein. The striated appearance highlights a large variation in basal MI values between sites. Residue positions are aligned from the N-terminus
to the C-terminus. Red = high MI, Blue = low MI, Darkest Blue = untested (.20% gaps). (F) MI is correlated to MIi|MIj . (G) Res is not correlated with
its randomized values. (H) Positions are ranked in order of increasing variance in Res scores (red line indicates deviation of Res scores) and the
distribution of Res scores are plotted. Higher variation at a site increases the likelihood of false indentification of coevolution at that site [5]. (I) ZRes
scores are calculated as the product of the z-scores of a Res value relative to its distribution across each site. Light red points represent residue pairs
where both z-scores were negative. The ZRes score for such sites are taken as the negative of the product of the z-scores (dark red points). The
negative of the lower bound of ZRes (gray lines) is a cutoff for choosing coevolving residues (green points).
doi:10.1371/journal.pone.0004762.g001

Residue Coevolution
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(Figure 1F). We discovered that the two quantities were highly

correlated in a strong linear relationship (R = 0.9477), with

MIi|MIj explaining 90% of the variation in MI. This

correlation persisted even when the higher 50% of MI scores

across a site were removed from the calculation of MIi|MIj

(R = 0.9301), demonstrating that the correlation was not a result of

high measurements for the top ‘‘truly’’ coevolving sites. Thus

MIi|MIj is a non-coevolutionary variable with high explanatory

value towards MI, and therefore likely contains the biases that

mask the true coevolutionary signal. To remove the influence of

MIi|MIj from MI, we used a least-squares regression and

calculated the residual (Res) of MI over MIi|MIj . The Res

measure did not correlate with randomized results (Figure 1G;

R = 0.0863), suggesting that we had successfully removed the

stochastic bias. Furthermore, about 50% of all residue pairs

exhibited random scores higher than the measured Res values

(Figure 1B). These results suggest that Res represents a measure of

coevolution in which biases associated with MI (i.e. phylogenetic

and stochastic) have been removed. Note that this quantification of

the biases was purely empirical.

We noticed that the variation in the residuals of the linear

regression of MI over MIi|MIj displayed heteroscedasticity:

increased variation with increasing MI (Figure 1F). To examine

how differences in variation might be influencing our Res scores,

we plotted the distribution of Res scores for each site, sorting the

sites by increasing variance (Figure 1H). While average Res values

tended to be similar across all sites, the variation at each site

differed dramatically. A plot of the standard deviation in Res

scores for each site against the entropy of that site revealed that the

two are correlated, suggesting that sites with more variation in

amino acid composition (i.e. more entropy) have an increased

tendency to vary in their Res value (R = 0.4516, p,0.0001, Figure

S1). Without correction, more variable sites would have a wider

distribution of Res values and thus an increased chance to

randomly surpass selection threshold. To adjust for these

differences in variation, for each pair of sites, i and j, we compared

their Res score to the distribution of Res scores across site i as well

as the distribution of Res scores across site j. We then calculated

the z-scores (number of standard deviations above or below the

mean) for the Res score relative to each of these two distributions.

Finally, in order to account simultaneously for the relative position

of the Res score in both distributions, we defined a new measure,

ZRes, as the product of these two z-scores (analogous to the Pearson

correlation). Thus ZRes is a normalized measure of the position of

the Res score for a pair of sites relative to the distributions of Res

scores across each of those sites. ZRes is large in magnitude when the

Res value for a pair of sites are at the ends of both distributions and

small when it is close to the middle of each distribution. If a Res value

sits at the low end of both distributions, it would indicate low

coevolutionary interactions. The associated z-scores, however, would

both be negative making their product positive (Figure 1I, light-red).

To distinguish such low coevolution pairs from those that lie at the

positive ends (high coevolution) of both distributions, we reversed the

signs of their ZRes score (Figure 1I, dark red). Since these residue

pairs represent the distribution of ZRes scores for non-coevolving

residues, their maximum value in magnitude (ZLB, the lower bound

of ZRes; Figure 1I, left gray line) offered us a useful selection

threshold (-ZLB; Figure 1I, right gray line) for choosing coevolving

sites with signals above background variation (Figure 1I, green).

Coevolution in PDZ domains
The PDZ domain is commonly found in scaffolding proteins

where it serves as a binding site for specific peptide sequences in

target proteins. 80–90 amino acids in length, its small size makes it

amenable towards easily visualizing the coevolutionary pairs

identified by our algorithm. The structure of the 2nd PDZ domain

of the Human Erbin protein has been solved and shown to be

similar in general topology to other PDZ representatives [22]

(PDB ID: 1N7T [23,24]). To examine how the coevolving pairs of

residues identified by our algorithm might be interacting within

the structure of the PDZ domains, we mapped all residue pairs

with ZRes scores higher than the -ZLB cutoff onto the structure of

the Erbin 2nd PDZ domain (Figures 2A & 2B; visualizations done

with UCSF Chimera [25]). Isolated pairs of residues that were

identified as only coevolving with each other are depicted as space-

filled spheres, each pair a different shade of blue (Figure 2C).

Networks of three or more residues connected by coevolutionary

interactions are depicted in ball-and-stick form with dashed yellow

lines connecting the b carbons of the coevolving pairs (Figure 2D).

In total we identified 30 coevolving pairs falling into 13 networks

and involving 39 unique residues, nearly half of the tested residues.

The close physical proximity between each coevolving residue

pair is quite striking. We plotted the distribution of distances

between pairs of coevolving residues and compared it to the

distribution of distances between all tested pairs of residues

(Figure 3). We found that the interacting residues were

significantly closer together (median distances: 2.88 Å (coevolving),

11.30 Å (all); p,1610216, 2-sample Kolmogorov-Smirnov (K-S

test)). We interpret this as arising from a tendency for coevolving

residues to be close to each other combined with the ability of our

ZRes measure to accurately detect signals of coevolution.

Interestingly, while many of the coevolving residues where found

to lie in the same secondary structure (e.g. Val-83 and Lys-87

which align on one side of the only a-helix; Figure 2C), several

examples were also found of residues interacting between

secondary structures (e.g. Gln-68 and Ile-96 interacting between

the 4th and 6th b-sheets; Figure 2D).

Coevolution in 1592 Pfam families
The Pfam website (http://pfam.sanger.ac.uk/) maintains a

database of non-overlapping alignments of well-characterized

protein families and domains [21]. In order to test the generality of

our results from the PDZ alignment across a larger set of proteins,

we downloaded 1592 Pfam full alignments chosen based on the

criteria that they contained at least 500 sequences and at least two

sites with less than 20% gaps.

Examining all 1592 alignments, the strong linear relationship

between MI and MIi|MIj persisted across alignments (mean

R = 0.944260.0340), showing that MIi|MIj consistently ex-

plained much of the variability in MI. Utilizing our ZRes measure,

we identified 126,085 coevolving residue pairs (out of 18,073,342)

with scores above the -ZLB cutoff. While our coverage of the set of

all tested residue pairs was low (0.7%), on average, 57.1%619.6%

of the tested residues for each protein family were identified as

coevolving with at least one other residue. This suggests that our

algorithm is selective on the pairings of residues and not biased

towards specific single sites. To test whether the identified

coevolving residues correlated with physical distance, we obtained

structural data on representative members for 1240 of the 1592

Pfam alignments [23]. A single representative structure was chosen

for each alignment. Figure 4A shows the distribution of the

distances between the 86,084 identified coevolving pairs of

residues present in the representative structures. For comparison,

the distribution of distances between all 12,203,471 tested pairs of

residues in the 1240 crystal structures is also shown. Indeed, the

coevolving residues were significantly closer together

(p,16102307, K-S test) with a median distance of 4.3 Å as

compared to a median of 19.2 Å for all tested residue pairs. 56%

Residue Coevolution
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of the identified coevolving residues were within 6 Å of each other,

indicative of direct physical contact [8]. In comparison, only 7% of

all tested residue pairs were in a similar range of contact.

Furthermore, to test whether these results could have arisen from a

bias in our measure towards selecting a specific set of sites that as a

population tended to be close together, we examined the set of all

sites identified as coevolving with at least one other site. The

median distance between pairs of sites amongst this set (19.3 Å)

was no different than the total distribution for all tested pairs of

sites nor was the percentage of site pairs in contact (7%). This

demonstrates that our correlation to physical structure is

specifically dependent on the pairing of identified coevolving

residues and not the result of single-site biases. We therefore

interpret these results as emerging from the accuracy of our

algorithm at identifying coevolving residues paired with the

tendency for direct structural interactions to strongly influence

residue coevolution.

To further explore correlations between coevolving residues and

structural interactions, we next considered secondary structure. Of

the 86,084 coevolving residue pairs, 14,653 (17.0%) were found to

Figure 2. Coevolving residues in the 2nd PDZ domain of Human Erbin. (A) The structure of 2nd PDZ domain of Human Erbin with peptide
ligand. Coevolving networks of at least 3 residues are depicted as balls-and-sticks in shades of red with dashed yellow lines connecting the
coevolving pairs. Isolated pairs of coevolving residues are depicted as spheres in shades of blue. The molecular surface of the peptide ligand is
depicted in white. Black ribbons represent untested residues (.20% gaps). (B) Backside of A. (C) Isolated pairs of coevolving residues. (D) Networks of
3 or more coevolving residues.
doi:10.1371/journal.pone.0004762.g002

Residue Coevolution
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lie in a common a-helix or b-sheet. In comparison, only 3.8% of

all residue pairs were identified as lying in a common a-helix or b-

sheet, suggesting that residues interacting within a secondary

structure have an increased tendency to influence each other’s

evolution. We noticed, from the PDZ domain, that coevolutionary

interactions tended to be spaced as to align along the same side of

the a-helix or b-sheets. To test the generality of this observation,

we considered all coevolving pairs of residues where both residues

lied in the same a-helix (Figure 4B) or the same b-sheet (Figure 4C)

and determined their primary sequence separation. The results are

given as a fraction of the total number of residue pairs that were

located within a common secondary structure of the respective

type (a-helix or b-sheet) and separated by the given primary

distance. Residues within an a-helix exhibited a strong peak at 3

and 4 amino acids primary distance, coincident with the first turn

of an alpha-helix (3.6 amino acids, first dashed line in Figure 4B).

The propensity to coevolve quickly died off for primary distances

past 4 amino acids, probably because subsequent helix turns

become further and further away from each other in the molecular

structure. Still a subtle peak can be seen every 3–4 amino acids

consistent with the approximate 3.6 amino acids per turn

characteristic of a-helices [26]. Even though the correlation for

b-sheets was not as strong, it did exhibit a strong peak for residues

that were separated by only a single amino acid (i.e. the closest

residues to align on the same side of a b-sheet).

We next tested whether coevolving residues that were distant in

primary sequence were still close in tertiary structure. To examine

this possibility, we restricted our analysis to residue pairs separated

by a minimal primary sequence distance and recalculated the

median physical distance of predicted coevolving pairs (Figure 4D).

Even at a minimum of 30 amino acids primary distance

separation, coevolving sites were significantly closer in physical

distance (median: 9.8 Å) than the total distribution of sites with

that minimal separation (median: 22.5 Å; p,16102307, K-S test;

Figure 4D). Similar statistical significance was obtained for all

primary distance separations from 1 to 30 (p,16102307, separate

K-S tests for each minimum primary distance). Example

molecular distance distributions (for the 10 and 30 primary

distance minimums) are given in the supplemental data (Figure

Figure 3. Distribution of distances between coevolving resi-
dues of PDZ domains. The fraction of coevolving (black bars) or all
(white bars) residue pairs that lie within the specified interval of physical
distance from each other is depicted.
doi:10.1371/journal.pone.0004762.g003

Figure 4. Coevolving residues correlate with structure. (A) The
fraction of coevolving (black bars) or all (white bars) residue pairs that
lie within the specified interval of physical distance from each other
across 1592 Pfam families. (B) The fraction of residue pairs lying within
the same a-helix and having the specified primary sequence separation
that are coevolving. Neighboring residues have a primary (1u) distance
of 1. Multiples of 3.6 have been superimposed onto the plot (dashed
lines) to indicate typical spacing between turns of an a-helix. (C) The
fraction of residue pairs lying within the same b-sheet and having the
specified primary sequence separation that are coevolving. (D) The
median distance of coevolving (closed circles) or all (open circles)
residue pairs with the indicated minimum primary sequence separation.
The dotted line depicts the difference between all and coevolving
median distances.
doi:10.1371/journal.pone.0004762.g004

Residue Coevolution
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S2). For increasing minimum primary distance thresholds from 1

through 6, a moderate decrease in the difference between the

median coevolving distances and the median for all sites was

observed (Figure 4D, dashed line). This is perhaps due to the

significance of secondary structural relationships in this range of

primary sequence separation. Past a minimum primary distance of

6, however, the differences between the coevolving sites and all

sites become constant suggesting that the tendency towards

coevolution is indifferent to the degree of primary sequence

separation beyond those separations strongly correlated to

interactions within a secondary structure.

We then examined the influence of sequence length and

alignment size on the accuracy of our algorithm. We approximat-

ed the accuracy of our algorithm in identifying coevolving residues

by its accuracy in contact prediction (the percentage of identified

coevolving residue pairs separated by at most 6 Å). Across

alignments, the total number of tested residue pairs that contacted

each other scaled with the protein’s effective sequence length (the

square-root of the number of tested residue pairs; Figure S3A).

This led to a strong correlation between the percentage of tested

residue pairs that were in contact and the reciprocal of effective

sequence length (R = 0.8428; Figure S3B). Thus, one might expect

that the ability to preferentially identify those residue pairs in

contact as coevolving over those not in contact would decrease

with increases in effective sequence length. However, the

robustness of our results led us to speculate that our use of the -

ZLB selection threshold potentially adjusted for this bias. Indeed,

the contact accuracy for identified coevolving residue pairs was

much less correlated to the reciprocal of effective sequence length

than were the percentages of all tested residue pairs contacting

(R = 0.1976; Figure S3C), though there was still a slight overall

gain in performance for shorter proteins. This suggests that our

algorithm effectively compensated for the decreased representation

of coevolving residue pairs (which should increase linearly with

protein length) relative to the total number of tested residue pairs

(which increased quadratically with protein length). Finally, we

also found a subtle but significant positive correlation between the

contact accuracy for identified coevolving residue pairs and the

number of sequences in an alignment, suggesting that larger

alignments yielded increased accuracy (R = 0.1003, p,0.001;

Figure S3D). These correlations to contact prediction accuracy

most likely reflect a corresponding correlation to coevolution

prediction accuracy.

Coevolution potentials
Having applied our algorithm to a large set of proteins, we

next wanted to search for possible trends in the amino acid

compositions of coevolving sites. We therefore developed a

measure of the propensity for strongly coevolving sites to be

composed of each of the 210 possible pairings of the 20 amino

acids, which we termed the coevolution potentials between the

amino acids. For each pair of coevolving sites (with ZRes$

-ZLB), we calculated the frequency of each amino acid pair

amongst the sequences of the corresponding MSA. We then

weighted these frequencies by the ZRes score between those

sites. These weighted values were calculated for all coevolving

pairs and then summed. To account for biases in the

distribution resulting from differences in the frequency of

occurrence of each amino acid in the alignments, we

determined the statistically expected outcome for repeating this

calculation using randomly selected residue pairs but weighting

them by the ZRes values of the original coevolving pairs. Our

final coevolution potentials represent the standard score for the

coevolving amino acid pairs relative to their expected values and

variance under the random process (Figure 5A; no randomiza-

tions were performed, expected value and variance were

calculated mathematically).

The 11 highest coevolution potentials (in decreasing order) were

found to be between: Asp-Arg, Cys-Cys, Glu-Arg, Glu-Lys, Asp-

Lys, His-His, Asp-His, His-Thr, His-Tyr, His-Glu, His-Ser (Table

S1). The high coevolution potentials of the acid-base amino acid

pairs (Asp-Arg, Glu-Arg, Glu-Lys, Asp-Lys) suggest that coevolu-

tionary forces may act to maintain balanced ionic charges or

specific ionic interactions. Similarly, the series of pairings with

histidine may be highlighting the importance of maintaining

acceptor[A]-donor[D] interactions in side-chain hydrogen bonds

(His[A/D]-His[A/D], Asp[A]-His[D], His[A/D]-Thr[A/D],

His[A/D]-Tyr[A/D], His[D]-Glu[A], His[A/D]-Ser[A/D]) [27].

Interestingly, as noted, histidine along with serine, tyrosine, and

threonine represent a class of amino acids whose side chains can

act both as hydrogen donors and accepters [27]. We speculate that

these amino acid pairs represent an evolutionary ‘pivot-point’

around which acceptors and donors can reverse roles. We also

note that histidine is unique in its ability to act both as a acid and

base at physiological pHs suggesting that it may represent a similar

crux for the transitions in acid-base pairs. Finally, coevolutionary

Figure 5. Coevolution potentials between the amino acids. (A) Coevolution potentials calculated using all identified coevolving sites. (B)
Coevolution potentials are correlated with the MJ contact energies.
doi:10.1371/journal.pone.0004762.g005
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pressures selecting against the reactive thiol group of cysteine may

explain the high coevolution potential of the Cys-Cys pair.

The known importance of ionic interactions, hydrogen bonds,

and disulfide bonds in protein structure also offer a biochemical

explanation for the correlation between physical structure and our

coevolution scores. Indeed our coevolution potentials showed high

correlation to Miyazawa and Jernigan’s contact energies, which

describe the potential for amino acid pairs to be in physical contact

with each other (MJ; R = 20.8109, Figure 5B) [28]. It seemed

possible that the high coevolution potentials of certain amino acid

pairs were actually a result of their correlation to physical

proximity rather than an explanation for it. To test this possibility,

we recalculated the coevolutionary potentials but only considered

those pairs of sites that were already known to be within 6 Å of

each other in the representative structure. Since these contacting

coevolution potentials were normalized to the expected results for

randomly selected contacting site-pairs, they represent the

tendency for each amino acid pair to be found at coevolving sites

above and beyond the biases due to physical proximity. The results

show that even once physical proximity has been removed as a

bias in the potentials, acid-base, cysteine-cysteine, and hydrogen

bond acceptor-donor pairs still dominate the coevolutionary

interactions (Figure S4A; Table S1). Indeed the contacting

coevolution potentials still strongly correlate with the MJ contact

energies (R = 20.7394, Figure S4B). We interpret these results as

suggesting that a common form of coevolution arises from selective

pressures to maintain important bond-forming interactions, which

are inherently short-ranged. Such selective pressure would help to

explain the tendency for coevolving sites to be close to each other.

While the correlation between our coevolution potentials and

the MJ contact energies is consistent with our findings that pairs of

coevolving residues tend to be close together, there were still many

pairs of coevolving residue that were distant from each other in the

representative structures. To investigate the amino acid compo-

sitions of these distant coevolving sites, we again recalculated our

coevolution potentials considering only those residue pairs that

were greater than 6 Å apart in their representative structures

(Figure S4C, Table S1). To our surprise, much of the correlation

to bond-forming interactions (i.e. high coevolution potentials of

acid-base pairs and of cysteine-cysteine) and to the MJ contact

energies was preserved (R = 20.6601, Figure S4D). These results

suggested that of those residue pairs identified as coevolving and

distant in representative structures, some may nonetheless still be

close in a different context such as different protein conformations,

different representative structures, or contacts between copies of

the protein in multi-protein complexes. We examine this last

possibility in the following ‘‘Inter-molecular coevolution’’ section.

Our inability to fully separate distant coevolving residue pairs

from those that interact at close-range makes it difficult to

ascertain which amino acid pairs are more commonly found in

long-range coevolutionary interactions. Nevertheless, the distant

coevolution potentials did exhibit an increased ranking for pairs of

aromatic amino acids in preference over several of the hydrogen-

bond forming pairs identified by the earlier potentials: His-His

(rank 6), Trp-Tyr (rank 7), Phe-Tyr (rank 8), and Trp-Trp (rank

10). It is unclear to us why these aromatic amino acid pairs were

particularly represented among the distant coevolving residues.

Inter-molecular coevolution
A surprising result from an examination of the coevolving

residues of chorismate synthase offered a partial explanation as to

why coevolving residue pairs that are distant in their representative

structures are still correlated to the MJ contact energies.

Chorismate synthase is a homotetramerizing protein important

in the synthesis of aromatic compounds in bacteria, and its crystal

structure has been solved (PDB ID: 1UM0) [29]. Examining the

distribution of distances between residues within a single chain of

chorismate synthase (chain A in the representative crystal

structure), we again found that the coevolving residue pairs were

significantly closer together than all tested residue pairs (Figure S5;

p,1610‘248, K-S test; median distances: 5.78 Å (coevolving),

23.63 Å (all)). Interestingly, when we began mapping the strongest

coevolving sites onto the crystal structure of the chorismate

synthase tetramer, we found that many of them were directly

apposed to each other across the dimer interfaces (Figure 6A–C).

Amongst the top 50 ZRes scoring residue pairs, 34 residue pairs

(68%) were found to be contacting each other (#6 Å apart) within

a single molecule of chorismate synthase (chain A). Of the 16 pairs

that were not in intra-molecular contact, 9 were found to be in

contact between molecules of the tetramer (Figure 6A–C) and an

additional pair was found to form a planar ring at the interface of

the four chains (Lys-232 and Leu-349; Figure 6D). Many of these

coevolving residues were predicted by UCSF Chimera to form

inter-molecular hydrogen bonds (data not shown) [25]. Taken

together with the previous results, this suggests that residues may

coevolve to maintain structural interactions both within and

between protein molecules.

To further test this hypothesis, we identified 532 alignments

whose representative crystal structure contained multiple copies of

the aligned protein. Since the formation of protein crystals

inherently imposes a multimerization of the peptides, we restricted

our analysis to only those chains in the structure identified as being

part of a biologically relevant assembly (‘‘REMARK 350’’ in PDB

files) [23]. Plotting the joint histogram of intra-molecular and

inter-molecular distances for the coevolving sites normalized to the

joint histogram for all tested sites, we found that the coevolving site

pairs were particularly represented amongst those that were

physically close either within a protein or between interacting

copies of the protein (Figure 7). Of all 9207 residues pairs that

were within 6 Å of each other in inter-molecular distance, over

10% (1167 pairs) of them were identified as coevolving. In

comparison, only 0.7% of all site-pairs (distant or close) were

selected as coevolving. The percentage of intra-molecularly

contacting residue pairs (less than 6 Å apart) rose from 6.23%

for all tested pairs to 58.20% for coevolving pairs, while the

percentage of inter-molecularly contacting residues rose from

0.34% to 2.59%. These results clearly demonstrate the importance

of inter-molecular interactions in the coevolution of residues.

Coevolution of Catalytic Sites
We next examined whether catalytic sites, being direct

participants in the functional role of enzymatic proteins, exhibited

specific coevolutionary tendencies. Two lines of evidence have

commonly been offered to support the hypothesis that catalytic

sites elicit or require strong coevolutionary interactions: 1)

examples of catalytic sites coevolving with other (not necessarily

catalytic) sites are highlighted, or 2) a prevalence of non-catalytic

coevolving sites within 10 Å of a protein’s active site is

demonstrated [6,8,14–16]. Statistical support verifying that these

trends surpass random expectations, however, is often not offered.

Furthermore, care should be given towards considering what

biases in an algorithm might inappropriately increase coevolu-

tionary measures for catalytic sites. For example, since low entropy

is correlated with high conservation, the normalization of MI by

Hi,j discussed earlier might bias the measure towards selecting

evolutionarily conserved sites [8].

The Catalytic Site Atlas (CSA) provides information on which

residues in a PDB structure are implicated in the direct catalytic
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activity of an enzyme [30]. Of the 1240 representative crystal

structures utilized in this study, a total of 645 catalytic sites in 257

proteins have been identified in the CSA. Using our measure, we

found that of the catalytic sites, 61.6% (397) were identified as

coevolving with at least one other (not necessarily catalytic) site,

and 97.8% (631) were within 10 Å of an identified coevolving pair

of sites. Control experiments, however, revealed that these results

were not specific to the catalytic residues. Indeed, the 61.2% of all

sites had coevolving partners and the 98.8% of all sites were within

10 Å of a coevolving pair. We therefore conclude, that while

catalytic sites are indeed amongst the coevolving sites, they have

no increased propensity to be coevolving in general.

While catalytic sites did not demonstrate any increased tendency

towards having coevolutionary partners in general, we wondered

whether catalytic sites tended to coevolve specifically with each

other. Of the 257 PDB structures with CSA entries, 175 contained at

least two catalytic sites and were used for our subsequent analysis.

We found that 61 of these PDB structures contained at least one pair

of catalytic sites identified as coevolving with each other. In total,

there were 90 such coevolving pairs of catalytic sites, representing

11% of all possible catalytic site pairs (793). To determine whether

this propensity for catalytic sites to coevolve with one another was

significantly higher than random expectations, for each representa-

tive structure, we selected random sites equal in number to the

number of catalytic sites and asked how many of these random sites

coevolved with one another. Over 2000 randomizations, the average

total number of coevolving pairs of random sites was only 6.562.7

(0.8%), significantly fewer than the number of coevolving pairs of

catalytic sites identified (in all 2000 randomizations, the randomly

selected sites never shared 90 or more coevolutionary pairing; given

a normal fit of the random results log transformed to satisfy

normalcy, we calculated the probability of getting 90 or more

coevolving pairs to be less than 1610216). Repeating the analysis

with random sites chosen under the requirement that all selected sites

for a protein be contacting each other in the representative structure,

only 56.767.2 (7.2%) were identified as coevolving, showing that the

tendency for catalytic sites to coevolve could not be completely

explained by any tendency to be located near each other at active

sites (p,1610216). Three example proteins containing coevolving

catalytic sites have been depicted in Figure 8.

Comparison to Previous Methods
To compare the performance of our algorithm to previously

published methods, we considered several measures that, like ours,

attempt to detect residue coevolution by quantifying the covariability

between sites. We had chosen to utilize an MI-based approach

because MI is well established in Information Theory. Other

methods for quantifying the covariability, however, have been

adapted towards coevolution detection. The Observed Minus

Expected Squared (OMES) approach developed by Kass and

Horovitz utilized a x2 goodness-of-fit test to identify site pairs at

which the observed distribution of amino-acid pairs diverged

significantly from expectation [10,11]. The McLachlan Based

Substitution Correlation (McBASC) approach developed by Göbel

et al. looked for correlations in the degrees of divergence for paired

substitutions at two sites [11–13]. Furthermore, a recent report from

Dunn et al. independently developed a measure of coevolution (MIp)

analogous to our Res measure [6]. A subtle difference lies in how

MIi|MIj is removed from the MI score. Dunn et al. utilized an

insightful mathematical proof, to estimate the relationship between

MI and MIi|MIj . We, on the other hand, directly calculated the

residuals of the linear regression of the measure on the bias. Dunn et

Figure 6. Inter-molecular interactions between coevolving residues of the chorismate synthase tetramer. (A–C) Coevolving residues are
highlighted by the same hue. Light residues are from chain A. Dark residues are from chain D (panels A and B) or chain C (panel C). (B) The back side
of the structure depicted in panel A. (D) A pair of coevolving residues forming a planar ring at the center of the tetramer. Each molecule of chorismate
synthase is depicted in a different color.
doi:10.1371/journal.pone.0004762.g006
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al., however, failed to account for the differences in within-site

variability addressed by our ZRes measure [6].

To compare our algorithm to these previously developed

methods, we used contact prediction accuracy as an approximate

correlate of coevolution prediction accuracy. Since none of these

algorithms utilize structural data (including primary sequence

order) and since none of them are based on known signals for

contact prediction, any correlation with structural data should

arise from their ability to recognize coevolving sites combined with

a tendency for coevolving sites to be close together (or for close

residues to be coevolving). Contact prediction therefore is a

reasonable approximation of algorithm accuracy. In order to make

the comparisons, each measure was used to rank all tested site

pairs for each analyzed protein family, and the percentage of the

top ranking site pairs contacting in their representative structures

were calculated. Our ZRes measure out-performed both OMES

and McBASC (p,1610216, Friedman’s nonparametric two-way

ANOVA; Figure 9A). Furthermore, whereas MIp and Res

performed equally well, they both under-performed ZRes,

showing that our controls for heteroscedasticity significantly

improved the measure (p,1610216, Friedman’s nonparametric

two-way ANOVA; Figures 9A and 9B). Since shorter protein

sequences have a large fraction of residue pairs in contact with

each other (Figure S3B), we repeated the analysis adjusting for

sequence length by normalizing the number of top scoring site

pairs chosen for each protein family by the length of the protein

sequence (Figure S6). Again, ZRes performed significantly better

than all other measures (p,0.05 for 1% protein sequence length

down to p,161025 for 32% protein sequence length, K-S test).

Figure 7. Joint distribution of intra-molecular and inter-
molecular distances between coevolving residues. 532 protein
and domain alignments whose representative PDB structures contained
multiple copies of the corresponding peptide were used for the
analysis. The color of each cell depicts the fraction of all residues pairs
lying within the specified intervals of intra-molecular and inter-
molecular distances that are coevolving. Coevolving pairs are particu-
larly prevalent amongst residues pairs that lie in close physical
proximity to each other either intra-molecularly or inter-molecularly.
doi:10.1371/journal.pone.0004762.g007

Figure 8. Coevolution between catalytic sites. All catalytic sites
annotated by the CSA [30] and tested for coevolution (i.e.#20% gaps)
are depicted in red. The protein backbones are depicted as a white
ribbon. Coevolving catalytic residues are connected by orange lines. (A)
Active site of murine adenosine deaminase (PF00962, PDB 1a4l) [38].
The inhibitor, pentostatin, and a coordinating Zn2+ ion are depicted in
blue. The coordinating interactions with Zn2+ is depicted as purple lines
[38]. (B) The nucleotide binding site of Methanosarcina thermophila
acetate kinase (PF00871, PDB 1g99) [39]. The bound ADP molecule and
a sulfate ion are depicted in blue. (C) Active site of Pseudomonas
fluorescens carboxylesterase (PF02230, PDB 1aur) [40]. The inhibitor,
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Discussion

Since it is presently infeasible to directly test whether two

residues in a protein have interacted evolutionarily, the accuracy

of an algorithm for measuring coevolution can only be assessed

through its correlation with independently determined features.

Even when such correlations exist and are shown to be statistically

significant, care must be taken in considering whether a non-

coevolutionary variable or bias in the measure might underlie the

correlation. Once such non-coevolutionary explanations have

been ruled out, these correlations both offer validation for an

algorithm, and provide insights into the nature of coevolution.

The coevolutionary interactions predicted by our algorithm

show a strong correlation with physical structure, namely

coevolving pairs of residues tend to be in close proximity to each

other. Since our algorithm utilizes no information on structural

data or even the primary sequence order, and since this correlation

does not arise from a bias towards identifying a specific set of sites

as having coevolving partners, this supports the accuracy of our

algorithm and suggests that residues lying in close physical

proximity are more likely to influence the selective pressure acting

on each other. In addition, the high performance of our algorithm

at predicting residue contacts may in the future offer a means of

improving protein structure prediction algorithms. Indeed several

methods for combining coevolutionary measures in structural

predictions have been previously described and would be

interesting to pursue in future studies [18,19,31].

Our calculation of coevolution potentials between the 20 amino

acids offers new insights into the role of bond-forming interactions in

evolution. The results suggest that bond forming residue pairs may

commonly face particularly strong coevolutionary selective pressure

towards maintaining these bonds. Although such selective pressure

might suggest conservation, it is important to note that coevolution

requires variation. Thus the capacity for similar bonds to be formed

by different amino acid pairs may provide a means to maintain these

necessary interactions while tolerating variation. The predominance

among coevolving residues of acid-base pairs could also indicate a

common coevolutionary selective pressure towards maintaining a

balance of ionic charges. The high coevolution potential of the

cysteine-cysteine pair may also suggest a common need to protect

against the high reactivity of the cysteine thiol group.

Our coevolution potentials for ‘‘distant’’ residues highlight the

importance of context in investigating algorithms for coevolution

detection. While the coevolution of distant, oppositely charged

residues might be explained as maintaining a global ionic balance,

the persistence of the cysteine-cysteine pair among the highest

coevolution potentials would be hard to explain if such residues were

indeed distant. More likely they are only distant in one context but

are close in another. The physical interaction of these residues may

be revealed if we examine their structures in different contexts such

as different representative proteins within an alignment or different

conformational states of a protein. As one example (Figure 7), we

have shown that the structural interactions between seemingly

distant coevolving sites can be revealed upon consideration of inter-

molecular distances within a protein complex. An interesting

consideration for future directions would be to extend these results

to protein-protein interaction predictions, potentially as a supple-

ment to already existing algorithms [17,32–34].

Coevolving residues are often expected to participate directly in

the catalytic function of a protein. Researchers therefore often

Figure 9. Comparison of ZRes to other measures of coevolu-
tion. (A) To ease processing load, calculations were limited to the 424
alignments with representative structures for which the product of the
protein sequence length and alignment size was less than or equal to
100,000. Following the analysis performed previously [5], all residue
pairs were ranked from highest to lowest ZRes score. For ranks 1 up to
100, the fraction of residue pairs at or higher than each rank lying within
6 Å of each other was calculated. The average of this contact accuracy
across all alignments was then plotted (blue). The process was repeated
with the Res (green), OMES (brown), McBASC (magenta), MIp (red), and
MI (black) measures. (B) as in A, but utilizing all 1240 alignments with
representative crystal structure. The results from one randomization of
residue pair rankings are plotted in black. Statistical significance was
assessed by Friedman’s nonparametric 2-way ANOVA for measure
effects on selectivity after factoring out rank effects. All pair-wise
comparison in both A and B were significant except between MIp and
Res.
doi:10.1371/journal.pone.0004762.g009

phenylmethylsulfonyl fluoride, is covalently bound to Ser114 and its
phenylmethylsulfonyl moiety is depicted in blue.
doi:10.1371/journal.pone.0004762.g008
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draw attention to those residues known to play important roles in a

protein’s catalytic activity that they identify as having coevolu-

tionary partners. They, however, often fail to offer controls

showing that random sites are not equally likely to be identified as

coevolving, nor controls showing that their selection of catalytic

sites does not result from single-site biases (such as a bias towards

selecting conserved sites). For our measure, we have shown that

catalytic sites, as determined by the CSA, do not have an increased

propensity to coevolve in general. We, however, do reveal an

increased tendency for these catalytic sites to coevolve with each

other above random chance. That is, catalytic sites selectively

coevolve more strongly with other catalytic sites. Since this

correlation to coevolution was identified only for pairs of catalytic

sites and was not present when considering catalytic sites one at a

time, it is not likely to arise from site-specific biases. These findings

underscore the importance of residue coordination in realizing and

maintaining an optimal enzymatic activity.

To explain the competing roles of selective pressure and

variation, both necessary for coevolution, we offer a coevolution-

ary extension of the Neutral Model of Evolution offered by

Kimura [35], and King and Jukes [36]. We hypothesize that

coevolutionary change predominantly occurs through the genetic

drift of neutral mutations at interacting sites, but the set of neutral

mutations available to those sites is largely restricted to maintain

structural and catalytic interactions. When multiple means of

retaining such interactions are available (e.g. multiple ways of

forming similar bonds), these selective forces would not be so

constraining that they prevent any variation at the sites. As nearly-

neutral mutations stabilize, the interactions between each residue

change, altering the set of subsequently available neutral

mutations. Given that variability is important in the detection of

coevolution, those residue pairs that most strongly cooperate in

defining the shape of a protein’s mutational landscape without

severely restricting it will exhibit the strongest coevolutionary

signal. This might further explain why catalytic sites do not exhibit

a general increase in tendency to coevolve. Perhaps many catalytic

sites are too constrained to allow any variation, and thus do not

allow any covariation.

Methods

Multiple sequence alignments
The full alignments for the PDZ domain family (PF00595) and

chorismate synthase family (PF01264) were downloaded from the

Pfam database (http://pfam.sanger.ac.uk/, Pfam 21.0) [21]. 1592

PFAM additional full alignments were also downloaded and

utilized in our large-scale analysis (Pfam 22.0). These full

alignments were chosen based only on the criteria that they

contained at least 500 sequences and at least one site with fewer

than 20% gaps. Importantly, no residue of any sequence is

represented in more than one PFAM alignment, protecting our

large-scale analysis from redundancy [37]. Of these alignments,

1240 had solved structures (http://www.pdb.org/) [23,24]. A

single representative structure was chosen for each alignment

without regard to the coevolution results. The complete list of

Pfam IDs for the 1592 full alignments, PDB IDs for the 1240

representative structures, and the sequence number in the

alignments of the representative members is available in the

supporting material (Table S2).

Calculating MI
Given a multiple sequence alignment (MSA), let pi be the vector

of length 20 whose entries are the frequencies of the 20 amino

acids amongst all the sequences at position i ignoring gaps. We

treat pi as an estimator for the random variable representing the

likelihood of each amino acid evolving at position i. Next we let pi,j

be a 20 by 20 matrix representing the joint distribution of each

ordered amino acid pair at positions i and j. Entropy, Hi, is a

measure of the uncertainty associated with pi and is given by:

Hi~{
X

pi aað Þlog2 pi aað Þð Þ,

Vaa[ A,C,D, . . . ,Yf g]pi aað Þ=0
ð1Þ

Hi has a minimum value of 0, i.e. no uncertainty, when all

sequences in the MSA have the same amino acid at position i. and

it increases as the amino acid frequencies become more evenly

distributed with a maximal value when all 20 amino acids are

equally represented. The joint entropy, Hi,j, between pi and pj is

simply the entropy of the joint distribution pi,j and is given by:

Hi~{
X

pi,j aai,aaj

� �
log2 pi aai,aaj

� �� �
,

Vaai,aaj[ A,C,D, . . . ,Yf g]pi aai,aaj

� �
=0

ð2Þ

If pi and pj are completely independent, then Hi,j = Hi+Hj. Hi,j

decreases as pi and pj become more codependent and is a minimal

when the amino acid at pi completely determines what amino acid

must occur at pj.

Finally, the mutual information of pi and pj, MIi,j, is a statistical

quantification of the interdependency between them and is given

by:

MIi,j~HizHj{Hi,j ð3Þ

Derived in this fashion, MI can be interpreted as the increase, due

to codependency, in the certainty of the joint outcome over the

expected certainty assuming complete independence.

It is important to note that gaps in the MSA can both skew

the represented phylogenies at a site and decrease the sample

size for estimating frequencies. For this reason, if any pair of

sites had more than 20% of the sequences in the MSA gapped at

either positions then no MI score, nor any of the derived

measures of coevolution, were calculated for that pair. Such

gapped pairs were thus left untested for any coevolutionary

relationship.

Derived coevolutionary measures
Following the logic laid out in the Results Section, to remove the

biases associated with MI, we began by calculating the average MI

for each position i:

MIi~
1

n

X
MIi,j , Vj=i ð4Þ

Where n is the number of positions j for which an MI score was

calculated between i and j (,20% gaps). We found a strong linear

relationship between MIi,j and MIi|MIj (Figure 1F). This

correlation persisted even when MIi,j or the top 5 MI values for

each site were removed from the determination of MIi|MIj

(data not shown). Since each site would be expected to coevolve

with only a few other sites, their average MI with all sites would

not be expected to contain coevolutionary signal. MIi|MIj is

therefore a confounding variable that potentially contains the

biases, phylogenetic and stochastic, that affected MI. To remove

the influence of this non-coevolutionary variable from MI, we

calculated the linear least squares regression of MIi,j against
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MIi|MIj and took the residual of each MIi,j over this line of best

fit as a new measure of coevolution, Resi,j.

A second refinement was made to our measure to account for the

higher variability in MI, and thus in Res, at some sites over others.

We started by considering Resi,j as a member of two larger sets of

Res scores: the Res scores between i and all other sites, Resi,*, and the

Res scores between j and all other sites, Res*,j. We next let Zi(j) be the

z-score for Resi,j relative to the population Resi,*:

Zi jð Þ~ Resi,j{m Resi,�ð Þ
s Resi,�ð Þ ð5Þ

Here, m(Resi,*) and s(Resi,*) represent the mean and standard

deviation of Resi,* respectively. An analogous z-score, Zj(i) was

calculated for Resi,j relative to the population Res*,j. To normalize

for the variability at both i and j, we calculated a final measure:

ZResi,j~Zi jð Þ|Zj ið Þ ð6Þ

If Resi,j is less than the mean value for both populations, Resi,* and

Res*,j, both its z-scores would be negative. This was problematic

since their multiplication would then become positive. To avoid this,

we interpreted only position pairs where both Zi(j) and Zj(i) were

positive as exhibiting a coevolutionary signal. At the same time, since

the z-scores for a population distribute around zero, by letting ZLB

(ZRes lower bound) be the most negative value obtained by ZRes, -

ZLB was a natural cutoff threshold for our positive ZRes signals.

More explicitly, to include the positional pairs where both Zi(j) and

Zj(i) are negative, we calculate ZLB as:

ZLB~{ max ZResi,j , ] Zi jð Þƒ0 or Zj ið Þƒ0
� ��� �� ð7Þ

The MI/Hi,j and MIp measures of coevolution were calculated

as described by Gloor et al. and Dunn et al. respectively [6,8].

OMES and McBASC were calculated as described by Fodor and

Aldrich [11].

Randomized coevolution scores
For each pair of positions i and j, 300 randomized coevolution

measures (for MI, MI/Hi,j, and Res) were calculated by randomly

mixing the amino acids across the sequences of the MSA that were

not gapped at either.

Structural distances
Intra-molecular distances between residues in a structure were

calculated as the minimum distance between any pair of atomic

coordinates from the two residues. Inter-molecular distances were

calculated for all alignments whose representative sequence was

present on multiple chains annotated by the PDB file as part of a

biological unit (PDB REMARK 350) [24]. The inter-molecular

distances were calculated as the minimum atomic distance

between two residues across all pairs of chains (not including

same chain distances).

Coevolution potentials
For each pair of residues identified as significantly coevolving,

we determined the frequency of the 210 unordered pairs of the 20

amino acids for those sites in the corresponding MSA. We then

weighted these frequencies by the ZRes score for that pair of

residues. Next, these values were summed across all coevolving

pairs yielding a coevolution strength for each pair of amino acids.

To determine the extant to which these coevolution strengths

diverged from random chance, the expected means and variances

for the random variables representing random strengths were

mathematically determined. A set of random strengths could be

theoretically generated by randomly selecting residue pairs from

the appropriate set (all, contacting, or distant) and repeating the

calculation for determining the coevolution strengths but using

the ZRes scores of the originally identified coevolving pairs as

weights instead of the ZRes scores for the randomly selected sites.

The final coevolution potential for each pair of amino acids was

then calculated as the difference between their coevolution

strength and the expected value of their random strength divided

be the square root of the variance of their random strength.

Annotation of Catalytic Sites
All representative structures utilized in the large-scale analysis

were searched against the CSA database for catalytic residues [30].

Only those catalytic sites for which coevolution measures had been

determined (i.e. those present in the Pfam alignment and

containing ,20% gaps) were analyzed. The CSA entries for all

analyzed sites are provided in Table S3.
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