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Abstract
Background  The most prevalent cause of cancer-related death in China and across 
the globe is lung adenocarcinoma (LUAD). Telomere shortening (TS) has been found to 
contribute to the development of LUAD. Therefore, our aim is to investigate the impact 
of telomere-related genes (TRGs) on immunotherapy and clinical prognosis prediction 
in LUAD.

Materials and methods  TRGs were obtained from TelNet, while RNA-seq and clinical 
information were retrieved from the GEO and TCGA databases. TelNet preserves a 
series of genes known to be engaged in telomere maintenance and also provides 
information on the type of telomere maintenance mechanism in which the gene is 
involved. Data pertinent to RNA sequencing and clinical parameters were accessed 
from two widely-accessed electronic repositories- the GEO and TCGA databases, 
respectively. We conducted univariate Cox regression analysis in order to recognize 
prognostic TRGs and employed multivariate Cox regression analysis to develop a risk 
model for these TRGs. The patients were stratified into high-risk and low-risk groups 
based on the first quartile of the risk score. The predictive ability and stability of the 
model were subsequently verified through Kaplan-Meier analysis, ROC curve, and 
C-index. We investigated the immune landscapes of different risk groups and predicted 
their responses to immunotherapy. Lastly, we evaluated the sensitivity of different 
groups to commonly used chemotherapeutic and targeted drugs through drug 
sensitivity analysis.

Results  Univariate Cox analysis identified 12 prognostic TRGs, while a signature 
consisting of 4 prognostic TRGs was constructed through multivariate Cox analysis. 
Survival analysis indicated a significantly shorter survival time in the high-risk group. 
The predictive immunotherapy analysis suggested that patients in the high-risk group 
may have a more favorable response to immunotherapy. Finally, we identified 28 
appropriate chemotherapeutic and 51 targeted drugs for different patient groups.

Conclusion  The study has successfully developed a prognostic model for LUAD 
prediction that takes into account TRGs and predicts both prognosis and response to 
immunotherapy.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/s12672-025-02977-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s12672-025-02977-3&domain=pdf&date_stamp=2025-6-14


Page 2 of 20Jiang et al. Discover Oncology         (2025) 16:1102 

1  Introduction
Lung cancer (LC) is the leading cause of cancer-related deaths in both China and glob-
ally [1]. Despite the proven effectiveness of evidence-based screening in reducing can-
cer-related mortality, advanced LC presentations still persist [2]. Approximately 55% 
of LC cases with localized dissemination survive for five years, while only 1% of cases 
with distant metastasis do [3]. Small cell LC (SCLC) comprises 2% of LC cases, while 
non-small cell LC (NSCLC) makes up 15% of all cases. Lung adenocarcinoma (LUAD), 
squamous LC, and large cell LC are the three main histological forms of NSCLC, rep-
resenting 35%, 12%, and 15% of all NSCLC cases, respectively [4]. LUAD is a prevalent 
variety of NSCLC and one of the most grave and lethal tumors worldwide, posing a sig-
nificant threat to human health [5]. Surgery, radiation therapy, and chemotherapy are 
common treatment modalities for LC [6]. However, the diagnosis of LUAD is presently 
challenging, with the majority of patients being diagnosed at an advanced stage. Conse-
quently, surgery becomes more limited, and the distant metastasis of cancer cells may 
have adverse health effects [7]. Hence, a logical treatment strategy should aim to ele-
vate the standard of LUAD treatment. Nowadays, a non-invasive method for estimating 
patient survival involves utilizing tumor risk score predictive signals. These signals are 
increasingly incorporated into clinical practice and can assist in accurately predicting 
prognosis [7, 8]. Consequently, it is critical to establish prognostic indicators capable of 
precisely forecasting the long-term survival of LUAD patients.

Currently, the clinical management of LUAD is an integrated and complex process. In 
the early stage, surgical resection is the main treatment and can achieve a high cure rate 
[9]. However, for advanced patients, surgery alone is often difficult to achieve the ideal 
effect, and traditional treatments such as chemotherapy and radiotherapy are needed. 
Although chemotherapy can inhibit the growth of tumor cells to some extent, it will 
bring serious side effects, and some patients will develop drug resistance [10]. Radio-
therapy also has problems such as damage to normal tissues and limited effect of local 
control. Immunotherapy as an emerging treatment, brings new hope for LUAD patients. 
It activates the body’s own immune system to fight tumors, and has better tolerance and 
durable efficacy than traditional therapy [11]. However, in immunotherapy, there are 
also many challenges, such as only some patients can benefit from it, how to accurately 
select patients suitable for immunotherapy, and finding more effective immunotherapy 
targets have become key issues.

Finding new immunotherapeutic targets is crucial. On the one hand, the discov-
ery of new targets can expand the beneficiaries of immunotherapy and allow more 
LUAD patients to receive effective treatment. On the other hand, it helps to develop 
more targeted immunotherapy strategies to improve the therapeutic effect and reduce 
the adverse effects [1]. Our study focuses on telomere-related genes, and is expected 
to provide new targets for immunotherapy in LUAD, and bring new opportunities for 
improving patient outcomes, and we will elaborate on this association in subsequent 
introductions. Telomeres are structures found at the ends of chromosomes that com-
prise repeating TTAGGG DNA sequences and shelterin complexes [12]. Chromosome 
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stability relies on telomeres, which shorten after cell division and in certain diseases [13]. 
Furthermore, abnormalities in telomeres can result in several conditions, including con-
genital dyskeratosis, heart disease, cancer, and mental health issues [13, 14]. The role of 
telomeres in the onset and progression of cancer [15]. Investigations have revealed that 
telomere shortening (TS) can modulate cancer development in two ways [15, 16]. Firstly, 
TS may exert antitumor effects by impeding cell proliferation. Secondly, it could lead 
to significant genetic instability, hastening the advancement of cancer [17]. Nanzheng 
Chen et al. discovered that SNPs in TRG-ACYP2 were linked to an elevated risk of LC 
[18]. High DKC1 expression is indicative of a poor prognosis for LUAD, and downreg-
ulation of DKC1 leads to cellular senescence and apoptosis associated with telomeres. 
Their study suggests that LUAD is caused by the suppression of DKC1, which in turn 
causes telomere-associated senescence and apoptosis [19, 20]. The length of telomeres 
in cancer has been extensively researched, and previous investigations have established 
its correlation with cancer prognosis. Earlier studies found that altered telomere length 
(TL) at the chromosome ends was prominently related to LC risk, and the combination 
of altered TL and mean TL may help in screening people at high risk of LC, and play 
a more pronounced role in patient populations younger than 60 years [21, 22]. Studies 
have observed that TL is significantly shorter in LUAD patients than in healthy controls, 
and that the risk of developing LC increases with shorter TL. Further analysis revealed 
that the effect of TL on the risk of LC was more pronounced in SCLC patients than 
in LUSC and LUAD patients. The TS may be a risk factor for LC [23]. However, as of 
yet, the precise influence of telomere-related genes (TRGs) on the prognosis of LUAD 
has not been fully investigated. Extensive studies are needed to adequately comprehend 
the role of TRGs in shaping the prognosis of LUAD, which may help recognize novel 
therapeutic targets and prognostic markers for LC research. There is a complex and 
tight link between immune signatures and telomerase shortening [24]. Numerous stud-
ies have shown that the activation or inhibition state of the immune system affects the 
proliferation and aging process, and telomerase as a key enzyme in maintaining telomere 
length, its activity changes are closely related with the proliferative capacity. For exam-
ple, under immune stress, the massive activation and proliferation of immune cells may 
lead to changes in telomerase activity, which in turn affects telomere length [25]. Several 
inflammatory factors are able to modulate the expression of telomerase-related genes, 
indirectly affecting telomerase function, leading to accelerated telomere shortening. In 
addition, the senescence of immune cells also interacts with the telomere shortening. If 
the telomere length of the aged immune cells shortens, their immune function will also 
decline, thus affecting the balance of the entire immune system. Inflammatory factors 
play an important regulatory role in this process [26]. They can influence the expres-
sion of telomerase-related genes through multiple signaling pathways. For example, the 
nuclear factor- κ B (NF- κ B) signaling pathway is widely activated in the inflammatory 
response, and many inflammatory factors such as tumor necrosis factor- α (TNF- α) and 
interleukin-6 (IL-6) can activate NF- κ B [27]. Once NF- κ B is activated, it enters the 
nucleus and binds to the promoter regions of telomerase-related genes to regulate the 
transcriptional process of the genes. We found that TNF- α can upregulate the expres-
sion of telomerase reverse transcriptase (TERT) gene in some cells, which may contrib-
ute to the maintenance of telomere length in the short term. However, long-term high 
TNF- α stimulation may lead to excessive cellular stress response, disrupt the normal 
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regulatory mechanism of telomerase and accelerate telomere shortening. IL-6 can simi-
larly affect TERT gene expression through the JAK-STAT signaling pathway, and subse-
quently affect telomerase function [28].

In the study, we identified prognostic TRGs and developed a risk assessment signature. 
Subsequently, we examined the immunologic features and responsiveness to immuno-
therapy of various groups and evaluated different chemotherapy and targeted drugs for 
their clinical management in LUAD. To summarize, this study has successfully devel-
oped a prognostic model for LUAD to forecast the prognosis and response to immuno-
therapy based on TRGs for LUAD.

2  Methods
2.1  Preparation of data

The RNA-seq, clinical, and mutation information for LUAD were obtained from TCGA-
LUAD and GEO-GSE68465 [29]. To ensure the reliability of our analyses, we excluded 
data that had missing values or a survival time of less than 30 days [30]. TRGs were 
obtained from TelNet (Score > 2; Tab S1) [31].

2.2  Development and validation of model

Univariate Cox analysis was performed to recognize prognostic TRGs (p < 0.001). In Cox 
univariate analysis, relevant patient information and observation time were first col-
lected. Then, a Cox proportional hazards model was applied to estimate the effect of 
each factor on survival or recurrence, here mainly TRGs. The key idea of the Cox pro-
portional hazards model is to quantify the effect of factors on survival or recurrence by 
estimating the hazard ratio (hazard ratio) [32]. A multivariate Cox analysis was used to 
develop a risk model for these TRGs [33]. We computed the risk score for each LUAD 
patient using a formula: 

∑k
i=1 βiSi. The external validation set, GEO-GSE68465, was 

employed to verify both the predictive ability and stability of the model [29]. Survival 
rates of different groups were assessed using Kaplan-Meier analysis and log-rank test 
[34]. The time-dependent ROC curves and the AUC were employed to estimate the reli-
ability of survival prediction.

To evaluate the applicability of the model across patients with diverse clinical char-
acteristics, we examined survival disparities between different risk score groups within 
each subgroup. Our differential genetic analysis of the high-risk and low-risk groups. 
Univariate and multivariate Cox regression analyses were employed to validate the 
model as an independent prognostic predictor. The C-index was used to assess the accu-
racy of the model. Furthermore, we constructed a nomogram that incorporates both 
the model and clinical characteristics to predict the 1-, 3-, and 5-year survival rates for 
patients with LUAD.

We identified DEGs between the different groups (|logFC > 1| and FDR < 0.05). Sub-
sequently, GO and KEGG analyses were performed on these DEGs to explore potential 
functional and pathway differences (p < 0.05) [35]. We evaluated the overall expression 
levels of TRGs using the ssGSEA algorithm.

2.3  Evaluation of immune landscape

Both groups were assessed for immune landscape based on the developed characteris-
tics classified as high risk and low risk groups. Mutational analysis was performed to 
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identify the number of gene mutations, and TIDE and TMB scores were computed in 
order to predict response to immunotherapy [36, 37]. The TIDE algorithm evaluates the 
presence of tumor immune evasion mechanisms and predicts immunotherapy response, 
while the TMB score quantifies the total burden of genetic mutations within the tumor, 
serving as a measure of neoantigen load. The various algorithms were used to calculate 
immune cell infiltration [38–43]. Through the utilization of these algorithms, we were 
able to obtain a comprehensive and quantitative analysis of immune cell infiltration pat-
terns. We performed a single-sample ssGSEA to evaluate the variances in immune func-
tion and examined the expression levels of distinct immune checkpoint genes.

2.4  Identification of anti-tumor drugs

We utilized the “pRRophetic” R package to compute the IC50 values of drugs and com-
pared the IC50 to evaluate the efficacy of conventional chemotherapeutic and targeted 
drugs used in clinical management of LUAD (p < 0.05) [44].

2.5  Statistical analyses

We performed statistical analyses and generated figures for the research using R soft-
ware version 4.1.3, a widely recognized open-source tool for statistical analysis. We used 
the Wilcoxon test to compare and assess gene expressions between various groups. The 
significance level for determining statistical significance was set at P < 0.05.

3  Result
3.1  Construction and validation of risk assessment signature

Initially, 12 candidate prognostic TRGs were recognized through a univariate Cox analy-
sis (Fig. 1A). Further analysis using a multivariate Cox model led to the development of a 
signature consisting of 4 select prognostic TRGs (Fig. 1B). The survival analysis revealed 
a statistically significant decrease in survival time among individuals classified as high-
risk based on the developed signature (p < 0.001; Fig.  1C). This finding was consistent 
across both the traning set and the independent testing set (GSE68465) (p = 0.002; 
Fig. 1D). The validation set (GSE68465) serves as an external confirmation cohort, fur-
ther supporting the clinical relevance and potential applicability of the signature in real-
world settings. The agreement between the findings in the validation set and the initial 
dataset demonstrates the robustness and reproducibility of the signature’s prognostic 
performance. The model was employed to forecast the 1-, 3-, and 5-year survival rates 
of LUAD patients, and the AUC values were 0.642, 0.677, and 0.666 (Fig. 1E). The AUC 
of the model was higher than other clinical features, indicating that it is more reliable 
(Fig. 1F). The ssGSEA results showed that TRG scores were significantly higher in the 
low-risk group, suggesting that patients may have longer TLs (Fig S1).

According to the various subsets, the low-risk group patients had a longer survival 
time, implying that the signature is relevant to patients with a variety of clinical char-
acteristics (Fig. 2A). The risk score was found to be an independent prognostic factor 
in Cox analysis (p < 0.001; Fig.  2B). The C-index demonstrated that the model outper-
formed conventional clinical criteria in predicting LUAD prognosis (Fig.  3A). The 
observed 1-, 3-, and 5-year survival rates demonstrated a strong agreement with the pro-
jected rates in the correlation plot (Fig. 3B). A nomogram was constructed incorporating 
the developed signature along with carefully selected clinical features, aiming to enhance 
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the accuracy of survival predictions for patients with LUAD (Fig. 3C). This tool allows 
clinicians to evaluate multiple factors simultaneously and derive a personalized estima-
tion of the patient’s prognosis.

3.2  Enrichment analysis

To explore the diverse molecular mechanisms underlying different groups, we employed 
a comprehensive analysis to identify 689 DEGs between these groups (Tab S2). The GO 
analysis showed that the BP terms of the DEGs were primarily associated with mitotic 
nuclear division, nuclear division, and extracellular matrix organization. In terms of 
CC, the DEGs were found to be related to the collagen-containing extracellular matrix, 
chromosome, centromeric region, and condensed chromosome, centromeric region. 
Furthermore, the MF terms were predominantly associated with extracellular matrix 

Fig. 1  Construction and validation of this prognostic model. (A) Univariate Cox analysis. (B) Multivariate Cox analy-
sis. (C and D) The survival analysis from TCGA-LUAD and GSE68465. (E) The AUC values for the model. (F) The AUC 
of the model was also higher than other clinical features
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structural constituent, extracellular matrix structural constituent conferring tensile 
strength, and serine-type endopeptidase inhibitor activity (Fig.  4A, C, E and Tab S3). 
Additionally, KEGG analysis was performed to recognize enriched pathways among the 
DEGs. This analysis unveiled various pathways that were significantly enriched, includ-
ing protein digestion and absorption, cell cycle, ECM-receptor interaction, p53 signaling 
pathway, oocyte meiosis, and focal adhesion (Fig. 4B, D, F and Tab S4).

Fig. 2  Evaluation of the prognostic model. (A) According to the various clinical subgroups, patients in the low-risk 
group had a longer survival time. (B) The risk score was found to be an independent prognostic factor
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3.3  Assessment of immunological landscape

The frequency of gene mutations was substantially higher in the high-risk group (Fig. 5A 
and B). The high-risk group demonstrated markedly lower TIDE scores (p = 0.0045; 
Fig. 5C), indicating a more sensitive response to immunotherapy. Conversely, the high-
risk group exhibited significantly higher TMB scores (p < 0.001; Fig.  5D), further sup-
porting their potential suitability for immunotherapy. Incorporating TMB scores as a 
covariate improved the predictive accuracy of LUAD patient prognosis, as indicated by 
statistically distinct survival rates among different TMB and risk score groups (Fig. 5E 
and F).

As shown by the immune scores for the high-and low-risk groups, the risk score 
was positively connected with the enrichment of M0 macrophages, M1 macrophages, 
myeloid dendritic cells, neutrophils and CD4 + T cells, while negatively connected with 
the enrichment of B cells, mast cells and CD8 + T cells (Fig. 6A). Some immunological 

Fig. 3  Construction of the nomogram. (A) The model outperformed conventional clinical criteria in predicting 
LUAD prognosis. (B) The observed 1-, 3-, and 5-year survival rates demonstrated a strong agreement with the pro-
jected rates in the correlation plot. (C) A nomogram containing the model and clinical features
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activities, such as APC co-inhibition, CCR, check-point, inflammation promoting, 
MHC class I, parainflammation, and T cell co-inhibition, differed statistically between 
risk groups (Fig. 6B). Immune checkpoint-related gene expression, including CTLA-4, 
PDCD1, LAG3, TIGIT, and CD274, was also statistically different (Fig.  6C). Selection 
of immune checkpoint related genes is based on two considerations. First, from the bio-
logical theory, immune checkpoint plays a central role in the process of tumor immune 
escape. Immune checkpoint molecules, such as programmed death receptor 1 (PD-1) 
and its ligand (PD-L1), help tumor cells escape the surveillance and attack of the body’s 
immune system by inhibiting the activity of immune cells. In the study of lung cancer, 
especially LUAD, the abnormal expression of immune checkpoint is closely associated 
with the development of tumors, and the prognosis of patients. Secondly, combined 
with the purpose of our study, we aimed to explore the connection of telomere-related 
genes and immune features in LUAD, immune checkpoint-related genes as key nodes of 
immune regulation, and the inclusion study helps to more comprehensively dissect the 
potential association between tumor immune microenvironment and telomere biology.

3.4  Selection of anti-tumor drugs

Besides immunotherapy, our research aims to identify chemotherapeutic drugs and 
novel targeted drugs for patients in various risk groups. Our analysis revealed 28 

Fig. 4  Functional enrichment analysis. (A and B) The GO and KEGG analyses for 986 DEGs. The BP, CC, MF for GO 
specific results (C, E, F), The KEGG specific results (D)
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chemotherapy drugs and 51 targeted drugs, including Cisplatin, Gemcitabine, Pacli-
taxel, Vinblastine, AKT inhibitor VIII, WH.4.023, and XMD8.85 (p < 0.001; Figs. 7 and 
8). These findings offer valuable insights into potentially effective therapeutic options for 
patients in different risk groups and may inform the development of more personalized 
treatment approaches.

Fig. 5  Evaluation of immunotherapy. (A and B) The specific mutated genes varied greatly in different groups. (C 
and D) The high-risk group had lower TIDE score and higher TMB scores. (E) Survival rates were significantly lower 
in high-TMB groups. (F) Survival rates were significantly different between the four groups
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4  Discussion
LC is the most prevalent type of malignant tumor on the planet. According to World 
Health Organization data issued in 2021, China has the highest incidence and mortality 
rate of LC in the world [1, 45]. LC patients’ 5-year survival rates are still dismal despite 
the variety of therapies in recent years [46]. Patients with LUAD are in the intermediate 

Fig. 6  Immune landscape of the model. (A) The risk score was positively connected with the enrichment of M0 
macrophages, M1 macrophages, myeloid dendritic cells, neutrophil and CD4 + T cells, while negatively connected 
with the enrichment of B cells, mast cells and CD8 + T cells. (B) Some immunological activities, such as APC co-
inhibition, CCR, check-point, inflammation promoting, MHC class I, parainflammation, and T cell co-inhibition, dif-
fered statistically between risk groups. (C) Immune checkpoint-related gene expression was statistically different 
between groups
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to advanced stages of the illness when they are diagnosed, making it one of the most sig-
nificant subtypes of NSCLC. Patients with LUAD have a much lower chance of surviving 
following therapy due to relapse, metastasis, and drug resistance [47]. Low-dose CT is 
one of the most effective screening approaches for LC currently available; however, it has 
a high percentage of false positives [48]. Thus, it is critical to precisely forecast the prog-
nosis and survival of LUAD in order to prevent and cure it. Telomeres, which play a sig-
nificant regulatory function in LC, are made up of repeated TTAGGG DNA sequences 
and shelterin complexes [12]. According to a related study, cellular senescence and apop-
tosis associated with telomeres were caused by DKC1 downregulation, and high DKC1 
expression was related to poor prognosis in LUAD [19, 20]. In LC, in contrast to telom-
erase activity, which is difficult to detect in normal lung tissue, telomerase activity is not 
only high in LC cells, but its activity has also been found to be strongly related to the risk 
of LC development [49]. Additionally, latest study found drugs targeting telomeres effec-
tively inhibit LC initiating cells and promote anti-tumor immunity in LC [50]. TS is sig-
nificantly related to increased risk of death in heavy smokers of LC [51]. Consequently, 
new biomarkers and target genes must be urgently investigated for LUAD.

Short telomeres ( < = 10th percentile) have been identified as a poor prognostic fac-
tor in LUAD based on analysis of datasets from two distinct countries [52]. A nine TRG 

Fig. 7  Identification of traditional chemotherapeutic drugs
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risk model was constructed and validated for LUAD using these two databases (TCGA 
and GEO-GSE68465) [53]. Nonetheless, our study exhibits several noteworthy advan-
tages over previous research endeavors. Firstly, we employed a reduced panel of 4 TRGs 
to construct the model, thereby facilitating its practical applicability in clinical settings. 
Secondly, we performed an investigation into gene mutations specifically within differ-
ent risk groups, thereby augmenting the comprehensiveness and depth of our study. 
Lastly, we conducted an extensive screening of potential therapeutic agents to enable 
more tailored and individualized treatment options for patients, empowering clinicians 
with a broader range of choices.

In the work, univariate Cox analysis was used to identify 12 predictive TRGs, including 
BLM, FEN1, AURKA, EXO1, GLI2, RAD51, HOXA7, PAICS, AURKB, CHEK1, CCT4, 
and HNRNPC. Four prognostic TRGs (BLM, EXO1, GLI2, and HOXA7) were identified 
by multivariate Cox analysis. This study is exploratory to explore the potential predic-
tive value of telomere-related genes in lung cancer. Strict p-value threshold facilitates the 

Fig. 8  Identification of novel potential drugs
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screening of significant effect genes, narrow the scope of subsequent analysis, and avoid 
the introduction of excessive false positives by the relaxed threshold, and interfere with 
the discovery of key genes. The survey found that many similar lung cancer gene predic-
tion model studies also adopted similar strict p-value threshold in the univariate analysis 
stage, which is conducive to the horizontal comparison and verification of the research 
results [54, 55]. FDR correction may be overly conservative to miss truly meaningful 
genes. Moreover, the results are influenced by sample size, gene number and gene corre-
lation, which should be used carefully in this study to avoid missing the potential infor-
mation on the relationship between telomere-related genes and lung cancer prognosis 
[56]. BLM genes involved in DNA unwinding and repair processes, play a key role in 
maintaining genomic stability, the occurrence and development of lung cancer is closely 
related to genomic instability [57]. EXO1, the gene involved in the exonuclease activity 
of DNA, Involved in DNA damage repair and cell-cycle regulation, its abnormal expres-
sion may affect the proliferation and apoptosis of lung cancer cells. EXO1 is a potential 
prognostic gene and connects with immune infiltrates in  LUAD [58]. EXO1 rs1776148 
was significantly related to prognosis of LC by Sequenom MassARRAY [59]. GLI2 func-
tions as a key transcription factor in the Hedgehog signaling pathway, this signaling 
pathway plays an important role in the embryonic development, cell proliferation, and 
differentiation of lung cancer, Abnormal activation can promote the progression of lung 
cancer. Basic studies confirmed that miR-182-5p could regulate the chemosensitivity of 
cisplatin-resistant LUAD cells by targeting GLI2, suggesting that GLI2 is correlated with 
the pathomechanism of LUAD [60]. A bioinformatics analysis revealed that GLI2 may be 
linked to tumor immune dysregulation and TP53 mutations in LUAD [61]. HOXA7 is a 
potential target gene involved in the pathogenesis of LUAD, and this might offer novel 
ideas for the development of new therapeutic targets for LUAD [62]. Besides, HOXA7 
is aberrantly expressed in LC samples compared to benign nodal samples, suggesting 
that it may be highly associated with lung carcinogenesis [63]. The HOXA7 gene belongs 
to the homeobox gene family, involved in embryonic development and cell differen-
tiation processes, in lung cancer, its abnormal expression is associated with malignant 
behaviors, such as tumor invasion and metastasis [64]. These existing biological studies 
provide a strong theoretical basis for us to select these four genes to be included in the 
multivariate Cox regression analysis. Based on the screened prognostic genes, we can 
find specific targeted drugs and immunosuppressants, thus providing new options for 
the clinical treatment of LUAD. In addition, we can specifically identify key prognostic 
genes through medical techniques and effectively predict the development and progno-
sis of the disease for eventual use in clinical treatment.

We used comprehensive analysis to identify 689 DEGs between these groups, and 
differential-based enrichment analysis showed that the BP term of DEGs was mainly 
associated with mitotic nuclear divisions, nuclear divisions, and extracellular matrix 
organization. For CC, DEGs were found to be associated with collagen-containing extra-
cellular matrix, chromosomes, centromeric regions and condensed chromosomes, cen-
tromeric regions. In addition, the MF term was mainly related to the extracellular matrix 
structural components, the extracellular matrix structural components endowed to ten-
sile strength, and the serine-type endopeptidase inhibitor activity (Fig. 4A and Table S3). 
In addition, KEGG analysis was performed to identify pathways enriched in DEGs. This 
analysis revealed various pathways including protein digestion and absorption, cell cycle, 
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ECM receptor interaction, p53 signaling pathway, oocyte meiosis and focal adhesion 
plaques (Fig. 4B, C,D, E,F) .

Although we did not use the Akaike Information Guidelines (AIC) or Bayesian Infor-
mation Guidelines (BIC) in our article, we used other rigorous and effective methods 
to verify the reliability and stability of the model. We applied the external validation 
set GEO-GSE68465, which contained independent lung cancer sample data. By apply-
ing the model to this external validation set, we found that the model was still able to 
accurately predict the survival of lung cancer patients, which fully proved that the model 
has good generalization ability, not overfitting to the training data set. We hypothesize 
that BLM, EXO1, GLI2, and HOXA7 genes are substantially linked with the prognosis 
of LUAD. The survival analyses were the same as those of the GSE68465 validation set, 
with reduced survival times in the high-risk category. Strong agreement existed between 
the survival rates and their anticipated survival rates in the correlation plot. We also 
explored the link between TMB, TIDE, immune cell infiltration, immune functions, 
immune checkpoint-related genes, and risk scores, and discovered that type III inter-
feron responses were decreased in high-risk individuals. Type III interferon, an essen-
tial element of antiviral immunity, prevents viral replication in vitro [65]. Immunological 
escape may be largely attributed to type III-IFN response suppression, and its activation 
is necessary to maintain immune potency. In melanoma, lung, and bladder malignancies, 
TMB is commonly used as a prognostic biomarker for immunotherapy [66–68]. Survival 
was significantly lower in patients with high TMB, and TP53 and TTN expression were 
increased in high-risk patients. The development of various cancers is all affected by the 
often mutated oncogene TP53. It also plays a role in the normal metabolism of diabetes, 
liver disease, and cardiovascular disease [67, 69, 70]. Additionally, patients with multiple 
malignancies and TP53 are more likely to survive [71]. TTN contributes to the growth of 
numerous malignancies. TTN could be a potential therapeutic target for the treatment of 
endometrial cancer, which could target the miR-376a-3p/PUM2 axis and encourage the 
proliferation of endometrial cancer cells [72]. By targeting miR-134-5p and encouraging 
the development of the brain tumor structural domain 1 gene, Fu Chengyu et al. discov-
ered that TTN functions as a proto-oncogene in osteosarcoma [73]. In the context of 
p53 regulation, the helicase encoded by the BLM gene is crucial for DNA double - strand 
break repair. As a key tumor suppressor, p53 is activated upon DNA damage and then 
regulates BLM gene expression to maintain genomic stability. Abnormal p53 function 
can disrupt the telomere - related repair processes mediated by BLM, thereby influenc-
ing telomere dynamics and the prognosis of LUAD. Similarly, the EXO1 gene, involved 
in DNA exonuclease activity and damage repair, may also be regulated by p53 to impact 
telomere stability [74, 75]. Regarding the ALT pathway, telomerase - negative tumor cells 
can maintain telomere length through this mechanism. GLI2, a key transcription factor 
in the Hedgehog signaling pathway, has abnormal activation linked to tumor cell prolif-
eration and migration. Since the ALT pathway is associated with cell proliferation and 
survival in certain tumor cells, GLI2 may affect telomere dynamics by modulating the 
ALT pathway. Although there is no direct evidence of HOXA7’s connection to the ALT 
pathway, its abnormal expression in tumor cells, given its role in embryonic develop-
ment and cell differentiation, can influence cell proliferation and differentiation, poten-
tially affecting the ALT - related telomere maintenance mechanism [76]. In terms of 
epigenetic modifications, DNA methylation and histone modifications can impact gene 
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expression. The promoter regions of BLM, EXO1, GLI2, and HOXA7 are likely epige-
netically regulated, which affects their expression levels and, consequently, telomere 
dynamics and LUAD development. For instance, abnormal DNA methylation can lead 
to gene silencing or overexpression, disrupting telomere - related biological processes 
[77, 78]. To further refine the study, we plan to complement the experimental validation 
in subsequent studies. We will collect more samples from LUAD patients and directly 
measure telomere length by using fluorescence in situ (FISH) hybridization or telomere 
restriction fragment (TRF) analysis to verify our previous inferences. Through these 
experiments, we were not only able to verify the differences in telomere length between 
the low and high-risk groups, but also to deeply explore the direct association between 
telomere-related gene expression and telomere length, thus more fully revealing the 
mechanism of action of telomere-related genes in LUAD.

The enrichment of M0 and M1 macrophages, myeloid dendritic cells, neutrophils, and 
CD4 + T cells was favorably connected with risk scores, while the enrichment of B cells, 
mast cells, and CD8 + T cells was negatively correlated. APC co-inhibition, CCR, check-
point, inflammation promotion, MHC class I, parainflammation, and T-cell co-inhibi-
tion were a few immunological activities that showed statistically significant differences 
between risk groups. Statistics showed that the expression of genes connected to immu-
nological checkpoints differed between risk groups. Regarding the immune landscape, 
we have found that enrichment of M0 and M1 macrophages, myeloid dendritic cells, 
neutrophils and CD4 + T cells was positively correlated with risk scores, while enrich-
ment of B cells, mast cells and CD8 + T cells was inversely associated. This result has 
some agreement with existing studies. For example, it has been shown that increased 
infiltration of M1 macrophages is associated with poor prognosis in multiple tumors, 
which may promote the inflammatory response in the tumor microenvironment by 
secreting pro-inflammatory factors, which then drives tumor progression, which echoes 
the positive correlation between M1 macrophage enrichment and high-risk score in 
our study. However, the relative enrichment of CD8 + T cells, as important anti-tumor 
immune cells in the low-risk group, may imply better immune surveillance and tumor 
suppressive effects, which is also consistent with the basic theory of tumor immunology. 
Regarding immunotherapy response, we found that immune activities such as APC co-
suppression, CCR, checkpoint, inflammation promotion, class MHC I, accessory inflam-
mation, and T cell co-suppression varied significantly between risk groups, and immune 
checkpoint-related gene expression also varied between risk groups. This suggests that 
LUAD patients may have different responses to immunotherapy in our different risk 
groups. Studies have indicated that immune checkpoint inhibitors often have better effi-
cacy in tumor patients with high expression of immune checkpoint related genes, which 
has a potential link with our findings. We can further speculate based on this that the 
high-risk group in our study may be more sensitive to immune checkpoint inhibitor 
treatment due to their specific expression patterns of immune checkpoint-related genes.

We will investigate the roles of immune cells in targeted therapy for LUAD patients in 
the future. We will continue to assess the prognosis of LC patients from the standpoint 
of immune cell infiltration. Finally, we examined the sensitivity of these medications, 
which have been used to treat various cancers, and revealed 28 chemotherapy drugs and 
51 targeted drugs, including Cisplatin, Gemcitabine, Paclitaxel, Vinblastine, AKT inhib-
itor VIII, WH.4.023, and XMD8.85. We did this by using the pRophetic algorithm to 
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search for successful tumor immunotherapy agents. anti-cancer medications However, 
further research is required to fully understand how drugs work and how they affect 
LUAD progression.

It is essential to recognize that the present study exhibits several deficiencies and con-
straints. Firstly, due to the majority of non-metastatic patients present in the TCGA-
LUAD dataset, the findings may be susceptible to bias. Secondly, the sample size of the 
training set utilized in this study (459 tumor samples) is comparatively limited. Thirdly, 
the prognostic gene sets discovered in this research have not been authenticated in our 
clinical specimens. Thus, we intend to acquire additional clinical specimens and broaden 
the sample size to enable further scrutiny and validation of our model.

5  Conclusion
In this study, we conducted a groundbreaking investigation to elucidate the significance 
of TRGs in the diagnosis and prognosis of LUAD. Notably, our study is the first to com-
prehensively examine the contributions of TRGs in this context. Moreover, we specifi-
cally explored the relationship between risk score-based groups and important treatment 
factors such as TIDE, TMB, medication sensitivity, and immunotherapy response. This 
comprehensive analysis has led to substantial advancements in our understanding of 
clinical outcomes and the ability to predict survival for individuals afflicted with LUAD. 
The findings from our study have transformative implications, providing critical insights 
into the development of personalized therapeutic strategies. Importantly, our research 
augments the current knowledge base in the field of precision medicine for LUAD and 
fosters tailored therapeutic approaches catered to individual patients.
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