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Regulatory T cells (Tregs) are a specialized subset of T lymphocytes that function as

suppressive immune cells and inhibit various elements of immune response in vitro

and in vivo. While there are constraints on the number or function of Tregs which

can be exploited to evoke an effective anti-tumor response, sufficient expansion of

Tregs is essential for successful organ transplantation and for promoting tolerance of

self and foreign antigens. The immune-suppressive property of Tregs equips this T

lymphocyte subpopulation with a pivotal role in the establishment and maintenance of

maternal tolerance to fetal alloantigens, which is necessary for successful pregnancy.

Elevation in the level of pregnancy-related hormones including estrogen, progesterone

and human chorionic gonadotropin promotes the recruitment and expansion of

Tregs, directly implicating these cells in the regulation of fetal-maternal immune

tolerance. Current studies have provided evidence that a defect in the number or

function of Tregs contributes to the etiology of several reproductive diseases, such

as recurrent spontaneous abortion, endometriosis, and pre-eclampsia. In this review,

we provide insight into the underlying mechanism through which Tregs contribute

to pregnancy-related immune tolerance and demonstrate the association between

deficiencies in Tregs and the development of reproductive diseases.

Keywords: regulatory T cells, pregnancy, steroidogenesis, endometriosis, primary unexplained infertility, recurrent

spontaneous abortion, preeclampsia

INTRODUCTION

Regulatory T cells (Tregs), a key subset of T lymphocytes, play a critical role in regulating the
immune response and maintaining immune tolerance both in physiological and pathological
processes. Many studies have shown that Tregs are compromised in patients with autoimmune
diseases as well as in patients with graft-versus-host disease after receiving transplanted organs
(1), however, these cells are activated to promote tumor growth and progression, leading to the
failure of immunotherapies in cancer (2). Defects in the number of Tregs and their suppressive
activity are involved in the development of various systemic or organ-specific autoimmune diseases,
including thyroiditis (3), gastritis (4), type I diabetes (T1D) (5), systemic lupus erythematosus (SLE)
(6), multiple sclerosis (MS) (7), rheumatoid arthritis (RA) (8), and inflammatory bowel disease
(IBD) (9).
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During the course of pregnancy, the mother’s systemic
immune system is altered to tolerate the fetus, who expresses
paternal major histocompatibility complex antigens. Many
studies have supplied multiple lines of evidence that Tregs
possess specific characteristics for preventing the development of
a maternal immune response against the fetus and maintaining
fetal-maternal tolerance. First, the proportion of Tregs in
peripheral blood is significantly increased during pregnancy in
both women andmice, and there is a specific recruitment of Tregs
from maternal peripheral blood to the fetal-maternal interface,
leading to a higher proportion of Tregs in the placental decidua
than in the peripheral blood (10). Furthermore, a decreased
proportion of Tregs has been proposed to be associated with
pregnancy-related complication such as recurrent spontaneous
abortion and pre-eclampsia (11–13). Second, antibody-mediated
depletion of CD25+ Tregs has been shown to cause implantation
failure in allogeneic mated mice (14). Conversely, the adoptive
transfer of Tregs attenuates the high abortion rates in the well-
studied CBA/J×DBA/2J abortion-prone murine model (15).

Pregnancy is a physiological process greatly dependent
on immune tolerance, which is regulated by the number
of Tregs and their suppressive activity. This review of the
current literature describes the role played by Tregs in
regulating fetal-maternal immune tolerance. Furthermore, we
demonstrate the relationship between a deficiency of Tregs and
pregnancy-related complications, with the aim of identifying
the mechanisms through which Tregs maintain fetal-maternal
immune homeostasis, thus providing a potential target for
treating pregnancy-related complications.

Differentiation and Immunosuppressive
Function of Tregs
Tregs are divided into two populations, namely natural
regulatory T cells (nTregs) and inducible regulatory T cells
(iTregs). NTregs originate from the thymus in response to
self-antigens, whereas iTregs are peripherally induced from T
cells responsible for restraining immune responses to foreign
antigens, such as commensal bacteria, food antigens and allergens
(16, 17). The mechanism underlying how Tregs are generated
remains controversial. Although some studies have suggested
that Tregs are anergic to TCR (T cell receptor) stimulation in
vitro, the process involving the formation and selection of Tregs
in the thymus is highly dependent on the TCR rearrangement,
as evidenced by the observation that the development of Tregs is
abrogated in TCR transgenic mice with RAG-2 deficiency (18).
An increasing number of studies have suggested that Tregs are
positively selected from autoreactive T cells that express specific
TCR with the appropriate affinity for self-peptides (19–21).

Unlike other T helper cells, Tregs lack the capacity to secrete
specific cytokines, and it is therefore difficult to distinguish them
from other T helper cells. Foxp3 is the most specific Tregs
marker and is constitutively expressed in Tregs generated in
both the thymus and the periphery irrespective of the mode or
state of activation (22, 23). The Foxp3 gene contains 11 exons
and maintains a high degree of conservation between human
and mouse genes (24). Mice genetically deficient in Foxp3 lose

the ability to properly regulate Tregs activity and succumb to
a fatal and severe lymphoproliferative autoimmune syndrome
at 3–4 weeks of age (25). Similar to mice, humans carrying a
FOXP3 mutant gene develop an autoimmune syndrome named
IPEX (immune dysregulation, polyendocrinopathy, enteropathy,
X-linked syndrome) (26, 27). Beyond its role as an indispensable
factor required for the development of Tregs, continuous Foxp3
expression is required for the latter’s suppressive function.
Research has shown that Tregs isolated from Foxp3 deficient
mice lack suppressive function. However, transduction of Foxp3
endows CD4+CD25− T cells with the capacity to suppress the
proliferation of CD4+ T cells (28, 29).

The suppressive function of Tregs is achieved via two
mechanisms, namely a cell-contact dependent mechanism
involving the recognition of co-stimulated molecules that
directly suppress the expansion of effector T cells and a cell-
contact independent mechanism involving the secretion of
soluble cytokines that negatively regulate the immune response
(30) (Figure 1).

CELL-CONTACT DEPENDENT
MECHANISM

Cell-contact dependent suppressive activity is mediated via the
recognition of co-stimulated molecules. In this process, Tregs
function is highly dependent on the normal expression of
molecules located on Tregs, and a deficiency of key molecules
triggers the defective expansion and suppressive activity of Tregs,
leading to a disturbance of immune homeostasis. IL-2 receptor α

(IL-2Rα) and CTLA4 are the most important molecules involved
in cell-contact dependent mechanism.

Most Tregs abundantly express high-affinity IL-2 receptor
α (CD25) and IL-2/IL-2R signaling provides indispensable
signaling during the development and maturation of Tregs
both in the thymus and in the periphery. Furthermore, the
lack of the IL-2R cannot be compensated by other cytokine
receptors (31). IL-2, IL-2Rα, and IL-2Rβ deficient mice all die
from severe lymphoproliferation and autoimmune disease in
early life. In addition, neutralization of circulating IL-2 by anti–
IL-2 monoclonal antibodies inhibits Tregs proliferation and
triggers a wide range of organ specific autoimmune diseases
(32–35). IL-2-IL-2R signaling is essential for the development
and maturation of both Tregs and Teff cells, however, low dose
IL-2 is remarkably efficacious in promoting the expansion of
Tregs rather than Teff cells, which possibly results from the
higher affinity of IL-2R in Tregs (36). Based on the comparative
activity and different sensitivity for IL-2, the consumption
of IL-2 by Tregs has been shown to be a predominant
mechanism involved in suppressing the expansion and activity
of Teff cells and triggering Teff cell apoptosis due to IL2
deprivation (37, 38).

CTLA4, a key molecule constitutively expressed in Tregs,
is crucial for maintaining T cells homeostasis and tolerance
induction, and its expression is in part controlled by Foxp3
(39, 40). Mice deficient in CTLA4 become sick by 2 weeks
of age and moribund at 3–4 weeks of age, with diffuse and
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FIGURE 1 | The mechanisms underlying the suppressive function of Tregs. The suppressive function of Tregs is achieved via two mechanisms: cell-contact

dependent mechanism and cell-contact independent mechanism. Tregs express a high-affinity IL-2 receptor and can competitively bind to IL-2 with Teffs, which

induces IL-2 consumption and suppresses the development and expansion of Teffs. Both CD28 and CTLA4 interact with CD80/CD86 expressed on APCs. However,

the affinity of CD28 is lower than that of CTLA4. CD28 plays an important role in enhancing Teffs activation, while CTLA4 acts as an inhibitor by depriving ligands and

suppressing CD28 signaling. TGF-β and IL-10 are two classes of nonspecific cytokines secreted by Tregs and can promote Tregs expansion and suppressive activity

by binding to their receptors.

focal lymphocytic infiltration into various organs (41, 42).
Furthermore, specific deficiency of CTLA4 in Tregs results in
the spontaneous development of systemic lymphoproliferation,
multi-organ lymphocyte infiltrations, fatal T cell-mediated
autoimmune diseases, and hyperproduction of immunoglobulin
E in mice (43). CTLA-4-mediated suppressive regulation of T cell
response and upregulation of Tregs activation are predominantly
achieved by competition with CD28, a positive costimulatory
molecule that shares common ligands (CD80/CD86) with
CTLA4 (44, 45). CTLA4 possesses significantly higher affinity
in binding CD80/CD86 and CTLA4 rather than CD28 removes
costimulatory ligands CD80/CD86 from APCs by a process of
trans-endocytosis (46, 47). These properties equip CTLA4 with
the capacity to outcompete the ability of CD28 to serve as a
negative immune regulator (48, 49).

CELL-CONTACT INDEPENDENT
MECHANISM

In addition to the cell-contact dependent mechanism, Tregs also
exert suppressive activity in a cell-contact independent manner,

mainly through the secretion of inhibitory cytokines. Unlike
other T cells, Tregs fail to produce exclusive cytokines. However,
certain cytokines, such as TGF-β and IL-10, secreted by Tregs are
essential for the expansion and suppressive activity of Tregs.

Several lines of evidence suggest that the addition of TGF-β
enhances the conversion rate of native T cells into Tregs, and
that TGF-β secreted by Tregs plays a partial role in maintaining
suppressive properties by binding to the TGF-β receptor (50–
53). Administration of neutralizing antibodies specific for TGF-β
or specific deficiency of TGF-β expression in Tregs leads to a
limitation or even abrogation of Tregs’ suppressive activity (54,
55). Strong evidence that the role of TGF-β to maintain Foxp3
expression is supported by the observation that the expression of
Foxp3 is dramatically diminished in peripheral Tregs from TGF-
β−/− mice and addition of TGF-β results in increased Foxp3
expression (52).

Unlike TGF-β, the function of IL-10 in Tregs seems to
be organ-specific. Recent studies have found that IL-10 and
IL-35 produced by intratumoral Tregs cooperatively share a
common BLIMP1 axis to promote the exhausted intratumoral
T cell state and anti-tumor immunity, implying IL-10 and
IL-35 contribute to maintaining immune tolerance (56, 57).
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IL-10 is recognized as a potent suppressor of macrophage
and T cell functions. Furthermore, IL-10 deficient mice are
growth retarded and suffer from chronic enterocolitis (58).
An increasing number of current studies have found that
IL-10 is expressed in Tregs and plays an auxiliary role in
promoting their expansion and function. IL-10+ Tregs are
mostly located in intestinal tissues and are essential for limiting
immune response-induced inflammation to the diverse intestinal
microbiota, which may provide a reasonable explanation as
to why IL-10 deficient mice or mice treated with anti-IL-
10 receptor blockers succumb to intestinal inflammation (59,
60). Although the Tregs-specific deficiency in IL-10 does
not result in severe systemic autoimmunity, it does lead
to immunological hyperreactivity at environmental interfaces,

resulting in conditions such as spontaneous colitis, lung

hyperreactivity, and skin hypersensitivity (61). Thus, while IL-
10 production by Treg cells is not necessary for the regulation

of systemic autoimmunity, it is essential for hindering excessive
immune responses at local environmental interfaces. The

suppressive activity of IL-10 is partly mediated via binding to IL-
10R to restrain the Th17-induced inflammatory response, which
plays a critical role in regulating intestinal homeostasis. This is
illustrated by the observation that mice with IL-10R deficient
Tregs produce high levels of IL-17 and are prone to developing
severe colitis (62, 63).

Regulation of Fetal-Maternal Tolerance
During Healthy Pregnancy
For decades, many studies have shown that successful pregnancy
depends on the homeostasis of fetal-maternal tolerance.
Furthermore, failure of the maternal immune system to establish
fetal-maternal tolerance is the predominant trigger in the
development of pregnancy-related complications. Consequently,
numerous therapeutic treatments aimed at suppressing the
maternal immune system are employed in clinics. However,
the effect of these therapies is not always apparent and is often
accompanied by various side effects. It is therefore important
to identify the cellular and molecular mechanisms responsible
for establishing fetal-maternal immune tolerance in healthy and
abnormal pregnancies to promote the development of targeted
therapeutic interventions. The immune suppressive property of
Tregs confers this cell population with a fundamental role in
establishing the fetal-maternal immune tolerance necessary for
successful pregnancy.

Some studies consider pregnancy to be a process of mutual
conversion between pro-inflammatory and anti-inflammatory
conditions (64), therefore dividing pregnancy status into three
distinct immunological states that correspond to different stages
of fetal development: first, a pro-inflammatory stage associated
with embryo implantation and placentation (65–67); second, an
anti-inflammatory-oriented stage associated with fetal growth
(68, 69); and third, a switch from an anti-inflammatory to a pro-
inflammatory stage necessary for the initiation of labor (70, 71).
Concurrent with the above stages is a dramatic change in the
number of Tregs during the course of pregnancy. Following

exposure of paternal alloantigens, circulating Tregs increase
rapidly during the early pregnancy stage and peak during the
second stage at which time trophoblast invasion of the maternal
decidua is maximal; then, Tregs gradually decrease when labor
begins (64). The change in the number of Tregs and crosstalk
with other immune cells play a critical role throughout the entire
course of pregnancy.

Tregs PRIMING AND IMPLANTATION

Embryo implantation is the initial stage of pregnancy
and involves apposition of the blastocyst and the uterine
endometrium followed by attachment and invasion of the
blastocyst into the endometrium, and reconstruction of
the decidua by the invasive trophectoderm (72). The wide
application of assisted reproductive technology, such as in vitro
fertilization-embryo transplantation (IVF-ET) and intrauterine
insemination (IUI), has enabled an analysis of earlier gestational
stages from oocyte fertilization to implantation in humans.
Adequate endometrial receptivity is considered a pivotal
precondition for successful embryo implantation. Endometrial
scratching before embryo transfer has been proposed as a clinical
treatment to increase uterine receptivity, and some studies
have demonstrated that endometrial scratching improves the
pregnancy outcome by triggering an inflammatory response
and enhancing angiogenesis at the implantation site, providing
indirect evidence for the role played by inflammation during
implantation (73–77).

Studies based on human and animal experiments have
demonstrated that the peri-implantation period is accompanied
with the activation and infiltration of various immune cells (78).
Uterine-specific natural killer (uNK) cells, macrophages (Mos),
and dendritic cells (DCs) are recruited at the implantation site
and exert prominent immune-regulatory effects during early
pregnancy. uNK cells are the most abundant immune cells
located in human decidua during early pregnancy, while Mos
and DCs serve as antigen-presenting cells that infiltrate into the
decidua. Crosstalk among these cells plays an essential role in
regulating trophoblast invasion and in promoting spiral artery
remodeling (79–81).

The role played by Tregs during implantation is unclear.
However, some studies have reported that a reduced number
of Tregs is associated with implantation failure. Mice with a
depletion of Tregs exhibit a significant defect in implantation,
which is reversed following an adoptive transfer of Tregs
(82). A study showed that compared with fertile women,
endometrial tissue from women with unexplained infertility
displayed a significant reduction Foxp3 mRNA expression, the
fate-determining transcription factor especially expressed in Treg
cells (83). Other evidence has also revealed a correlation between
the level of Tregs in peripheral blood and the implantation
rate. Women with implantation failure after IVF or artificial
insemination by donor sperm (AID) had a significantly decreased
percentage of Tregs compared with women with a successful
pregnancy (84, 85). Therefore, the presence of peripheral or local
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Tregs may create a limited but necessary immunomodulatory
function during the course of implantation.

ENLARGEMENT OF Tregs FUNCTION AND
PREGNANCY MAINTENANCE

Successful implantation is followed by a phase of fetal growth
and development. The establishment of fetal-maternal immune
tolerance lays the foundation for this stage, with a shift from a
pro-inflammatory immune response to a Th2/Treg-predominant
anti-inflammatory immune tolerance (64). The proportion of
Tregs begins to rise and peaks at this stage, and a paucity of
Tregs could lead to pregnancy-related complications such as
spontaneous abortion. Tregs exert a strong immunosuppressive
function to maintain an anti-inflammatory environment and
protect the fetus from maternal immunological rejection.
Tregs can effectively suppress the expansion and activation
of effector T cells via a classic cell-contact mechanism or by
secreting suppressive cytokines as described previously. One
study described a class of functionally distinct Tregs with
expression of a co-inhibitory molecule TIGIT, which induces
selective suppression of Th1 and Th17 cells but not Th2 cells.
However, whether this Tregs subset is expanded and activated
during pregnancy is still unknown (86).

The pivotal role played by Tregs in fetal-maternal tolerance
raises several questions about the mechanisms responsible for
their expansion during pregnancy and underscores the need
for studies investigating these mechanisms. Previous studies
suggest that the activation and regulation of Tregs is primarily
impacted by antigen exposure and the dynamic changes of steroid
hormones that occur during pregnancy.

ANTIGEN-MEDIATED Tregs EXPANSION:
PATERNAL SPERM ANTIGEN AND FETAL
ANTIGEN

Investigators have proposed that exposure to male seminal
fluid delivered during mating elicits the expansion of maternal
Tregs, as evidenced by the increase in the number of Tregs
within the period of time subsequent to mating and before
embryo implantation (87, 88). Immune tolerance to the fetus
is necessary for successful pregnancy, and transmission of
seminal fluid seems to play a priming role prior to implantation
by promoting expansion of Tregs, thereby activating specific
tolerance to paternal alloantigens. Seminal fluid contains various
components, including a cellular fraction that contains sperm,
leukocytes and epithelial cells and a non-cellular fraction of
compounds such as TGF-β and prostaglandins. The cellular
and acellular fractions in semen both contain several antigens,
including classical class Ia, non-classical class Ib and minor
antigens such as H-Y antigen, which drive an antigen-dependent
expansion of Treg cells (89, 90). The non-cellular components
are also required to confer tolerance. As mentioned above,
TGF-β is a critical cytokine for Tregs proliferation. One study
found that intravaginal pre-treatment with TGF-β at mating

enhances successful pregnancy in vivo in a well-established
murine model (91). An in vitro experiment also indicated a
role for prostaglandins in upregulating Foxp3 expression and
enhancing Tregs function (92). Collectively, both sperm and
seminal plasma may contribute to driving an expansion of
Tregs and providing an immune-privileged environment that is
beneficial for subsequent embryo implantation.

Embryo implantation and fetal growth are the most important
stages during pregnancy. Some studies have proposed that the
implanted blastocyst should be considered a semi-allograft and
constant immunosuppression is required for a pregnancy to
be successful. Although a seemingly opposite pro-inflammatory
process is involved in both implantation and initiation of labor,
immunosuppression is an indispensable response to maintain
immune homeostasis during the fetal growth stage, and this
is highly dependent on the expansion and activation of Tregs
triggered by the fetal alloantigens (93). When Tregs are depleted,
fetal outcome is normal in syngeneic pregnancies rather than
allogeneic pregnancies, suggesting that Tregs suppress maternal
immune responses directed against fetal alloantigens rather than
male-specific minor histocompatibility antigens (94, 95). When
encountered with parental alloantigens presented by a fetus,
peripheral Tregs, generated extrathymically and induced by
non-self-antigens, serve as the predominant subset suppressing
immune response. The development of peripheral Tregs is
dependent on the expression of a Foxp3 enhancer CNS1, a
deficiency of which leads to an increased resorption of embryos
in mice (96).

STEROID HORMONE-MEDIATED Tregs
EXPANSION: ESTROGEN,
PROGESTERONE AND HUMAN
CHORIONIC GONADOTROPIN

Serum levels of the pregnancy-associated hormones such as
estrogen, progesterone, and human chorionic gonadotropin
(HCG) increase dramatically during pregnancy. These hormones
play an essential role in maintaining immune tolerance and in
supporting successful pregnancy. Currently, there is increasing
evidence that the mechanisms through which hormones
contribute to immune homeostasis during pregnancy are in
part due to the expansion of Tregs and their suppressive
activity (Figure 2).

Estrogen-based therapy has been reported to alleviate
symptoms associated with several autoimmune diseases,
such as collagen-induced arthritis (97), type1diabetes (98),
and autoimmune encephalomyelitis (99). Furthermore, the
mechanisms underlying these protective effects seem to
be associated with changes in immune cells and cytokines
(100–102). The number of Tregs in human peripheral blood
change continuously during the menstrual cycle and peak
before ovulation, which is concurrent with the change of
the concentration of estrogen, suggesting that estrogen may
be a powerful factor in promoting Tregs expansion (103).
Some studies have demonstrated that the proliferation and
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FIGURE 2 | Pregnancy-related hormones affect the expansion and migration of Tregs. The levels of various steroid hormones, such as estrogen, progesterone and

human chorionic gonadotropin, change dramatically during pregnancy. Estrogen and progesterone promote Tregs expansion and trigger the conversion of

CD4+CD25– T cells to Tregs separately by binding to estrogen and glucocorticoid receptors. The level of human chorionic gonadotropin (HCG), another essential

hormone for maintaining a healthy pregnancy, begins to increase after fertilization, peaks at the 11th week, and then gradually decreases until birth. HCG functions as

a regulator that not only upregulates the expansion of Tregs but also provokes migration of Tregs from the circulation to the decidua.

suppressive activity of human Tregs observed with estrogen
treatment is mediated through estrogen receptor α (104, 105).
In both in vivo and in vitro experiments, estrogen treatment
triggers the expansion of Tregs. Furthermore, the addition
of estrogen in combination with TCR stimulation enhances
Foxp3 mRNA expression in CD4+CD25−T cells in vitro,
suggesting that estrogen may potentially induce the conversion
of CD4+CD25−T cells to Tregs (106, 107).

Progesterone, which is mainly produced by the placenta
and is markedly elevated during pregnancy, functions as a
regulator that maintains homeostasis at the maternal-fetal
interface. Similar to estrogen, progesterone is considered to be
another important hormone that promotes the expansion of
Tregs and their suppressive capacity (107). The proportion of
Tregs and the conversion rate of CD4+CD25− T cells into
Tregs has been shown to increase significantly in the peripheral
blood, spleen, and inguinal lymph nodes of ovariectomized
mice after progesterone injection (108). Progesterone-mediated
immune tolerance is achieved by progesterone binding to
the glucocorticoid receptor rather than to the progesterone
receptor (109, 110). Progesterone promiscuously binds the
glucocorticoid receptor and promotes immune suppression by
inducing enrichment of Treg cells and triggering apoptosis of
effector T cells, which is based on the preferred sensibility in
effector T cells for glucocorticoid receptor-mediated T cells death
compared with that in Tregs (110, 111). Progesterone is also

present at high levels in human cord blood where it has been
reported to have an immune-suppressive function. Progesterone
drives a shift of native cord blood T cells into suppressive Tregs,
while impeding the conversion fromnative T cells into Th17 cells,
another potential pathway through which progesterone regulates
immune tolerance (112).

HCG is another hormone that is increased during pregnancy,
and is produced in the blastocyst after fertilization, reaching
its maximum level at the 11th week and then gradually
decreasing until birth (113). Khil et al. reported that HCG
prevents the development of autoimmune-mediated diabetes
in NOD mice by downregulating immune effector cells and
cytokines and simultaneously upregulating the proportion of
Tregs and the levels of TGF-β and IL-10, suggesting that HCG
is an effective regulator for immune tolerance (114). Increased
HCG during pregnancy provokes many Tregs-related responses
including (1) augmenting the number of Tregs, (2) increasing
their local and systemic suppressive function, (3) enhancing
attraction of circulating Tregs into decidua, and (4) increasing
the secretion of suppressive cytokines (115–117). HCG-mediated
expansion of Tregs is achieved in part by retaining DCs in an
immature state, leading to the generation of Tregs and a loss
of the capacity to activate a T cell-mediated immune response
(117, 118). In vitro migration assays further confirmed the
chemoattractant properties of HCG that promote migration of
Tregs from the periphery into the uterus, which is potentially
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mediated via binding to HCG/LH receptors located on
Tregs (116, 119).

DECLINE OF Tregs ACTIVITY AND LABOR

There is a decline in the number of Tregs as pregnancy progresses
into the third gestational period. The reduction in the number
of Tregs in late gestation may be a contributing factor for
the initiation of spontaneous labor. This is supported by the
finding that the proportion of Tregs in the decidua following
a spontaneous vaginal delivery is significantly lower than that
following an elective cesarean section (120). Shah et al. conducted
a longitudinal analysis from 20-weeks gestational age to labor and
observed a reduction in the number of activated Tregs (defined as
Tregs with HLA-DR+) and a significant shift toward a Th1/Th17
response with the onset of labor (121). Compared with women
undergoing spontaneous term labor, the proportion of activated
Tregs is significantly decreased in women in preterm labor
(122, 123). The change is similar to the reduction in activated
Tregs observed in patients who experience an acute rejection
after kidney transplantation, supporting that the reduction in
the proportion and activity of Tregs promotes the conversion
from an anti-inflammatory to a pro-inflammatory stage and plays
a critical role in initiating spontaneous labor. The mechanism
underlying the reduction in Tregs during labor remains an
enigma. The alteration in hormone levels and in the microbial
environment may be stimuli for activating an inflammatory
response, however, the specific molecular mechanisms needs to
be further investigated.

The level of Tregs progressively decreases after delivery.
However, there is a retention of “memory” Tregs with fetal
specificity, which retain the ability to generate a more effective
and accelerated suppressive response when re-exposed to the
same fetal antigens in subsequent pregnancies (124). The primary
pregnancy confers Tregs with a protective regulatory memory,
which may provide an immunological basis for protection
against complications such as pre-eclampsia in a subsequent
pregnancy (125, 126).

Dysfunction of Tregs in Reproductive
Diseases
Since it has been determined that Tregs maintain fetal-maternal
tolerance during the normal course of embryo implantation and
pregnancy, it is of interest to investigate whether systemic and
local maldistribution and dysfunction of Tregs play a role in
the etiology of infertility and pregnancy-related complications.
Increasing evidence suggests that a deficiency in the expansion
and function of Tregs as well as an abnormal expression of key
molecules are linked to pregnancy-related complications.

RECURRENT SPONTANEOUS ABORTION

Recurrent spontaneous abortion (RSA), defined as the loss of
three or more consecutive pregnancies, affects ∼1% of women
attempting to conceive (127, 128). RSA is a complex pregnancy-
related complication that is due to multiple factors including

chromosomal abnormalities, congenital or acquired anatomical
defects in the uterine fundus and cervix, and other endocrine
diseases such as PCOS, diabetes, thyroid disorders, and others
related to aberrant immune responses (128, 129). Increasing
evidences suggests that the proportion of various immune
cells and cytokines is altered in patients with RSA, supporting
that immune dysfunction may be a contributing factor to its
etiology (130, 131). Although there have been detailed guidelines
describing clinical interventions for managing women with RSA,
treatment based on immune rejection as a potential etiology
is controversial, because no definite cellular and molecular
mechanism has been discovered to date (17, 129).

The mechanisms through which Tregs contribute to RSA
primarily involve an imbalance of the Th1/Th2/Th17/Treg cells
paradigm and the abnormal proportion and activity of Tregs.
Dysregulation of T lymphocyte homeostasis is also involved in
the etiology of RSA. In peripheral blood from patients with RSA,
the balance between Th1 and Th2 cells is disrupted in favor of
Th1 cells, and the ratio of Th17/Treg cells is skewed toward
Th17 cells (132, 133). It is widely accepted that there is a close
interaction between the expansion of Tregs and the secretion
of IL-17. When IL-17 combines with the IL-17 receptor, Tregs
are upregulated. Conversely, Tregs suppress the proliferation
of Th17 cells and the secretion of IL-17 via cell-cell contact
and via Il-10/TGF-β-mediated effects (134, 135). However, this
suppressive function of Tregs is abrogated in patients with RSA
(134). Transfusion of Tregs into mice pretreated with IL-17
has been shown to significantly increase the expression of IL-
10 and TGF-β, two key cytokines that mediate the suppressive
activity of Tregs in decidua and lower the fetal resorption rates in
mice (136). Furthermore, insufficient generation of pregnancy-
induced Tregs triggers the accumulation of paternal alloantigen
specific Th1 cells and directly results in the failure to establish
appropriate maternal-fetal immune tolerance (137).

Numerous studies have also confirmed that the reduction in
the number of Tregs are involved in the pathogenesis of RSA
(Table 1). Sasaki et al. first reported the presence of Tregs in the
decidua and demonstrated the proportion of Tregs in decidua
from spontaneous abortions was significantly lower than that
in decidua from induced abortion (11). Other studies have also
demonstrated that the proportion of Tregs and the expression of
Foxp3 in both the decidua and peripheral blood from patients
with unexplained RSA patients are significantly lower than those
from women with normal pregnancies (13, 139). In addition
to the reduction in number, Lourdes et al. reported that the
suppressive function of Tregs is significantly impaired in RSA
as assessed by a co-culture technique with CD4+CD25−T cells
(103). Inadequate number of Tregs and downregulation of Treg
cell activity impair the anti-inflammatory environment, weaken
the immune tolerance against fetal rejection and thereby increase
the risk of RSA.

ENDOMETRIOSIS

Endometriosis is a benign gynecological disease affecting
∼6–10% women of childbearing age, and is characterized by
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TABLE 1 | The change of the proportion of Tregs in patients with recurrent

spontaneous abortion compared with normal pregnant women.

Proportion of Tregs References

Peripheral blood Decidua

↓ ↓ (11)

↓ ↓ (13)

↓ ↓ (138)

↓ ↓ (139)

↓ Not mentioned (132)

↓ Not mentioned (140)

Not mentioned ↓ (141)

↓ Not mentioned (142)

↓ ↓ (143)

↓: Decreased.

the implantation of endometrial tissues outside the uterus
(144). Chronic pelvic pain, dysmenorrhea and infertility
are the common symptoms occurring in patients with
endometriosis (145, 146). As multiple factors, including genetic
and environmental factors, contribute to the development
of endometriosis, the pathogenesis of endometriosis remains
uncertain. Many theories have been proposed to explain
how endometriosis develops, and one of the most widely
accepted is the retrograde menstruation theory. This theory
hypothesizes that fragments of endometrial tissue reflux to the
peritoneum through the fallopian tubes during menstruation
(147). However, this theory fails to explain why only a
few women develop endometriosis even though retrograde
menstruation is a common phenomenon occurring in most
women of childbearing age (148). Therefore, other studies have
postulated that a disturbed local and systemic immune response
may be responsible for the development and progression of
endometriosis (149–151).

An aberrant immune environment that includes alternative
activation of peritoneal macrophages (152), production of
various cytokines (153), and reduction in natural killer cell
cytotoxicity (154), all contribute to the survival and invasion
of ectopic endometrial tissue. Dysregulation in T lymphocyte
homeostasis is associated with the pathogenesis of endometriosis.
The Th1/Th2 balance is altered in local and systemic immune
conditions, such that there is skewing toward Th2 cells in
endometriotic lesions, but skewing toward Th1 cells in peripheral
blood (155).

A disturbance in Tregs activity may be a more prominent
mechanism involved in the etiology of endometriosis due
to their immune-suppressive function, derangement of which
could potentially promote the survival of ectopic endometrial
lesions. However, evidence regarding the change in the
proportion of Tregs in peripheral blood, peritoneal fluid, eutopic
endometrium, and ectopic endometrial tissues among patients
with endometriosis is inconsistent (Table 2). The discrepancy
may result from differences in patient selection, namely the
patients with early or advanced endometriosis. Most studies

TABLE 2 | The change of the proportion of Tregs in patients with endometriosis

compared with patients without endometriosis.

Proportion of Tregs in patients with endometriosis References

Peripheral

blood*

Peritoneal fluid* Ectopic

peritoneal

lesions#

Not mentioned Not mentioned ↑ (156)

Not mentioned ↑ Not mentioned (157)

↓ ↑ Not mentioned (158)

→ → Not mentioned (159)

→ Not mentioned Not mentioned (155)

→ → ↓ (160)

→ ↑ Not mentioned (161)

→ →(Early)

↑(Advanced)

Not mentioned (162)

↑: Increased, ↓: Decreased, →: Not changed.

*The proportion of Tregs in peripheral blood and peritoneal fluid in patients with

endometriosis is compared with patients without endometriosis. #The proportion of Tregs

in the ectopic peritoneal lesions in patients with endometriosis is compared with eutopic

endometrium in patients without endometriosis.

suggest the proportion of Tregs is significantly increased in
peritoneal fluid from women with endometriosis compared with
control women (157, 158, 161). One study reported that the
number of Tregs was increased in the peritoneal fluid and
decreased in the peripheral blood, and another study found
the number of Tregs was higher in peritoneal fluid than in
peripheral blood, both indicating that active translocation of
Tregs occurs from circulation to the local peritoneal cavity (158,
162). However, some studies failed to find any difference in
the proportion of Tregs in patients with endometriosis when
compared with women without endometriosis (159). To bypass
the confounding influence of interpatient variability, research
has been carried out in an established animal model with
endometriosis to identify abnormalities in the proportion of
Tregs. In a study of baboons with induced endometriosis, the
proportion of Tregs was decreased in peripheral circulation and
eutopic endometrium but increased in ectopic tissue, which is
consistent with Tregs’ local immunosuppressive activity Tregs
played (163). Tanaka et al. focused on the variation in resting and
activated Tregs and put forth a new concept that the proportion
of activated Tregs in the endometrioma rather than in the
peritoneal fluid or peripheral blood is decreased, which may be
temporal and associated with the angiogenesis and progression
of endometriosis (160). However, a study showed the proportion
of Tregs in ectopic endometrium was increased in patients
with endometriosis compared with eutopic endometrium (156).
Further research is required with an expanded sample size and
more detailed subgroup analysis to better determine the role
Tregs play in the pathogenesis of endometriosis.

Change in the proportion of Tregs appears to contribute to
the suppressed immune response against ectopic endometrial
tissue, permitting implantation of endometrial tissue in the
peritoneal cavity. Therefore, understanding the origin of local
Tregs production may be provide new insights that will aid
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in the development of targeted therapies for women with
endometriosis. The accumulation of Tregs in the peritoneal
cavity may not only be a result of active translocation
from the peripheral blood but may also be due to their
local induction (153). Higher levels of IL-10 and TGF-β,
two key cytokines responsible for regulating the proliferation
and activity of Tregs, were found in the peritoneal fluid
and serum of patients with endometriosis than in normal
controls (164, 165). Compared with serum levels, the level
of cytokines in peritoneal fluid was significantly higher
(165). Furthermore, IL-10 and TGF-β mRNA expression were
significantly higher in ectopic lesions than eutopic endometrium
from women with or without endometriosis, particularly in
cases of advanced endometriosis (166). These results suggest
Tregs and related cytokines maintain the local anti-inflammatory
environment and play a crucial role in the development
of endometriosis.

PREECLAMPSIA

Preeclampsia is a common pregnancy-related complication
that occurrs in 3–5% of pregnant women and can lead to
iatrogenic preterm birth and fetal growth restriction (167). The
precise etiology of preeclampsia remains unknown, although
insufficient formation of uterine spiral arteries, over-activated
inflammation, injured endothelial cells, and genetic factors have
all been implicated (168–171). Interestingly, preeclampsia seems
to be more common in primiparous than multiparous women,
whereas the protective effect is abrogated with the change of
partner. A meta-analysis compared the difference in the risk
of preeclampsia in women who were impregnated by donor or
partner sperm and found the risk was significantly increased
in conceptions resulting from donor sperm (172). Furthermore,
another study reported that prior and prolonged partner sperm
exposure before pregnancy is associated with a significant
reduction of the risk of preeclampsia (173). Taken together, these
observations suggest that paternal antigens and sperm exposure
induce an immune tolerance during the first pregnancy and offer
effective protection against the development of preeclampsia
with subsequent pregnancies, implying the adaptive immune
response with alloantigen specificity and immunological memory
is involved in the pathogenesis of preeclampsia (174).

An increasing body of evidence suggests that an inadequate
immune tolerance induced by Tregs-associated abnormalities
play a pivotal role in the etiology of preeclampsia. Several
studies have reported that, compared with normal pregnancy,
both the number of Tregs and the ratio of Tregs to Th17 cells
in peripheral blood are significantly reduced in preeclampsia
(175–177). The increased ratio of Th17/Treg cells has also
been confirmed by an analysis of Th17/Treg expression of
related transcription factors and the secretion of Th17/Treg-
related cytokines. Compared with healthy pregnant women,
a reduction in the expression of Treg-specific transcription
factor Foxp3 and an elevation in Th17-specific transcription
factor RORγt in patients with preeclampsia has been reported
(178). Furthermore, analysis of cytokine profiles have revealed

a significant decrease in IL-10, and a significant increase in
IL-17 levels in patients with preeclampsia (178, 179). Taken
together, these studies suggest that a shift occurs from Tregs
to Th17 cells in the development of preeclampsia, leading to
an abnormal immune state that triggers inflammation and an
impairment of immune tolerance. The mechanism underlying
the imbalance of Th17/Treg cells remains unclear. Eghbal-
Fard et al. suggested the upregulation of miRNA in patients
with preeclampsia may affect the differentiation and expansion
of Th17/Treg cells by regulating the expression of specific
transcription factors (178). In addition to the alteration in the
proportion of Tregs, the immunosuppressive activity of Tregs is
also altered in patients with preeclampsia. Darmochwal-Kolarz
et al. reported the proliferation of effector T lymphocytes in
patients with preeclampsia was significantly inhibited by Tregs
isolated from healthy pregnant women. However, the suppressive
response was lost if replaced with Tregs from patients with
preeclampsia (180).

The recruitment of Tregs from peripheral blood into decidua
and the local expansion of decidual Tregs are important
for maintaining fetal-maternal immune tolerance at the fetal-
maternal interface. It has been well-established that the
proportion of Tregs in decidua is decreased in preeclampsia
(181). Though the reduction of decidual Tregs may be associated
with an imbalance in systemic Tregs, local expansion may also
play an important role. TCR repertoire analysis of decidual
Tregs showed an insufficient clonal expansion of decidual Tregs
in preeclampsia compared with healthy pregnancy (182). In
normal pregnancy, induced rather than native Tregs are the
dominant Tregs subset located in the decidua and are clonally
expanded, while the expansive and suppressive capacity of
iTregs is significantly impaired in preeclampsia (183). The
local induction of Tregs depends on specific APCs within
the decidual microenvironment. A significant reduction in the
expression of HLA-G and ILT4 on decidual APCs is observed
in preeclampsia compared with normal pregnancy, providing a
possible clue to the lack of iTregs in preeclampsia (183). An
aberrant proportion and type of Tregs in the decidua disturb
the immune homeostasis during pregnancy and promote the
development of preeclampsia.

Tregs and Immune Therapy During
Pregnancy
Taken together, the above studies suggest that Tregs play a
prominent role in regulating fetal-maternal immune tolerance,
and a defect in the proportion and activity of Tregs is involved
in the development of RSA, endometriosis, and preeclampsia.
Thus, approaches designed to boost the proportion of Tregs
or strengthen their suppressive function may lead to promising
strategies for treating pregnancy-related diseases. Several Tregs-
based target therapies are entering into clinical trials, including
adoptive Treg cell therapy, Tregs-enhancing drugs, and low dose
IL-2 administration (184).

Administration of purified Tregs was firstly applied as
Tregs-based target therapy. With the development of immune
cell therapy, antigen-specific Tregs therapy was also proposed
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for treating autoimmune and graft-versus-host diseases. Phase
I/II clinical trials aimed to explore the curative effect, and
some have reported that Tregs administration alleviates clinical
symptoms induced by autoimmunity (184). Some research has
attempted to determine whether Tregs administration improves
pregnancy outcomes. Yin et al. and Wang et al. examined
the effectiveness of adoptive transfer of Tregs in preventing
spontaneous abortion in mice models (136, 185). Yin et al.
established an abortion-prone pregnancy mice model with
DBA/2J-mated pregnant CBA/J mice and performed adoptive
transfer of freshly isolated and in vitro expanded Tregs from
non-pregnant CBA/J mice. Wang et al. induced spontaneous
abortions by administration of IL-17 in a CBA/J × BALB/c
mouse model of normal pregnancy and performed adoptive
transfer of in vitro expanded Tregs purified from pregnant CBA/J
mice. These two studies demonstrated transfusion with in vitro
expanded Tregs promotes immune suppressive activity, increases
the secretion of suppressive cytokines and significantly reduces
the rate of spontaneous abortion.

Although Treg cell therapy has not been widely used in
clinical practice, clinical research has initiated several non-
specific immunotherapies partially regulating the proportion
and activity of Tregs for the treatment of pregnancy-related
diseases. Intravenous immunoglobulin G (IVIG) and paternal
or third-party lymphocyte immunization therapy have been
proposed for the treatment of patients with RSA due to the
potential immunomodulatory effects. Although the benefit for
these immunotherapies is controversial, a growing body of
evidence suggests that they may increase rates of live birth and
decrease rates of miscarriage (186–188). A variety of studies
and clinical trials have reported both IVIG and lymphocyte
immunization therapy correct the Tregs defect and rebalances
the Th17/Treg paradigm in peripheral blood. Compared with
a control group, the treatment triggers a shift toward Tregs in
the Th17/Treg balance by enhancing the expansion of Tregs,
promoting the secretion of suppressive cytokines, and inhibiting
Th17 cells proliferation (186, 188–192).

Tregs-enhancing drugs are another type of Tregs-based target
therapy. Rapamycin (Sirolimus) is an mTOR inhibitor, which
acts as an immunosuppressive drug by selectively promoting
the expansion of Tregs and inducing differentiation of T helper
cells into Tregs. Royster et al. established a murine model
with conditional knockdown of Tregs induced by diphtheria
toxin. They found the deletion of Tregs decreased litter
sizes and triggered embryo implantation failure, effects that
were reversed after the treatment with rapamycin (193). A
multicenter, double-blind, phase II randomized clinical trial
administrated 2 mg/day of sirolimus for 2 days before embryo
transfer to patients receiving IVF-ET therapy and who had a
history of recurrent implantation failure. The study collected
blood samples and assessed the ratio of Th17/Treg cells
by flow cytometry 5–10 days prior to the initiation of an
IVF cycle. Only patients with a high ratio of Th17/Treg
cells were included in this trial. The trial reported that the
administration of sirolimus reversed the imbalance in the ratio

of Th17/Treg cells and significantly increased the rate of clinical
pregnancy and live birth compared with those in the control
group (194).

Taken together, some studies have demonstrated the
effectiveness of Tregs-based therapy in treating several
autoimmune diseases and cases of organ transplantation.
However, the methods cannot be directly applied for
pregnancy-related diseases because the dynamic change in
the immune state during pregnancy and the possibility of
fetal drug toxicity must be taken into account. Most of the
current treatments for pregnancy-related diseases focus on a
reduction in an overactive immune response with the use of
non-specific immunosuppressive therapy. This triggers the
simultaneous activation of numerous immune cells and makes
it difficult to control the dose and to evaluate the curative effect
because of individual heterogeneity. Therefore, more studies
should be conducted to further explore the effectiveness and
safety of Tregs-based target therapies for the treatment of
pregnancy-related diseases.

CONCLUSION AND FUTURE
PERSPECTIVE

Tregs are generally viewed as arising from a specific T cell
lineage generated in the thymus or induced in peripheral
organs. Being the most predominant immune-suppressive cells, a
tremendous amount of research has focused on determining the
molecular mechanisms responsible for inducing the expansion
of Tregs and their activity in the periphery and in specific
organs. This effort will provide new insights that will guide the
improvement of Tregs-based targeted immune therapy. In recent
years, increasing data has shown that the expansion of Tregs
is triggered after exposure to the fetal alloantigens and changes
dynamically over the course of pregnancy. Hormones such as
estradiol and progesterone as well as HCG are significantly
increased during pregnancy, and regulate the number and
function of Tregs to sustain a proper pregnancy-related immune
tolerance. Furthermore, various reproductive diseases such as
recurrent miscarriage, endometriosis and preeclampsia result
in part from the deficiency in the number and activity of
Tregs. Therefore, modulating the immune response by boosting
the number of Tregs and enhancing their activity may be a
potential therapeutic strategy for managing these pregnancy-
related complications.
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