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Polymyxin Resistance in 
Acinetobacter baumannii: Genetic 
Mutations and Transcriptomic 
Changes in Response to Clinically 
Relevant Dosage Regimens
Soon-Ee Cheah1, Matthew D. Johnson1, Yan Zhu1, Brian T. Tsuji2, Alan Forrest2,3, 
Jurgen B. Bulitta1,4, John D. Boyce5, Roger L. Nation1 & Jian Li1

Polymyxins are often last-line therapeutic agents used to treat infections caused by multidrug-resistant 
A. baumannii. Recent reports of polymyxin-resistant A. baumannii highlight the urgent need for 
research into mechanisms of polymyxin resistance. This study employed genomic and transcriptomic 
analyses to investigate the mechanisms of polymyxin resistance in A. baumannii AB307-0294 using an 
in vitro dynamic model to mimic four different clinically relevant dosage regimens of polymyxin B and 
colistin over 96 h. Polymyxin B dosage regimens that achieved peak concentrations above 1 mg/L within 
1 h caused significant bacterial killing (~5 log10CFU/mL), while the gradual accumulation of colistin 
resulted in no bacterial killing. Polymyxin resistance was observed across all dosage regimens; partial 
reversion to susceptibility was observed in 6 of 8 bacterial samples during drug-free passaging. Stable 
polymyxin-resistant samples contained a mutation in pmrB. The transcriptomes of stable and non-
stable polymyxin-resistant samples were not substantially different and featured altered expression of 
genes associated with outer membrane structure and biogenesis. These findings were further supported 
via integrated analysis of previously published transcriptomics data from strain ATCC19606. Our results 
provide a foundation for understanding the mechanisms of polymyxin resistance following exposure to 
polymyxins and the need to explore effective combination therapies.

The antimicrobial resistance crisis has become a significant threat to public health1. Globally, hospital outbreaks 
of infections caused by multi-drug resistant (MDR) Gram-negative pathogens, such as Acinetobacter bauman-
nii, are being increasingly reported2,3. With few novel antibiotics in late-stage clinical development, clinicians 
may soon be left with no options for the treatment of recalcitrant infections caused by these MDR pathogens.  
A. baumannii has emerged as a particularly problematic pathogen, owing to its propensity to acquire resistance to 
most currently available antibiotics4. Polymyxins (i.e. polymyxin B and colistin) are used as a salvage therapy for 
A. baumannii infections where susceptibility testing suggests that carbapenems and aminoglycosides are unlikely 
to be effective5–7. Owing to their clinical introduction in the 1950s and fall from favour a decade or so later, the 
pharmacology of polymyxins has not been as thoroughly investigated as for modern antibiotics, until recently. 
While polymyxins demonstrate in vitro activity against many MDR A. baumannii bacterial isolates3,8,9, reports 

1Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University 
(Parkville campus), 381 Royal Parade, Parkville, Victoria 3052, Australia. 2Laboratory for Antimicrobial 
Pharmacodynamics, Department of Pharmacy Practice, University of Buffalo, Kapoor Hall, Buffalo, NY 14214-
8033, USA. 3Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman 
School of Pharmacy, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill NC 27599, USA. 4Center for 
Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University 
of Florida, 6550 Sanger Road, Orloando FL 32827, USA. 5Biomedicine Discovery Institute and Department of 
Microbiology, School of Biomedical Sciences, Monash University (Clayton campus), Wellington Road, Clayton, 
Victoria 3800, Australia. Correspondence and requests for materials should be addressed to R.L.N. (email: Roger.
Nation@monash.edu) or J.L. (email: Jian.Li@monash.edu)

Received: 16 December 2015

Accepted: 29 April 2016

Published: 19 May 2016

OPEN

mailto:Roger.Nation@monash.edu
mailto:Roger.Nation@monash.edu
mailto:Jian.Li@monash.edu


www.nature.com/scientificreports/

2Scientific RepoRts | 6:26233 | DOI: 10.1038/srep26233

of polymyxin-resistant A. baumannii clinical isolates10 highlight an urgent need to investigate the influence of 
polymyxin dosage regimens on the emergence of resistance.

Polymyxins are cationic amphipathic compounds, containing a cyclic heptapeptide ring joined to a fatty acyl 
tail by a linear tripeptide. The L-2,4-diaminobutyric acid residues give rise to the cationic and hydrophilic nature 
of polymyxins, while the fatty acyl tail and position 6/7 amino acids of the heptapeptide ring contribute to the 
hydrophobicity of the compounds11. The aforementioned physicochemical properties of polymyxins are critical 
for their initial interaction with the negatively charged moieties and hydrophobic regions of lipid A of lipopoly-
saccharide (LPS) within the bacterial outer membrane (OM), leading to its permeabilisation11. While the inter-
action between lipid A and polymyxins is well characterised and essential for their ultimate bactericidal effect11, 
the mechanism of polymyxin killing following perturbation of the OM has yet to be fully elucidated12–16. To date, 
two mechanisms of polymyxin resistance have been identified in A. baumannii: modification of lipid A with 
phosphoethanolamine and/or galactosamine and the complete loss of LPS from the OM17–21. Current literature 
suggests that both mechanisms of resistance abolish polymyxin-induced bacterial killing by preventing the inter-
action of polymyxins with the OM, and are mediated by the pmrCAB operon17,21 (for lipid A modification with 
phosphoethanolamine), naxD20 (for modification with galactosamine) or lpx biosynthetic cluster (for LPS loss)19. 
There is a paucity of knowledge on the emergence and mechanism(s) of resistance in response to the polymyxin 
exposure profiles associated with clinically relevant dosage regimens of colistin and polymyxin B.

The two clinically used polymyxins, colistin and polymyxin B, differ in their administered forms and exhibit 
markedly different clinical pharmacokinetics (PK)5. Colistin is administered parenterally as the sodium salt of 
its inactive pro-drug colistin methanesulphonate (CMS), while polymyxin B is available in the clinic as the sul-
phate salt of its active form. Following administration, CMS is converted slowly to colistin while simultaneously 
undergoing rapid renal elimination, which leads to a delay in the attainment of target colistin concentrations22–24. 
In contrast, the administration of polymyxin B enables target concentrations to be more rapidly achieved25. 
Although colistin and polymyxin B are considered equivalent based upon their antimicrobial activity in vitro26, it 
was hypothesised that differences in their plasma concentration versus time profiles following initiation of ther-
apy with CMS and polymyxin B, respectively, are likely to substantially affect their pharmacodynamic responses 
in patients. The objectives of this study were to investigate the transcriptomic profile and stability of polymyxin 
resistance in A. baumannii when exposed in an in vitro dynamic model to clinically relevant concentration versus 
time profiles of colistin and polymyxin B.

Methods
Bacterial strain and media. A. baumannii strain AB307-0294, a previously characterised polymyxin-sus-
ceptible (MIC: 1.0 mg/L) clinical isolate belonging to international clonal complex I27,28, was investigated in this 
study. Cation-adjusted Mueller-Hinton broth (CAMHB, Oxoid, Ca2+: 20–25 mg/L, Mg2+: 10–15 mg/L) was used 
in both the in vitro dynamic model and subsequent passaging. All bacterial cultures, including starter cultures 
and the in vitro model, were maintained at 37 °C for the duration of the experiment.

In vitro model and passaging in drug-free broth. A starting inoculum of 106 CFU/mL of log-phase bac-
teria cultured from a single colony was introduced into a previously described in vitro one-compartment model 
(IVM). This model allows clinically relevant concentration versus time profiles of an antibiotic to be accurately 
achieved in a central reservoir inoculated with the organism of interest29. A total of 4 concentration-time profiles 
were simulated in the IVM (Fig. 1) with a central reservoir volume of 250 mL. These profiles corresponded to: the 
gradual accumulation of colistin as would be seen at the initiation of CMS therapy with no loading dose22 (regi-
men 1); 1-h polymyxin B infusion every 12 h without a loading dose (regimen 2); as for regimen 2 but with a load-
ing dose to achieve the steady state immediately (regimen 3); and, regimen 2 initiated with an augmented loading 

Figure 1. Concentration-time profiles of simulated clinically relevant polymyxin B (PMB) and colistin 
(COL) dosage regimens. 
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dose to achieve concentrations over the first several hours higher than the eventual steady-state concentrations 
(regimen 4). Each regimen and the growth control were conducted in two replicates. For all regimens, an elimina-
tion half-life of 11.6 h was applied for both colistin and polymyxin B, representative of pharmacokinetic behaviour 
of both polymyxins in critically-ill patients22,23,25,30. For all four regimens an average steady-state concentration of 
3 mg/L was simulated; for regimen 4, the augmented loading dose achieved a peak polymyxin B concentration of 
6 mg/L after this initial dose and subsequently the concentrations declined to achieve the same steady-state profile 
as for the other two polymyxin B regimens (Fig. 1). The elimination half-life and target polymyxin concentrations 
were selected to mimic the disposition of polymyxin B and colistin in critically-ill patients22,25,23. Samples (1 mL) 
were collected from the central reservoir at 0, 1, 8, 23, 28, 47, 52, 71 and 96 h, and numbers of viable bacteria were 
determined by plating onto drug-free agar plates. Population analysis profiles (PAPs) were obtained at 23, 47, 71 
and 96 h by counting viable bacteria after plating cultures on polymyxin B containing agar plates (2, 4 and 8 mg/L 
as sulphate). At the conclusion of the IVM (96 h), polymyxin-resistant bacterial cells were isolated from each of 
the treated reservoirs (n =  8 total) and passaged daily for a further 96 h in drug-free CAMHB. PAPs were obtained 
daily on polymyxin B-containing (1, 2, 4 and 8 mg/L) agar plates.

Genomics and transcriptomics. Genomics samples were collected at the conclusion of passaging in 
drug-free CAMHB (192 h; consisting of 96 h in IVM and 96 h drug-free passaging) and DNA was prepared 
using a QIAamp DNA mini kit (Qiagen, USA) for high-throughput sequencing (150 bp paired-end reads). 
Transcriptomic profiling was performed on cultures recovered from each reservoir (n =  10; including growth 
control) at the conclusion of the IVM (96 h). Cultures collected for transcriptomic profiling (containing ~109 
CFU per sample) were centrifuged at 9000 ×  g (4 °C) for 10 min and resuspended in 1 mL of RNALater (Qiagen, 
USA) for 10 min before a second centrifugation at 5000 ×  g for 10 min, with the pellet stored at − 80 °C prior to 
sequencing. Total RNA was purified from each sample (Qiagen RNeasy; Qiagen, USA), ribosomal RNAs removed 
(Ribo-Zero rRNA removal kit; Illumina, UK) and libraries prepared for RNA sequencing (100 bp single-end 
reads) as previously described31. DNA and RNA sequencing was performed on an Illumina HiSeq (Medical 
Genomics Facility, Monash Health Translation Precinct, Monash University, Victoria, Australia). RNA sequenc-
ing was performed over two Illumina HiSeq lanes, with replicates for each treatment condition analysed on sep-
arate lanes.

Next-generation sequencing data analysis. Illumina HiSeq reads for both genomic and transcriptomic 
analyses were clipped using the Nesoni software package (Victorian Bioinformatics Consortium) before mapping 
to a previously published27 genome for A. baumannii AB307-0294 (Genbank accession: NC_011595) using the 
Short Read Mapping Package (SHRiMP 2.2.3). The average number of reads per sample was ~5 million for the 
genomic analysis, and ~23 million mapped reads per sample for transcriptomics analysis. Single nucleotide poly-
morphisms (SNPs) in the genomic and transcriptomic data were identified with Freebayes32, using the previously 
published genome for A. baumannii AB307-0294 as a reference. Differential gene expression analysis of transcrip-
tomic data was performed in Degust (www.vicbioinformatics.com/degust), a visual interface for the Voom and 
Limma R packages33. Statistical significance of differential gene expression was calculated using the F-statistic, 
jointly considering all treatment groups and adjusted using the Benjamini Hochberg method to control the false 
discovery rate (FDR)34. Differential expression was defined as a log2 fold-change (log2FC) of > 1.0 in any of the 
treatment groups relative to the growth control with a corresponding FDR of < 0.05. Interproscan35 (version 5) 
was used for functional and gene ontology (GO) term annotation of the published A. baumannii AB307-0294 
genome27. Principal component and GO term enrichment analyses (Fisher’s exact test) were performed in R.

Integrated gene expression analysis for comparison of data from closely related strains. In 
addition to the conventional differential gene expression analysis, a sparse partial least squares regression discri-
minant analysis36 (SPLS-DA) model was constructed to identify gene expression patterns that were (1) unique 
to the early stages of polymyxin exposure (≤ 1 h), and (2) shared between early- and late-stage polymyxin expo-
sure (1 and 96 h). Matching of orthologous genes, defined as gene pairs with a p-value of < 10−5 when clustered 
using OrthoMCL37, was used to merge data from the present study with a previously published transcriptomic 
dataset from A. baumannii strain ATCC 19606 sampled 15 and 60 min following colistin, doripenem, or colistin/
doripenem combination treatment31. In total, 16 samples consisting of 5 untreated controls, 6 polymyxin-treated, 
3 doripenem-treated and 2 combination-treated samples were used from the previously published dataset31. A 
variance stabilisation transformation was performed on the combined data in R using the DESeq238 package prior 
to SPLS-DA.

SPLS-DA model validation. The SPLS-DA model was subjected to k-fold (k =  2) validation to select the 
smallest number of genes that optimally described the biological variation within the combined dataset. The com-
bined data from the present study and our previous paper31 were randomly partitioned into two segments (n =  13 
each), with each segment used individually for model construction and the combined dataset used to determine 
the classification error rate (two tests per partitioning). The error rate for each candidate model was calculated 
as the average of 300 trials (600 tests) to account for the stochastic nature of partitioning. Candidate models con-
tained between 10 and 150 genes (10 gene increments; 300 error rate trials per model) and were evaluated by their 
corresponding error rates. Once the smallest number of genes for inclusion had been determined, a second k-fold 
(k =  6; 6 tests per partitioning) validation was performed (50 trials; 300 tests total) to identify the inclusion rate of 
individual genes within models constructed on partitioned data sets.

Results
Characterisation of polymyxin activity and resistance in A. baumannii. Polymyxin B dosage reg-
imens that rapidly attained concentrations > 1 mg/L exhibited more bacterial killing compared to the simulated 

http://www.vicbioinformatics.com/degust
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colistin dosing regimen (Fig. 2A). The development of polymyxin resistance was phenotypically similar across all 
dosage regimens (Fig. 2B). At the conclusion of polymyxin B or colistin treatment (96 h), bacterial cells isolated 
from the treated IVM reservoirs showed only a ~1–2 log10 CFU/mL difference between viable bacterial cells enu-
merated on drug-free and polymyxin-containing plates (8 mg/L), compared to the ~7 log10 CFU/mL difference 
seen in the controls at the same time point. Bacterial cells isolated from the control arms showed little change in 
polymyxin resistance profiles over the course of the IVM.

Drug-free passaging of the bacterial cells isolated from the polymyxin-treated reservoirs revealed the presence 
of stable (n =  2; one each from regimens 2 and 3) and non-stable (n =  6) polymyxin resistance (Fig. 3). There 
was insufficient evidence to strongly link the development of stable polymyxin resistance with total polymyxin 
exposure or dosing intensity. Further, the proportion of resistant bacteria in stable resistant bacterial samples was 
unchanged between the commencement and conclusion of passaging (96 h) (Fig. 3A). In the case of non-stable 
polymyxin resistance, partial reversion to susceptibility was extensive (> 2 log10 CFU/mL) but incomplete over 
96 h of passaging (Fig. 3B), with a ~2–3 log10 CFU/mL increase in viable counts on polymyxin-containing 
(8 mg/L) plates compared to the control.

Genomic analysis of the stable and non-stable polymyxin resistance phenotypes. Interrogation 
of the genomes of the two stable polymyxin-resistant bacterial samples revealed a SNP in pmrB that led to a 
substitution of alanine at position 227 to valine (A227V). The same SNP was also found in the corresponding 
transcriptomic samples collected at the conclusion of polymyxin B or colistin treatment in the IVM, with > 96% 
of reads covering the affected base containing the SNP. In all but one of the bacterial samples with non-stable 
polymyxin resistance, examination of the transcriptome yielded no evidence of the pmrB A227V mutation or any 
other common genomic changes across the samples. However, in the case of one non-stable polymyxin-resistant 
bacterial sample treated with regimen 2, 90% of transcriptomic reads covering the affected base pairs contained 
the pmrB A227V SNP.

Transcriptomic analysis. In bacterial samples collected after polymyxin B or colistin treatment for 96 h 
in the IVM (polymyxin-resistant cultures), 33 genes showed increased expression and 28 showed decreased 
expression relative to the untreated control across the four different regimens (Tables 1 and 2). Substantially 
increased expression (> 2-fold) of AdeA and AdeB (ABBFA_001707 and ABBFA_001708, respectively), members 
of the AdeABC multidrug efflux system, was observed in all polymyxin-treated samples. Similarly, increased 
expression of the genes encoding components of the Lol lipoprotein transport complex (ABBFA_000739 
and ABBFA_000869) and the TolQRA transmembrane complex (ABBFA_000889, ABBFA_000888 and 

Figure 2. Viable counting results (mean ±  SD; n =  2) for A. baumannii AB307-0294 samples grown on (A) 
drug-free agar plates and (B) polymyxin B containing (8 mg/L) agar plates.
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ABBFA_000382) was also evident. GO term enrichment analysis of genes exhibiting over-expression showed 
a statistically significant (FDR <  0.05) over-representation of GO terms GO:0016020 (Cellular component: 
Membrane), GO:0005215 (Molecular function: Transporter activity), and GO:0006810 (Biological process: 
Transport). For the genes showing reduced expression in the presence of polymyxins, a common pattern of gene 
functions was less apparent, and was further confounded by the proportion of genes (12 out of 28 genes) identi-
fied as being hypothetical proteins. However, reduced expression was observed for six transcriptional regulators 
that have yet to be fully characterised in A. baumannii. No GO terms were found to be over-represented in the 
down-regulated gene set. Principal components analysis of transcriptomic profiles obtained at 96 h from the 
IVM revealed a high degree of separation between the control and polymyxin-treated (polymyxin B and colistin) 
samples (Fig. 4). However, a clear relationship between the dosage regimen used and the transcriptomic profile 
observed was not evident.

SPLS-DA of multiple gene expression data sets. The transcriptomic data from published experiments 
in A. baumannii ATCC 1960631 were successfully merged and analysed with data from the current study. The 
validated model contained two components that included 10 and 50 genes, respectively. The early-stage tran-
scriptomic response to polymyxin exposure was described by the first component of the SPLS model (Table 3), 
while commonalities between early- and late-stage responses to polymyxin exposure were characterised by 
the second model component (Table 4). Important predictors of early-stage polymyxin exposure in the SPLS 
model included genes involved in cellular metabolism (ABBFA_002620: Polyphosphate kinase, ABBFA_003493: 
NADPH-dependent FMN reductase family protein, ABBFA_002755: NAD+ synthetase) and protein mis-folding 
(ABBFA_002915: Peptidase C13 family protein). The genes common to early- and late-stage polymyxin exposure 
included seven efflux transporters (Resistance-Nodulation-Division [RND] family efflux transporters and multi-
drug resistance proteins A, B, and Y). Although these data are consistent with outer membrane perturbation, GO 

Figure 3. Population analysis profiles (mean ±  SD; (A) n =  2; (B) n =  6) of polymyxin-treated bacterial samples 
during passaging in drug-free CAMHB, showing stable polymyxin resistance (A) and the partial reversion  
(> 2 Log10 CFU/mL) to polymyxin susceptibility (B). Y-axis values reflect the difference in viable counts 
obtained on drug-free agar plates and polymyxin B containing agar plates at the concentrations indicated.
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term enrichment analysis pointed to a statistically significant over-representation of only GO term GO:0009306 
(Biological process: Protein secretion).

Discussion
Given the worsening antimicrobial resistance crisis, there is an urgent need to further our understanding of the 
emergence of polymyxin resistance in A. baumannii and the association with the polymyxin exposure profile.  
A. baumannii AB307-0294, a multidrug-resistant clinical isolate from a bloodstream infection, has been genomi-
cally characterised27 and represents an ideal model organism for mechanistic studies into polymyxin activity and 
resistance in A. baumannii. The present study indicates that the rapid and extensive bacterial killing associated 
with polymyxins was dependent on rapidly attaining therapeutic concentrations (Fig. 2). Extensive polymyxin 
resistance was a common finding across all dosage regimens and reversion to susceptibility was substantial but 
incomplete during drug-free passaging in non-stable polymyxin-resistant bacterial samples (Fig. 3). Notably, 
there was insufficient evidence in the transcriptomic profiles to identify a clear link between the dosage regimen 
employed and the transcriptomic responses associated with polymyxin resistance. Complex multi-level regula-
tory networks are likely involved in the development of polymyxin resistance and limit the utility of transcrip-
tomics in isolation (i.e. in the absence of metabolomic and proteomic studies) to characterise the mechanisms 
that give rise to non-stable polymyxin resistance. Further, the clinical implications of these findings will require 
additional investigations using in vivo infection models and clinical studies that adequately account for the role of 

Locus Tag Published Annotation

Annotation by Similarity 
Searching (Hypothetical 

Proteins)

Dosage Regimen (log2 Fold-Change)

Colistin 
(R1)

PMB No 
Loading 

Dose (R2)

PMB with 
Loading 

Dose (R3)

PMB with 
Augmented 

Loading Dose 
(R4) FDR

ABBFA_000201 Succinate semialdehyde dehydrogenase – 1.64 1.20 0.73 1.37 0.050

ABBFA_000261 Hypothetical protein Signal peptide 3.48 2.05 2.11 3.62 0.036

ABBFA_000382 Protein TolA – 3.43 1.21 1.92 2.71 0.044

ABBFA_000413 Hypothetical protein Toluene tolerance protein Ttg2E 2.15 0.79 1.11 1.56 0.049

ABBFA_000570 TonB dependent receptor family protein – 1.69 1.16 0.64 0.88 0.044

ABBFA_000739 Outer membrane lipocarrier protein LolA – 3.43 1.18 2.01 2.74 0.044

ABBFA_000816 Multidrug resistance protein mexB – 1.64 0.48 0.76 1.18 0.044

ABBFA_000869 Lipoprotein-releasing system transmembrane 
protein lolE – 1.78 0.62 0.80 1.46 0.037

ABBFA_000870 Lipoprotein releasing system, ATP-binding 
protein – 1.83 0.82 0.80 1.41 0.036

ABBFA_000885 Peptidoglycan-associated lipoprotein – 1.25 1.00 0.65 1.08 0.050

ABBFA_000888 Protein TolR - 1.29 0.52 0.63 1.08 0.044

ABBFA_000889 Protein TolQ – 1.12 0.21 0.41 0.91 0.050

ABBFA_000904 Hypothetical protein No matches 1.76 1.06 0.82 1.42 0.044

ABBFA_001022 Hypothetical protein Putative signal peptide 2.07 0.97 1.17 1.72 0.050

ABBFA_001302 Biofilm PGA synthesis protein pgaA precursor – 2.58 0.93 1.65 2.11 0.044

ABBFA_001303 Biofilm PGA synthesis lipoprotein pgaB 
precursor – 2.43 1.01 1.40 1.95 0.044

ABBFA_001304 IcaA – 2.25 1.11 1.30 1.85 0.044

ABBFA_001629 HTH-type transcriptional repressor Bm3R1 – 1.30 0.58 0.38 1.22 0.044

ABBFA_001662 HlyD family secretion family protein – 1.23 1.19 0.58 0.93 0.050

ABBFA_001663 Multidrug resistance protein Y – 1.84 1.84 1.17 1.52 0.037

ABBFA_001707 Acriflavine resistance protein E precursor – 3.26 3.42 2.07 3.26 0.028

ABBFA_001708 AcrB protein – 2.59 2.59 1.36 2.45 0.036

ABBFA_001709 Outer membrane protein oprM precursor – 1.51 1.63 0.62 1.29 0.050

ABBFA_001779 UTRA domain protein – 0.01 1.33 1.09 0.41 0.050

ABBFA_002407 Hypothetical protein Putative signal peptide 1.62 1.54 1.00 1.62 0.036

ABBFA_002498 Putative phospholipid-binding domain protein – 1.46 0.57 0.79 1.36 0.050

ABBFA_002880 Hypothetical protein No matches 0.75 1.64 1.15 0.61 0.050

ABBFA_003020 Outer membrane protein oprM precursor – 2.51 1.46 1.11 1.78 0.036

ABBFA_003050 phosphogluconate dehydratase – 1.45 0.88 0.61 1.29 0.050

ABBFA_003147 50S ribosomal protein L31 type B – 2.07 1.71 1.20 1.39 0.037

ABBFA_003406 AMP-binding enzyme family protein – 1.59 0.89 0.87 1.88 0.050

ABBFA_003500 Hypothetical protein Lipoprotein 3.28 0.64 2.07 2.69 0.050

ABBFA_003501 Hypothetical protein Lipoprotein 2.93 1.35 1.94 3.22 0.037

Table 1.  Genes up-regulated in A. baumannii AB307-0294 following polymyxin treatment for 96 h in the 
IVM.
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Locus Tag Published Annotation
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Searching (Hypothetical 
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Dosage Regimen (log2 Fold-Change)

Colistin 
(R1)

PMB No 
Loading 

Dose (R2)

PMB with 
Loading 

Dose (R3)

PMB with 
Augmented 

Loading Dose 
(R4) FDR

ABBFA_000133 Hypothetical protein Ribosomal subunit interface 
protein − 1.05 − 1.84 − 1.38 − 1.87 0.044

ABBFA_000218 Hypothetical protein No matches − 1.47 − 1.99 − 1.48 − 1.28 0.036

ABBFA_000426 Rrf2 family protein (transcriptional regulator) family 
protein – − 1.70 − 2.32 − 1.45 − 1.81 0.045

ABBFA_000555 Virulence sensor protein bvgS precursor – − 1.60 − 1.51 − 1.36 − 1.80 0.037

ABBFA_000602 Hemolysin-3 – − 1.56 − 2.07 − 1.15 − 1.73 0.038

ABBFA_000699 PaaX-like family protein – − 1.14 − 1.82 − 1.06 − 1.28 0.044

ABBFA_000748 Hypothetical protein No matches − 1.04 − 1.29 − 1.19 − 1.56 0.044

ABBFA_000934 Hypothetical protein No matches − 1.14 − 1.91 − 1.17 − 1.02 0.038

ABBFA_000972 HTH-type transcriptional regulator gltR – − 2.04 − 2.22 − 1.36 − 1.89 0.050

ABBFA_000981 CRISPR-associated protein Cas1 – − 1.90 − 2.65 − 1.07 − 1.27 0.047

ABBFA_000982 CRISPR-associated helicase Cas3 – − 1.53 − 2.07 − 1.12 − 1.28 0.036

ABBFA_000983 Hypothetical protein CRISPR-associated protein, 
Csy1 family − 1.12 − 1.52 − 0.96 − 1.09 0.050

ABBFA_001178 Hypothetical protein Sulphur transfer protein SirA − 1.32 − 1.32 − 0.67 − 1.51 0.044

ABBFA_001409 Benzoate membrane transport protein – − 0.94 − 1.77 − 1.12 − 1.44 0.050

ABBFA_001469 Nitrogen regulation protein ntrB – − 0.80 − 1.29 − 0.76 − 1.24 0.038

ABBFA_001575 Hypothetical protein Transporter component − 1.58 − 1.32 − 1.47 − 1.55 0.039

ABBFA_001576 Hypothetical protein Transporter component − 1.53 − 1.44 − 1.52 − 1.69 0.047

ABBFA_001979 Hypothetical protein No matches − 0.42 − 0.99 − 0.80 − 1.30 0.045

ABBFA_002011 Tautomerase enzyme family protein – − 0.81 − 1.70 − 0.92 − 1.21 0.037

ABBFA_002314 Hypothetical protein Lipoprotein − 1.08 − 1.23 − 1.01 − 1.11 0.050

ABBFA_002503 Arginine exporter protein argO – − 0.73 − 1.54 − 0.71 − 1.01 0.044

ABBFA_002926 Hypothetical protein Protein FilA − 0.88 − 1.14 − 0.86 − 1.14 0.050

ABBFA_003141 Oxygen-independent coproporphyrinogen III oxidase-
like protein yggW – − 0.89 − 1.02 − 0.90 − 1.16 0.044

ABBFA_003359 Hypothetical protein TetR/AcrR family 
transcriptional regulator − 1.90 − 2.19 − 1.35 − 1.77 0.044

ABBFA_003360 Transcription regulatory protein opdE – − 2.62 − 2.41 − 1.73 − 2.40 0.050

ABBFA_003361 AraC family transcriptional regulator – − 2.35 − 2.42 − 1.50 − 2.18 0.036

ABBFA_003470 Linoleoyl-CoA desaturase (Delta(6)-desaturase) – − 3.91 − 3.67 − 2.08 − 3.84 0.037

ABBFA_003471 Flavohemo (Hemoglobin-like protein) – − 4.32 − 3.92 − 2.30 − 3.98 0.044

Table 2.  Genes down-regulated in A. baumannii AB307-0294 following polymyxin treatment for 96 h in 
the IVM.

Figure 4. Principal components plots constructed from the transcriptomes of bacterial samples collected 
at the conclusion of the IVM. Arrows point to the samples exhibiting stable polymyxin resistance.
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immune response in infection39,40. The in vitro data in the present study highlight the possible limitations of pol-
ymyxin monotherapy and the need for other strategies (e.g. combination therapy) for preventing the widespread 
emergence of polymyxin resistance41.

In the present study, stable polymyxin resistance was caused by a previously documented pmrB A227V muta-
tion42, which is hypothesized to constitutively up-regulate pmrCAB operon expression17,21. The notable loss of 
polymyxin resistance during drug-free passaging in a sample found to contain the same pmrB A227V muta-
tion implicates a fitness cost associated with the mutation. This is supported by previously published studies in 
pmrB A227V mutants of A. baumannii strain ATCC 19606, which discovered that the mutant displayed a slower 
growth rate compared to wild-type strains42. However, the development of non-stable resistance highlights that 
genetic mutations are unlikely to be the sole driver of polymyxin resistance. Our findings that the transcriptomic 
profiles of bacteria exhibiting stable and non-stable polymyxin resistance were highly similar indicate that the 
stable and non-stable resistance may share a common mechanism involving pmrB-mediated modification of 
lipid A. This finding is striking in light of the conspicuous absence of the PhoPQ – PmrD signal transduction 
pathway in A. baumannii strains AB307-0294 and ATCC 19606. In other Gram-negative organisms, the PhoPQ 
two-component system is known to sense the presence of polymyxins and interfaces with PmrB via PmrD43. To 
date, an orthologous polymyxin sensing mechanism in A. baumannii has not been identified; there remains a 
pressing need to understand the role of polymyxin sensing and non-stable polymyxin resistance in determining 
the pharmacodynamics of polymyxin treatment in critically-ill patients.

While this study was limited to the examination of the transcriptome of A. baumannii strain AB307-0294, 
transcriptomic data from this study was successfully combined with previously published data characterising 
the early-stage responses to polymyxin exposure in A. baumannii ATCC 1960631. The combination of ort-
hologous protein matching with SPLS-DA analysis enabled the integrated analysis of gene expression data 
between closely-related bacterial strains. SPLS-DA is a methodology developed to improve the analysis of 
high-dimensional omics datasets, combining multivariate statistics, dimension-reduction and feature selection36. 
This novel framework maximises the information gained from transcriptomics experiments by incorporating 
prior transcriptomic data. In this study, the fitted SPLS-DA model implicated the involvement of polyphosphate 
kinase (PPK; ABBFA002620) in the bacterial response to polymyxin exposure, a finding supported by studies 
in Salmonella that reported increased polymyxin susceptibility in Δ PPK mutants44. From these results, it can 
be hypothesised that the accumulation of inorganic polyphosphates is critical to the initial response to poly-
myxin exposure. Collectively, the altered expression of genes involved in cellular metabolism (ABBFA_003493: 
NADPH-dependent FMN reductase family protein, ABBFA_002755: NAD(+ ) synthetase) and PPK suggests 
that in the early stages of polymyxin exposure, the intracellular redox reactions are either directly disrupted by 
polymyxins or essential to the initial stress response following the exposure. Evidence of these disruptions has 
also been found in the metabolomes of colistin-treated A. baumannii45. Confirmation of the importance of these 
metabolic pathways on polymyxin activity and resistance using molecular techniques across a broader collection 
of A. baumannii strains will be crucial for identifying potential targets for novel antimicrobial agents.

GO term enrichment analysis, SPLS-DA, and a conventional analysis of gene expression showed remodelling 
of the OM to be a key aspect of polymyxin resistance; transcriptomic profiles obtained from A. baumannii strains 
AB307-0294 and ATCC19606 contained evidence of compensatory adaptations associated with OM remodelling. 
Increased expression of (RND) efflux transporter proteins (AdeABC and HlyD family) was a common finding 
across all analysis methodologies and stages of polymyxin exposure. This up-regulation of efflux transporters, 
observed in concert with over-expression of protein complexes involved in membrane homeostasis, supports 
previously published findings31 that point to the diminished integrity and barrier function of the remodelled OM 
in polymyxin-treated A. baumannii. Polymyxins have been shown to exhibit synergistic activity in combination 
with other antibiotics such as carbapenems and chloramphenicol46–48, and understanding polymyxin-induced 

A. baumannii locus tags Frequency of inclusion 
in SPLS-DA model Annotated Product

log2-Fold Change vs Control

AB307-0294 ATCC 19606 Early-Stage Late-Stage FDR

ABBFA_002620 HMPREF0010_01526 63.7% Polyphosphate kinase − 1.10 0.80 1.79E-09

ABBFA_003493 HMPREF0010_03371 57.3% NADPH-dependent FMN 
reductase family protein 1.67 − 0.40 1.90E-10

ABBFA_000791 HMPREF0010_02052 56.0% FtsJ-like methyltransferase 
family protein 0.68 − 0.33 1.68E-08

ABBFA_003446 HMPREF0010_03271 50.0% Phosphomannomutase (PMM) 1.65 − 0.31 3.70E-11

ABBFA_002750 HMPREF0010_01358 42.7% Hypothetical protein 1.13 − 0.59 4.00E-10

ABBFA_002755 HMPREF0010_01353 42.7% Probable glutamine-dependent 
NAD(+ ) synthetase 1.00 − 0.13 9.09E-10

ABBFA_002915 HMPREF0010_01204 33.7% Peptidase C13 family protein 0.74 − 0.28 1.79E-08

ABBFA_003004 HMPREF0010_01698 32.3% Hypothetical protein 1.12 − 0.12 1.14E-09

ABBFA_002591 HMPREF0010_01555 32.3% Protein hupE precursor − 0.52 0.83 1.16E-08

ABBFA_000299 HMPREF0010_02497 30.7% Cobalt-zinc-cadmium resistance 
protein czcD 0.62 − 0.44 1.97E-07

Table 3.  Genes and their inclusion frequencies (10 most frequently included shown; 300 trials) in 
component 1 of the SPLS-DA model and corresponding expression levels. Component 1 of the SPLS-DA 
model described gene expression profiles unique to early-stage polymyxin exposure.
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OM remodelling will facilitate the development of rational antibiotic combination regimens that maximise bac-
terial killing and minimise the emergence of resistance.

Conclusions
To our knowledge, this is the first study to investigate both the genomic and transcriptomic profiles of polymyxin 
resistance in A. baumannii following exposure to clinically relevant dosage regimens over an extended period. 
Unlike previous investigations into polymyxin resistance in Gram-negative organisms which focused on bacterial 
isolates that exhibit stable resistance, the present study reveals that both stable and non-stable polymyxin-resistant 
phenotypes are selected during treatment. Further, a framework for the integrative analysis of prior transcrip-
tomic data from closely related bacterial strains revealed new insights into responses to polymyxins in A. bau-
mannii. It remains to be elucidated the extent to which non-stable polymyxin resistance affects clinical outcomes. 
Our findings provide a foundation for understanding the mechanistic drivers of polymyxin resistance during 
polymyxin exposure resulting from clinically relevant dosage regimens, and highlight the importance of explor-
ing optimised combination therapy in addressing the antimicrobial resistance crisis.
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