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Abstract

Background

Exacerbations of chronic obstructive pulmonary disease (COPD) are acute events of wors-

ened respiratory symptoms that may increase the risk of cardiovascular disease (CVD), a

leading cause of mortality amongst COPD patients. The utility of lung-specific inflammatory

mediators such as club cell protein-16 (CC-16) and surfactant protein D (SPD) and that of a

novel marker of CV outcomes in COPD- RelB- in predicting adverse cardiovascular events

during exacerbation is not known.

Methods

Thirty-eight subjects with COPD admitted to the hospital for severe exacerbation were

included in this analysis. Clinical, physiological and arterial stiffness measurements were

performed within 72 hours of admission; this was followed by measurements taken every 3

days until hospital discharge, then once a week until 30 days after discharge, and then

again at 90 and 180 days. Plasma concentrations of inflammatory mediators were mea-

sured from peripheral venous blood taken at admission, and at days 15, 30, 90 and 180.

Results

CC-16 and RelB concentrations were increased at day 15 of exacerbations whereas SPD

concentrations were decreased. The course of change in CC-16 and RelB levels over time

was inversely associated with that of carotid-femoral pulse wave velocity, the gold-standard

measure of arterial stiffness. Increases in CC-16 could predict a decreased number of sub-

sequent exacerbations during follow-up.

Conclusions

Lung-specific (CC-16) and novel (RelB) biomarkers are associated with systemic cardio-

vascular changes over time. CC-16 can predict subsequent exacerbations in subjects with
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severe COPD and may be an important biomarker of pulmonary and systemic stress in

COPD.

Introduction
Chronic obstructive pulmonary disease (COPD) is a deadly and prevalent lung disease charac-
terized by neutrophilic inflammation, irreversible airflow obstruction and episodes of worsen-
ing respiratory symptoms known as exacerbations [1]. Acute exacerbations of COPD are a
significant cause of morbidity and mortality [2, 3], contribute substantially to the health care
burden for COPD and can accelerate the loss of lung function. Exacerbations are also associ-
ated with increased risk of acute cardiovascular (CV) events [4, 5]. Given that cardiovascular
disease (CVD) is the second most frequent cause of death in COPD [6, 7], it is imperative to
identify biomarkers predictive of increased CV risk in COPD, and in particular, in identifying
lung-related biomarkers [8–10] that can predict health outcomes associated with extra-pulmo-
nary consequences of COPD exacerbations.

Exacerbations are associated with acute increases in inflammation in excess of the chronic
inflammation that typifies COPD itself, and include significant increases in inflammatory cells
as well as mediators. Pulmonary-derived inflammatory mediators that have attracted attention
in COPD are club cell protein (CC)-16 and surfactant protein-D (SPD) [10–15]. CC-16 is
secreted primarily by non-ciliated bronchiolar club cells [11], with circulating levels largely
reflecting protein that is produced in the lungs [16]. CC-16 is thought to play a role in mediat-
ing inflammation within the airways [17, 18]. In the ECLIPSE (Evaluation of COPD Longitudi-
nally to Identify Predictive Surrogate Endpoints) study, serum CC-16 levels were stable over
time and positively associated with lung function over 3 years [19], a finding further corrobo-
rated by Park et al. [11] using the Lung Health Study cohort. SPD is produced primarily by
type II pneumocytes [20], and is thought to play a role in innate immunity and regulation of
surfactant homeostasis in the lung [20, 21]. Circulating SPD levels are inversely associated with
lung function in COPD in addition to predicting risk of exacerbation [22, 23]. As the airways
become more permeable due to injury, these lung-specific mediators can escape and be
detected in the peripheral circulation [24]. Despite their clinical promise, little is known about
the course of change in circulating CC-16 and SPD during exacerbations in subjects with severe
COPD. Moreover, there is limited evidence about whether these are predictive of other relevant
outcomes in COPD, particularly those that are CV-related. In addition to lung-derived bio-
markers, another potential indicator of CV outcomes during COPD exacerbations is the
nuclear factor-κB (NF-κB) protein, V-rel avian reticuloendotheliosis viral oncogene homolog
B (RelB). RelB is an anti-inflammatory component of the NF-κB family that suppresses ciga-
rette smoke-induced inflammation in vitro and in vivo [25–27]. We have shown that during
COPD exacerbations, there is increased peripheral RelB mRNA expression, and this change in
expression was inversely associated with and predictive of systolic blood pressure in COPD
[28]. While there is some experimental evidence that RelB modulates aspects of CV function
[29–31], no information currently exists on RelB in the context of CVD during COPD
exacerbations.

We hypothesized that systemic alterations in CC-16, SPD and RelB would be associated
with increased carotid femoral-pulse wave velocity (cf-PWV), the gold standard measure of
central artery stiffness and powerful predictor of CV risk, and that this risk would increase
with escalating exacerbation frequency. Our data support that lung-specific and novel inflam-
matory mediator expression may be reflective of a relationship between CV risk and COPD.
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Materials and Methods

Study Subjects
Subjects with a confirmed diagnosis of COPD and a known history of CVD or CV risk factors
were recruited upon admission to the Montreal Chest Institute for COPD exacerbation
between August 2012–2013. Subjects were assessed within 48 ± 24 hours of hospital admission,
and then every 72 ± 24 hours following this until discharged. Subjects were then assessed (see
Measurements below) once a week up to 30 days, and then at days 90 and 180. Exclusion crite-
ria included: 1) acute medical conditions other than COPD exacerbations (cancer, ischemic
heart event, etc.); or 2) unwillingness/inability to provide informed consent. Subjects were con-
sidered to be “ever smokers” if they had smoked cigarettes at some point in their lives. Smoking
pack-years were determined by calculating the average number of cigarettes smoked per day
per year of smoking.

Measurements
Subjects were assessed for post-bronchodilator spirometry, venous blood sample collection and
arterial stiffness/pressure, within 48 ± 24 hours of hospital admission and then every 72 ± 24
hours until discharge. Subjects were then assessed once a week up to 30 days since initial assess-
ment, and then at days 90 and 180 from initial assessment. Ethics approval was obtained from
the McGill University Faculty of Medicine Institutional Review Board (A04-M20-12B). All
participants provided written informed consent.

Arterial stiffness measurement by cf-PWV
Increased central artery stiffness independently predicts risk of CV events and all-cause mor-
tality [32–34]. Carotid-femoral pulse wave velocity (cf-PWV), considered the gold standard
measure of arterial stiffness, is safe and non-invasive [35, 36], and independently predicts CV
risk and mortality [32, 34, 37]. Arterial stiffness, assessed by cf-PWV, was measured in dupli-
cate at rest using the SphygmoCor system (AtCor Medical, Sydney, Australia). Prior to mea-
surements, subjects rested for at least 10 minutes in a supine position and refrained from
speaking. Cf-PWV was determined using arterial waveforms measured using a hand-held
tonometer (SPC-301; Millar Instruments, Houston, TX, USA) applied to the surface of the skin
overlying the carotid and femoral arteries and gated using a 3-lead electrocardiogram. By mea-
suring the distance between the two recording sites (carotid and femoral arteries), PWV was
calculated [PWV = distance (m)/transit time (s)] [38].

Inflammatory mediator analyses
Peripheral venous blood samples were collected from study participants at the first assessment
time point, and then at days 15, 30, 90 and 180. Samples were immediately centrifuged for
plasma isolation, which was then aliquoted and stored at -80°C until biomarker analysis. Con-
centrations of circulating CC-16 and SPD (BioVendor Laboratory Medicine, Modrice, Czech
Republic) and RelB (MyBioSource Inc., San Diego, CA) were measured in triplicate using com-
mercially available enzyme-linked immunosorbent assay kits according to the manufacturer’s
instructions.

Statistical Analysis
Analyses were performed using SAS version 9.3 (SAS Institute. Inc., Cary, North Carolina). To
decrease inter-subject variation, values are presented as absolute changes (1ng/ml for inflamma-
tory mediators or 1m/s for cf-PWV) from initial assessment; if initial values were not obtained,
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measurements collected at the next available time point were used to anchor absolute change cal-
culations. For mean comparisons, two-tailed T-tests (normal distribution) or Wilcoxon signed-
rank tests (non-normal distribution) were used; Chi-squared tests were used for dichotomous
variables. A p-value of 0.05 or less was deemed statistically significant. Mixed-effects linear mod-
els were used to estimate the association between increases in the absolute change in circulating
inflammatory mediator concentrations and cf-PWV or the number of exacerbations over time.
The model included random intercepts to capture individual-specific change in levels and a spa-
tial power correlation structure [spl (pow)] to account for varied time intervals between repeated
measurements, adjusted for age, sex, and FEV1 (% predicted). The relative risk of exacerbations
during follow up based on increases in the absolute change in inflammatory mediator concentra-
tions over time were estimated using Poisson regression models.

Results

Clinical characteristics of subjects at exacerbation
Table 1 shows the baseline characteristics and clinical measurements of subjects during hospi-
tal admission for acute COPD exacerbation. A total of 38 subjects were assessed with a mean

Table 1. Characteristics and clinical measurements at initial assessment during exacerbation in sub-
jects with COPD (n = 38).

Characteristics

Age, mean (± SD), years 71.7 (8.23)

Men (%) 55.3

Smoking status (%)

Former 81.6

Current 18.4

Smoking pack-years, mean (± SD) 55.6 (31.9)

Use of long-term oxygen therapy (%) 23.7

Mean number of exacerbations reported in previous year 2.55

Clinical measurements

FEV1% predicted, mean (± SD) 34.0 (14.9)

FEV1 mean (± SD), (L) 0.777 (0.320)

FEV1/FVC, mean (± SD) 0.484 (0.142)

Body mass index, mean (± SD), kg/m2 25.7 (5.47)

Systolic blood pressure, mean (± SD), mmHg 125.9 (17.1)

Diastolic blood pressure, mean (± SD), mmHg 65.6 (12.4)

Carotid-femoral pulse wave velocity, mean (± SD), m/s 11.6 (2.68)

CVD/CV risk factor, %

Hypertension 47

Angina 16

High cholesterol 13

Coronary artery disease 11

Others 61

Inflammatory mediator concentrations

CC-16, mean (± SD), ng/mL 7.29 (4.33)

SPD, mean (± SD), ng/mL 234.69 (166.24)

RelB, mean (± SD), ng/mL 1.87 (1.52)

SD: standard deviation, FEV1: forced expiratory volume in 1 second, FVC: forced vital capacity, CC-16:

club cell-16, SPD: surfactant protein D, RelB: V-rel avian reticuloendotheliosis viral oncogene homolog B.

doi:10.1371/journal.pone.0149974.t001

CC-16 and RelB in COPD

PLOSONE | DOI:10.1371/journal.pone.0149974 February 25, 2016 4 / 13



age of 71.7 years (range was 55–88 years); slightly more than half of the subjects were male.
Subjects had severe airflow obstruction and an extensive smoking history, with all of them
being ever-smokers.

Absolute changes in inflammatory mediator concentrations over time
Table 1 also shows the mean concentrations of CC-16, SPD and RelB at first assessment, which
was during the hospitalization phase. The absolute course of change in the concentration of the
3 inflammatory mediators over time compared to those measured during the initial assessment
is shown in Fig 1. At day 15, concentrations of CC-16 (Fig 1A) and RelB (Fig 1C; S1 Fig) were
increased compared to the initial levels, whereas the levels of SPD (Fig 1B) were decreased. By
day 30, both CC-16 and RelB were decreased compared to their initial levels but the level of
SPD was increased. The directions of the absolute change in inflammatory mediators varied at
the day 90 and 180 time points; all values were different from those at initial assessments as
shown in Fig 1. As the course of change in CC-16 was similar to that of RelB during exacerba-
tion, we assessed the relationship between them over time. A 1-unit (1 ng/mL) increase in RelB
did not produce a significant change in either CC-16 or SPD (β = -0.027, 95% confidence inter-
val (CI) -0.143 to 0.088, p = 0.64; and β = -5.967, 95% CI -13.617 to 1.683, p = 0.125,
respectively).

Associations between increased inflammatory mediator concentrations
and changes in cf-PWV over time
Fig 2 shows the mean course of change in cf-PWV over time. After initial assessment, cf-PWV
appeared to have acutely increased at day 3 during exacerbation, and then gradually declined
up to day 30. Between days 3 and 30, cf-PWVmeasurements remained lower than that mea-
sured at initial assessment. At day 90, there seemed to be a slight elevation in cf-PWVmeasure-
ments, while cf-PWV appears to have declined at day 180. Fig 3 shows the relationships
between the absolute course of change in inflammatory mediators and cf-PWVWe found sta-
tistically significant inverse associations between increases in the absolute course of change in
CC-16 concentrations and the absolute course of change in cf-PWV over time (Fig 3A) as well
as between increases in the absolute course of change in RelB concentrations and the absolute
course of change in cf-PWV over time (Fig 3C). There was a trend for an inverse association
between SPD and cf-PWV over time (Fig 3B). Using multivariable analysis that included all 3
mediators, we found that increases in the absolute concentration of CC-16 and RelB resulted in
similar decreases in cf-PWV independent of changes in systolic blood pressure over time (β =
-0.320, 95% CI-0.569 to -0.071, p = 0.013; and β = -0.363, 95% CI -0.514 to -0.212, p<0.001,
respectively), while that of SPD remained non-significant.

Increased inflammatory mediator concentrations over time and
subsequent exacerbations
Twenty-eight subjects experienced one or more exacerbation during 6 months of follow-up.
Table 2 shows the relative risks between increases in the absolute change in inflammatory
mediator concentrations over time and subsequent exacerbations. We found that increased
CC-16 (by 1 ng/ml) was associated with a 16% reduction in subsequent COPD exacerbations
in the next 180 days. There were no significant associations between increases in SPD or RelB
concentrations and subsequent exacerbations over time.

CC-16 and RelB in COPD
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Discussion
In this study, we show novel evidence that CC-16 may be a potential biomarker that links pul-
monary inflammation to arterial stiffness, a composite measure of vascular health in COPD.
Additionally, we provide further evidence to support that RelB may mediate vascular outcomes
in COPD. However, we did not find any associations between these outcomes and SPD. Find-
ing biomarkers of patient-relevant outcomes is an emerging goal of COPD research, with lung-
specific proteins being recognized as one of the most useful strategies in terms of identifying
either disease-specific or disease activity-specific markers for COPD (8). Despite the significant
impact that CV comorbidity has on COPD, there have been no studies relating lung-specific
inflammatory mediators to CV outcomes or CV risk in patients with COPD.

Fig 1. Mean absolute change in inflammatory mediators (ng/mL) (± standard error of the mean) over time. Panel A shows the course of change in CC-
16 over time compared to CC- 16 concentrations measured at initial assessment, panel B shows the course of change in SPD over time compared to SPD
concentrations measured at initial assessment, and panel C shows the course of change in RelB over time compared to RelB concentrations measured at
initial assessment. At day 15, concentrations of CC-16 and RelB were elevated compared to initial concentrations, whereas SPD concentrations were
decreased. By day 30, both CC-16 and RelB were lower than initial levels but the level of SPD was increased. The directions of the absolute change in
inflammatory mediators varied at the day 90 and 180 time points; all values were different from those at initial assessments.

doi:10.1371/journal.pone.0149974.g001
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To date, specific lung-derived mediators, i.e., CC-16 and SPD have been identified as poten-
tial biomarkers in COPD [11, 12, 22, 23]. Of these, CC-16 has emerged as a possible mediator
of lung function in COPD, where reduced CC-16 levels are associated with accelerated decline
in lung function over time as well as COPD progression [11, 12]. CC-16 has also been
described in other respiratory conditions, whereby decreased circulating levels are associated
with obliterative bronchiolitis [39], asthma [40] and smoking [41]. The ECLIPSE data have
shown that repeated measures of CC-16 are stable over time [23], and a recent randomized
clinical trial showed that CC-16 levels can be modulated via treatment with salmeterol/flutica-
sone [42]. As a result, CC-16 represents an attractive biomarker reflective of disease outcomes
in COPD. In our study, we report for the first time a relationship between CC-16 and CV func-
tion in COPD patients, where increased circulating CC-16 is associated with decreased arterial
stiffness. While our study did not allow us to examine the mechanisms responsible for this, we
hypothesize that it may involve the ability of CC-16 to inhibit phospholipase A2 (42). Phos-
pholipase A2 can modify low-density lipoproteins, leading to increased uptake by macro-
phages, a feature in pre-atherosclerotic arterial wall that may lead to low-density lipoprotein
modification, foam cell formation and inflammation to promote atherogenesis [43]. It is also
possible that CC-16 may act directly on the vascular endothelium or regulate other down-
stream effectors that lead to increased stiffening of the vessel walls, a notion that has yet to be
explored.

We also found that increases in CC-16 could predict lower risk of subsequent exacerbations
during follow-up, a finding not observed in the ECLIPSE study [12]. This discrepancy may be

Fig 2. Absolute course of change in cf-PWV (m/s) (± standard error of the mean) over time.Mean absolute change in cf-PWV (m/s) over time relative to
initial cf-PWVmeasurement taken within 48 ± 24 hours of hospital admission as assessed using applanation tonometry. Cf-PWV increased acutely at day 3
after initial assessment, and declined thereafter, remaining lower than at initial assessment until day 30. At day 90, there was a slight increase in cf-PWV
compared to day 30, but at day 180, cf-PWV returned to the levels measured at day 30.

doi:10.1371/journal.pone.0149974.g002
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due to inherent differences between the populations studied. Our sample of subjects consisted
of severely ill patients with advanced disease (GOLD stages 3–4) that have an elevated CV risk
and likely reflect the frequent-exacerbator phenotype of COPD patients [44]. Furthermore, the
ECLIPSE population included subjects with moderate airflow obstruction who were not all fre-
quent-exacerbators nor were they at elevated CV risk. Patel et al. [4], recently found that
increased exacerbation frequency is associated with elevated cf-PWV. Thus, taken together, we
hypothesize that decreased CC-16 may reflect increased exacerbation frequency, which in turn,
could lead to increased arterial stiffness and increased CV susceptibility. Although there was
considerable inter-subject variability in cf-PWV (Fig 2), there was by 3 days post-baseline
assessment an acute rise in cf-PWV across all patients. This supports observations by

Fig 3. Relationship between the absolute course of change in inflammatory mediator concentrations (ng/mL) over time to that of changes in cf-
PWV (m/s). Panel A shows the relationship between the absolute change in CC-16 and cf-PWV over time, panel B shows the relationship between the
absolute change in SPD and cf-PWV over time, and panel C shows the relationship between the absolute change in RelB and cf-PWV over time. There was
a strong statistically significant negative relationship between the absolute change in CC-16 and cf-PWV as measured over time, as well as between RelB
and cf-PWV (p<0.05). There appeared to be a negative relationship between the absolute change in SPD and cf-PWV over time, although this was not found
to be statistically significant. Mixed-effects linear models adjusted for age, sex, forced expiratory volume in 1 second % predicted and days since initial
exacerbation were used to estimate these relationships. β values show the resulting change in cf- PWV in m/s with a 1-unit (ng/mL) increase in an
inflammatory mediator.

doi:10.1371/journal.pone.0149974.g003
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Donaldson and colleagues [5] that COPD exacerbation is associated with a significant increase
risk of myocardial infarction within the 5-day period following an exacerbation. Thus, our data
present an interesting and highly clinically-relevant mechanism. While further research is
needed to understand the role of CC-16 in COPD, our study provides interesting and novel
data on CC-16 in COPD exacerbation and CV risk.

The importance of RelB, either in relation to the lung or to obstructive airway diseases such
as COPD is only just starting to become recognized [27, 28, 31, 45]. RelB, a member of the NF-
κB family, has been identified as an effective suppressor of cigarette smoke-induced inflamma-
tion. RelB is constitutively expressed in human lymphocytes and dendritic cells [46], sup-
presses cytokine production in lung epithelial cells [47] and is important for thymus
development and T cell function [48, 49]. There is also growing evidence that RelB may be able
to modulate endothelial function. Experimentally, RelB has been associated with balloon cathe-
ter injury in the rat carotid artery [29], and its expression can be modulated via treatment with
DETA-NONOate-a nitric oxide donor [30]. Our group also showed that RelB is expressed in
endothelial cells and such expression can suppress pulmonary ICAM-1 levels in response to
smoke [31]. We were the first to show that peripheral RelB expression in COPD subjects is
inversely associated with systolic blood pressure at exacerbation [28]. In the current study, we
showed that circulating RelB protein concentrations are inversely associated with cf-PWV over
time. Taken together, it seems plausible that RelB is an important modulator of the endothe-
lium, and hence, vascular function in COPD patients. We found no association between the
course of change in RelB and that of either CC-16 or SPD over time, suggesting that RelB may
not directly regulate their expression. This also suggests that different biological pathways may
be involved in mediating changes in cf-PWV that involve CC-16 and RelB, or it may suggest
that both these mediators have a common upstream regulator. Further studies to better exam-
ine the mechanistic role of RelB in CVD and COPD could reveal a novel pathway for
intervention.

This study has a number of strengths, but is not without its limitations. One of the major
strengths of our study is the focus on a “high-risk” and clinically-relevant COPD patient
population. Frequent exacerbators are known to be at elevated CV risk [44], and as such,
better understanding this association is important and could improve health outcomes for
patients. Our measurements of inflammatory mediators at several points over time

Table 2. Relative risks of increasing inflammatory mediator concentrations over time and subsequent
exacerbations.

1 unit (ng/mL) increase in the absolute change in inflammatory mediators
over time

Number of
exacerbations during 6

months of F/U

CC-16 0.84 (0.75–
0.95)

0.004*

SPD 0.99 (0.99–
1.01)

0.894

RelB 1.02 (0.93–
1.11)

0.717

Poisson regression models were used to estimate relative risks of exacerbations. RR adjusted for baseline

age, sex, and FEV1% predicted.

*Denotes statistical significance of p<0.05.

CC-16: club cell-16, SPD: surfactant protein-D, RelB: V-rel avian reticuloendotheliosis viral oncogene

homolog B, CI: confidence interval, RR: relative risk.

doi:10.1371/journal.pone.0149974.t002
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provided new information on their course of expression. This allowed us to better assess
their relationship to patient-relevant outcomes, including exacerbation frequency and arte-
rial stiffness. Our study also has certain limitations including the relatively small sample
size that may have resulted in insufficient power for our analyses due to high inter-individ-
ual variation. A second limitation is that we were not able to assess subjects before their
exacerbation or prior to receiving treatment with corticosteroids or systemic antibiotics,
which may have altered the values of both the mediator and arterial stiffness. CC-16 and
SPD expression for example can be modulated by systemic corticosteroids [22, 42], and as
such, treatments may have influenced the expression levels obtained in this study. We also
did not have information pertaining to other medications- such as anti-hypertensive drugs-
that may have impacted our results. For a few subjects, we were not able to get measure-
ments at the initial assessment, and as such had to “gate” absolute change calculations to
the second assessment. This may have caused us to miss certain changes that could have
occurred in that time. In the future, it would be useful to know the course of change in the
mediators (and arterial stiffness) during the first few days and even weeks of exacerbations,
as this could provide important information on their course of change and relevance to
exacerbation and allow for a more robust assessment. Finally, not having stable-state mea-
surements on inflammatory mediators does not allow us to fully assess the significance of
changes measured over time with exacerbation. Stable-state RelB protein measurements
have not yet been reported in COPD patients, and so measuring these in future research
would be a worthy objective.

Our study serves as an important step towards identifying biomarkers in subjects with fre-
quent exacerbations that relate pulmonary inflammation to CV function, and CC-16 may rep-
resent such a marker. Moreover, with the potentially modifiable expression of CC-16 in COPD
patients, further research should address whether modulation of CC-16 can lead to changes in
arterial stiffness, which could ultimately decrease susceptibility to CV events. In this study we
also show that RelB expression is related to arterial stiffness, which points to another potential
pathway for the modulation of endothelial and vascular function in COPD. Although the direc-
tion of absolute change in CC-16 and RelB diverged at later time points in our study (days 90
and 180), during the course of exacerbation and the time immediately thereafter, both followed
the same trajectory of change as cf-PWV. CC-16 and RelB likely have different and perhaps
unrelated roles in modulating cf-PWV, and further mechanistic studies are now needed to help
elucidate the pathways linking CC-16 and RelB to these outcomes. A better understanding of
these outcomes will bring us one step closer to determining their value as biomarkers of
patient-relevant CV outcomes in COPD.

Conclusions
Changes in the expression of club cell-16, a lung specific inflammatory mediator, and RelB, a
potential biomarker of cardiovascular function, during and subsequent to COPD exacerbations
that require hospital admission can determine changes in arterial stiffness. CC-16 can predict
exacerbation frequency, and may represent an important biomarker of pulmonary and cardio-
vascular function in severe COPD patients.

Supporting Information
S1 Fig. Box plot showing mean absolute change in RelB concentrations (ng/mL) over time
as compared to first assessment. Bars represent the maximal and minimal values obtained.
(PPTX)
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