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Abstract: Wheat (Triticum aestivum ssp. aestivum) contributes to 20% of the human protein supply,
delivers essential amino acids and is of fundamental importance for bread and pasta quality. Wheat
proteins are also involved in adverse human reactions like celiac disease (CD), wheat allergy (WA)
and non-celiac wheat sensitivity (NCWS). Using liquid chromatography-mass spectrometry (LC-MS)-
based label-free quantitative (LFQ) proteomics of aqueous flour extracts, we determined 756 proteins
across 150 wheat cultivars grown in three environments. However, only 303 proteins were stably
expressed across all environments in at least one cultivar and only 89 proteins thereof across all
150 cultivars. This underlines the large influence of environmental conditions on the expression of
many proteins. Wheat cultivars varied largely in their protein profile, shown by high coefficients of
variation across different cultivars. Heritability (h2) ranged from 0–1, with 114 proteins having h2

> 0.6, including important proteins for baking quality and human health. The expression of these
114 proteins should be amenable to targeted manipulation across the wheat supply chain by varietal
choice and breeding for designing healthier wheat with better quality. Further technical develop-
ment is urgently required to assign functions to identifiable proteins labeled yet uncharacterized in
databases and speeding up detection methods to routinely use proteomics in wheat supply chains.

Keywords: LC-MS proteomics; wheat; healthy nutrition; future breeding

1. Introduction

Wheat (Triticum aestivum ssp. aestivum) is grown globally in over 120 countries,
covering 16% of the cultivated land area, and is therefore a key source of carbohydrates
and proteins for growing populations (https://www.wheatinitiative.org/, accessed on
3 October 2020). Protein contents in wheat grains depend on the chosen cultivar due to
significant genetic variations [1], to contrasting fertilizer management and to environmental
factors such as soil, rainfall and temperature, all affecting the nutrients uptake [2–4].
Furthermore, the grain protein content is negatively correlated with grain yield and grain
starch content [5]. On average, wheat grain has a protein content of 8–13% [6], which is
contributed by water/salt-soluble albumins and globulins (15–20%) and gluten proteins
(80–85%), the latter serving as storage proteins and endowing wheat products with the
desired viscoelastic and gustatory properties [7–9].
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Importantly, some wheat proteins can cause adverse inflammatory reactions in hu-
mans: (1) certain gluten peptide sequences trigger small intestinal and extraintestinal T
cell activation and inflammation in patients with celiac disease [10,11]; (2) the family of
wheat alpha-amylase/trypsin inhibitors (ATIs) stimulate intestinal innate immune cells via
the activation of Toll-like receptor 4 and promote intestinal and extraintestinal inflamma-
tion [12–17]; (3) numerous wheat albumins and globulins, such as serpins, lipid transfer
proteins, β-amylases and ATIs, as well as a few gluten proteins, can elicit respiratory and
nutritional immediate allergic reactions [18–21]; and (4) a novel form of nutritional wheat
allergy with an immediate intestinal, but a delayed clinical, reaction to wheat proteins is
highly prevalent among patients with “irritable bowel syndrome” [22,23]. The first studies
showed that wheat cultivars largely differ in the compositions of ATIs [24,25] or of the
33-mer α-gliadin peptide, a key immunogen for T cells in patients with celiac disease [26].
However, investigations of a large number of proteins across many wheat cultivars grown
under different environmental conditions are lacking.

Already, in the 1980s, using gel electrophoresis, the compositions of glutenins and
gliadins across a range of wheat cultivars and their effects on bread-making quality were as-
sessed [27,28]. Using mass spectrometry, recently, it was shown that the contents of gliadins,
glutenins and albumins/globulins varied across 60 wheat cultivars [29]. Moreover, it has
been reported that wheat breeding has modified the gluten composition and that recent
wheat cultivars contain higher amounts of high and low molecular weight glutenins (HMW
and LMW) than older wheat cultivars [29]. However, to date, these proteomic methods
depend on quantitative extraction and do not allow a “high-throughput” quantification of
a large spectrum of functionally relevant wheat proteins.

During the last decade, the technology of mass spectrometry has been revolution-
ized [30], permitting a detailed analysis of the whole proteomes of eukaryotes [31], includ-
ing humans [32] and plants [33]. With the publication of the wheat reference sequence [34]
and its recent extension to 15 fully sequenced wheat cultivars [35], the wheat proteome
can now be characterized at a high resolution. Thus, Afzal et al. [36] identified 3050 and
2770 proteins in 15 cultivars of spelt and wheat, respectively, and showed that the majority
of these proteins were mainly affected by the environment. However, about 300 proteins
had an intermediate-to-high heritability and large coefficients of variation, indicating that
their expression levels could be changed through the varietal choice.

Here, we extended our prior study using liquid chromatography-mass spectrometry
(LC-MS)-based label-free quantitative (LFQ) proteomics to quantify the extracts of the
functionally relevant wheat albumins and globulins from 150 wheat cultivars registered
between 1921 and 2013 that were grown in parallel in three diverse German environments.
To evaluate the potential of proteomics for future wheat trading and breeding, we in-
vestigated, in particular, (1) the magnitude of environmental versus genetic influence on
protein expression, (2) the variance components and the heritability and correlation of
these proteins to important wheat quality traits and (3) temporal trends of the detected
proteins across wheat breeding history from 1921 to 2013.

2. Results

Using LFQ proteomics, we identified 756 proteins from aqueous extracts of wheat
flours across 150 cultivars, which were grown in three environments. Notably, the num-
ber of detected proteins varied largely across the environments, although the same set
of cultivars were grown under similar agricultural practices (Figure 1a). At the single
locations of Hohenheim (HOH), Eckartsweier (EWE) and Oberer Lindenhof (OLI), 523,
518 and 486 proteins were expressed, respectively. Moreover, 102, 106 and 80 proteins
were only expressed in HOH, EWE and OLI, respectively. On the other hand, 303 proteins
were expressed across all environments in at least one cultivar and 89 in all 150 cultivars
(Figure 1b). For further analyses, we focused on the 303 proteins that were stably expressed
in at least one cultivar across all three environments.
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Figure 1. The protein expression is influenced by the environment and cultivar. A number of proteins (756) were identified 
in 150 cultivars grown under three diverse environments—HOH (Hohenheim), EWE (Eckartsweier) and OLI (Oberer Lin-
denhof), but only 303 proteins were stably expressed across all three environments in at least one cultivar, while 62, 47 
and 56 proteins were expressed in two environments and 102, 106 and 80 proteins only in a single environment (a). From 
the 303 proteins, which were stably expressed in all environments in at least one cultivar, only 89 were stably expressed 
in all cultivars, while the abundance of 214 differed depending on the chosen cultivar (b). 

The proteome profiles of the different cultivars varied considerably either in the 
number of expressed proteins or in terms of the number of environments in which the 
particular proteins were stably expressed (Figure 2a,b). In a few cultivars, only about 55% 
of the proteins were stably expressed across three environments, e.g., in the cultivars Ak-
teur (No. 56), Colonia (No. 132) and Florida (No. 144), while, in other cultivars, this value 
was close to 80%, e.g., in the cultivars Chevalier (No. 17), Lear (No. 40) and Carenius (No. 
69). Similarly, some proteins were present consistently across the three environments only 
in a single or a couple of cultivars, while, in other cultivars, they were expressed only in 
two, one or even no environments, e.g., prot273 (A0A3B5Z2Q8), prot212 (R4ZC73), 

Figure 1. The protein expression is influenced by the environment and cultivar. A number of proteins (756) were identified
in 150 cultivars grown under three diverse environments—HOH (Hohenheim), EWE (Eckartsweier) and OLI (Oberer
Lindenhof), but only 303 proteins were stably expressed across all three environments in at least one cultivar, while 62, 47
and 56 proteins were expressed in two environments and 102, 106 and 80 proteins only in a single environment (a). From
the 303 proteins, which were stably expressed in all environments in at least one cultivar, only 89 were stably expressed in
all cultivars, while the abundance of 214 differed depending on the chosen cultivar (b).

The proteome profiles of the different cultivars varied considerably either in the
number of expressed proteins or in terms of the number of environments in which the
particular proteins were stably expressed (Figure 2a,b). In a few cultivars, only about
55% of the proteins were stably expressed across three environments, e.g., in the cultivars
Akteur (No. 56), Colonia (No. 132) and Florida (No. 144), while, in other cultivars, this
value was close to 80%, e.g., in the cultivars Chevalier (No. 17), Lear (No. 40) and Carenius
(No. 69). Similarly, some proteins were present consistently across the three environments
only in a single or a couple of cultivars, while, in other cultivars, they were expressed
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only in two, one or even no environments, e.g., prot273 (A0A3B5Z2Q8), prot212 (R4ZC73),
prot207 (A0A3B6ESH8) and prot303 (K7WV92). On the other hand, many proteins were
detected across the three environments in all cultivars, e.g., prot002 (Q9ZR70), prot003
(W4ZP51), prot005 (A0A3B6IX62) and prot010 (A0A3B6RKV2).
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The variance components, heritability and Best Linear Unbiased Estimates (BLUEs)
were estimated for 299 proteins, as the statistical model did not converge for four proteins.
The highly significant variance components due to genotype and genotype-by-environment
interactions were determined for 233 and 59 proteins, respectively (Table S1). BLUEs of
different proteins varied largely (Figure 3a), but also, within each protein, a large variability
of abundancy across the different cultivars was visible by the coefficients of variation (CV)
ranging from 8.07% to 168.52% (Figure 3b). Similarly, a wide range of heritability was
determined for the 299 proteins (Figure 3c). Here, 105 proteins had a heritability ≤0.40,
77 proteins between 0.41 and 0.60 and 117 proteins >0.60. The correlation coefficients
between the proteins and typical quality traits of wheat were mostly weak (Figure 4).

As we investigated wheat cultivars registered between 1921 and 2013, we evaluated
whether temporal trends in the expression of the proteins existed. According to the Kruskal-
Wallis and Dunn’s tests, only 18 proteins revealed a temporal trend from old to modern
wheat cultivars (Table 1). Eleven proteins showed an upward trend, seven proteins a
downward trend and the other proteins no temporal trend and, thus, do not seem to have
been affected by selection. Finally, we elaborated a list of proteins that (1) had a heritability
>0.6, (2) had <20% missing data and (3) were expressed in >50% and >80% of the cultivars
in three and two environments, respectively (Table S2). These proteins might be of interest
for future research, as their expression levels could be influenced in a targeted manner
along the wheat supply chain via varietal choice. Apart from many proteins with unknown
functions, some proteins with functions potentially relevant for baking quality and human
health were in this group and, therefore, are shown in Table 2.
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Figure 3. Best Linear Unbiased Estimates (BLUEs)—the annotation labels contain the internal protein number, followed 
by the UniProt accession and InterPro protein name; red points denote proteins with a relatively high mean abundance 
(a), coefficient of variation (b) and heritability (c) of the expression level of 299 proteins, which were stably expressed in 
all the environments in at least one cultivar. 

Figure 3. Best Linear Unbiased Estimates (BLUEs)—the annotation labels contain the internal protein number, followed by
the UniProt accession and InterPro protein name; red points denote proteins with a relatively high mean abundance (a),
coefficient of variation (b) and heritability (c) of the expression level of 299 proteins, which were stably expressed in all the
environments in at least one cultivar.
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content, SulC = sulphur content, Z.SDS = Zeleny-SDS, FN = falling number, TKW = thousand kernel weight, and HLW = 
hectolitre weight). The dashed lines represent ± 0.40 correlation coefficients, and each point indicates a correlation coeffi-
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whether temporal trends in the expression of the proteins existed. According to the Krus-
kal-Wallis and Dunn’s tests, only 18 proteins revealed a temporal trend from old to mod-
ern wheat cultivars (Table 1). Eleven proteins showed an upward trend, seven proteins a 
downward trend and the other proteins no temporal trend and, thus, do not seem to have 
been affected by selection. Finally, we elaborated a list of proteins that (1) had a heritabil-
ity >0.6, (2) had <20% missing data and (3) were expressed in >50% and >80% of the culti-
vars in three and two environments, respectively (Table S2). These proteins might be of 
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Figure 4. Correlation coefficients of the 299 proteins with quality traits (PC = total protein content, AspC = asparagine
content, SulC = sulphur content, Z.SDS = Zeleny-SDS, FN = falling number, TKW = thousand kernel weight, and HLW
= hectolitre weight). The dashed lines represent ± 0.40 correlation coefficients, and each point indicates a correlation
coefficient between a single protein and a quality trait. LMW = low molecular weight, HMW = high molecular weight, and
GS = glutenin subunit.
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Table 1. List of proteins stably expressed across all environments in at least one cultivar that showed a temporal trend across wheat cultivars that were registered during the last 100 years.

IPN. UniProt Accession UniProt Annotation InterPro Annotation Heritability Missing Data a (%) PV2 b (%) PV3 c (%)

prot034 u A0A3B6EGL9 Uncharacterized Aspartic peptidase A1 family;Saposin-like type B 0.65 0.21 100 99

prot036 d A0A3B6MYZ0 Uncharacterized Cupin 1;RmlC-like jelly roll fold 0.72 0.21 100 100

prot045 u A0A3B6JER7 Uncharacterized Cupin 1;RmlC-like jelly roll fold 0.83 0 100 100

prot123 u A0A3B6HSA4 Uncharacterized Cupin 1;RmlC-like jelly roll fold 0.68 0 100 100

prot156 d A0A3B6LUV8 Uncharacterized Cupin 1;RmlC-like jelly roll fold 0.71 0 100 100

prot139 u I1XB56 Low-molecular-weight
glutenin subunit

Bifunctional inhibitor/plant lipid transfer
protein/seed storage helical domain superfamily

. . . Gliadin/LMW glutenin
0.83 8.85 90 84

prot245 u D2KFG9 Gliadin/avenin-like seed
protein

Bifunctional inhibitor/plant lipid transfer
protein/seed storage helical domain superfamily

. . . Gliadin/LMW glutenin
0.61 0 100 100

prot292 u R9YQY9 Low-molecular-weight
glutenin subunit Glu-D3

Bifunctional inhibitor/plant lipid transfer
protein/seed storage helical domain superfamily

. . . Gliadin/LMW glutenin
0.45 0.62 100 98

prot069 u A0A3B6C1C0 Uncharacterized Glycoside hydrolase family 1 0.75 0 100 100

prot073 u A0A1D5V0T8 Uncharacterized Glycoside hydrolase family 1 0.69 0.21 100 99

prot018 u F4Y589 Heat shock protein 90 Heat shock protein Hsp90 0.60 0.21 100 99

prot218 d P02276 Histone H2A.2.1 Histone-fold;Histone H2A 0.67 0 100 100

prot240 d Q9SWU3 Histone H1 WH1A.1 Histone H1/H5 0.55 0 100 100

prot222 u A0A024CKY0 LEA protein Late embryogenesis abundant protein, LEA_4
subgroup 0.34 2.06 100 93

prot093 d P30570 EC protein III Plant EC metallothionein-like protein, family 15 0.64 4.94 100 84

prot068 u A0A3B5YRZ8 Uncharacterized Proteinase inhibitor I13 0.58 12.76 91 74

prot102 d A0A3B6JQP1 Uncharacterized Cereal seed allergen/grain softness/Trypsin and
alpha-amylase inhibitor 0.25 0 100 100

prot233 d A0A3B6SMC2 Uncharacterized Ubiquitin domain;Ubiquitin-like domain
superfamily 0.13 0.21 100 99

IPN = internal protein number. u Protein showed upward temporal trend, d protein showed downward temporal trend, a the proportion of missing raw data (i.e., protein not detected in a sample), b the
proportion of 150 cultivars in which a protein was detected in at least two of the three environments, and c the proportion of 150 cultivars in which a protein was detected in all three environments.
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Table 2. List of proteins stably expressed across all environments in at least one cultivar and that had a heritability >0.6, had <20% missing data and were expressed in > 50% and > 80% of
the cultivars in three and two environments, respectively, and where a potentially relevant function for baking quality and human health is assigned in the UniProt or InterPro databases.
Although a few proteins have similar names, they were each independently quantified by several unique peptides.

IPN UniProt Accession UniProt Annotation InterPro Annotation Heritability CV (%) Missing Data a (%) PV2 b (%) PV3 c (%)

prot085 Q7X9M2 Beta-amylase (Fragment) Glycoside hydrolase, family 14 0.74 31.77 1.65 100 95

prot141 A0A3B6KSH4 Beta-amylase Glycoside hydrolase, family 14 0.85 36.89 0 100 100

prot144 A0A3B6IYD4 Beta-amylase Glycoside hydrolase, family 14 0.81 25.07 0 100 100

prot028 Q94G97 † Gamma-gliadin

Bifunctional inhibitor/plant lipid
transfer protein/seed storage helical

domain superfamily . . .
Gliadin/LMW glutenin

0.91 59.97 15.64 81 72

prot066 D2KFH0 † Gliadin/avenin-like seed
protein

Bifunctional inhibitor/plant lipid
transfer protein/seed storage helical

domain superfamily . . .
Gliadin/LMW glutenin

0.83 59.31 19.96 81 61

prot245 D2KFG9 † Gliadin/avenin-like seed
protein

Bifunctional inhibitor/plant lipid
transfer protein/seed storage helical

domain superfamily . . .
Gliadin/LMW glutenin

0.61 23.30 0 100 100

prot017 G1E6K7 †
High molecular weight
glutenin subunit Dx5

(Fragment)

Bifunctional inhibitor/plant lipid
transfer protein/seed storage . . .

HMW glutenin
0.76 41.79 1.65 100 95

prot103 Q03871 ‡ HMW glutenin subunit 1By9
Cereal seed allergen/grain

softness/trypsin and alpha-amylase
inhibitor . . . HMW glutenin

0.65 40.63 6.38 96 85

prot139 I1XB56 † Low-molecular-weight glutenin
subunit (Fragment)

Bifunctional inhibitor/plant lipid
transfer protein/seed storage . . .

LMW-GS
0.83 46.97 8.85 90 84

prot203 C3VN75 † Low molecular weight glutenin
GN = Glu-A3

Bifunctional inhibitor/plant lipid
transfer protein/seed storage . . .

LMW-GS
0.67 55.83 15.23 89 65

prot044 A0A3B6HWI6 Uncharacterized Heat shock protein 70, conserved site 0.66 22.21 7.20 96 83
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Table 2. Cont.

IPN UniProt Accession UniProt Annotation InterPro Annotation Heritability CV (%) Missing Data a (%) PV2 b (%) PV3 c (%)

prot009 H2DLU3 † Puroindoline b GN = Pinb-D1
Cereal seed allergen/grain

softness/trypsin and alpha-amylase
inhibitor

0.92 67.59 3.29 97 93

prot110 P81713 Bowman-Birk type trypsin
inhibitor

Bowman-Birk type proteinase
inhibitor 0.90 76.72 15.23 83 68

prot030 Q43691 † Trypsin/alpha-amylase
inhibitor CMX2

Cereal seed allergen/grain
softness/trypsin and alpha-amylase

inhibitor
0.64 25.12 12.96 97 61

prot072 Q0Q5D9 † Globulin 1
Cereal seed allergen/grain

softness/trypsin and alpha-amylase
inhibitor

0.66 18.68 0 100 100

prot288 A0A1D5UB33 † Uncharacterized
Cereal seed allergen/grain

softness/trypsin and alpha-amylase
inhibitor

0.95 106.86 0 100 100

prot189 Q2PCC3 ‡ Type 2 non specific lipid
transfer protein

Bifunctional inhibitor/plant lipid
transfer protein/seed storage helical

domain superfamily
0.85 32.02 3.70 98 90

prot235 Q2PCC5 ‡ Type 2 non specific lipid
transfer protein

Bifunctional inhibitor/plant lipid
transfer protein/seed storage helical

domain superfamily
0.93 28.71 0 100 100

prot232 A0A3B6TLW2 Uncharacterized Serpin, conserved site;Serpin domain 0.81 24.60 0.62 100 98

prot287 A0A3B6LS85 Uncharacterized Serpin, conserved site;Serpin domain 0.66 27.39 9.88 98 70

IPN = internal protein number and CV = coefficient of variation. a The proportion of missing raw data (i.e., protein not detected in a sample), b the proportion of 150 cultivars in which a protein was detected in at
least two of the three environments, c the proportion of 150 cultivars in which a protein was detected in all three environments, † protein listed as an allergen by Juhász et al. [21] and ‡ protein listed as an allergen
according to the Allergome database (http://www.allergome.org, accessed on 16 February 2021).

http://www.allergome.org
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3. Discussion

We used LC-MS-based LFQ proteomics to investigate extracts of the functionally
relevant wheat albumins and globulins from 150 wheat cultivars registered between 1921
and 2013 that were grown in parallel in three diverse German environments.

3.1. Complex Interaction between Proteins, Cultivars and Environment

We detected, in total, 756 proteins across the 150 wheat cultivars grown in three
environments (Figure 1a). However, only 303 proteins were stably expressed across all
environments in at least one cultivar, while 453 proteins were expressed in only one or two
environments, showing that their expression is mainly driven by environmental factors.
We excluded these proteins from the further analyses and discussion.

Within the 303 proteins that were stably expressed in at least one cultivar, we identified
proteins with a different degree of expression stability across the cultivars and environments
(Figure 1b and Figure 2a,b). For instance, there were 45 proteins that were stably expressed
across the three environments in less than 25% of the wheat cultivars, while in the other
cultivars, they were expressed only in two, one or even no environments (Figure 2b). Even
more, the distribution of stable proteins in the cultivars differed for each protein, and only
89 proteins were stably expressed across the three environments and all cultivars without
any missing data.

These findings led to two main conclusions. First, the expression of proteins is largely
affected by environmental factors. This is corroborated by several studies in the literature.
Afzal et al. [36] showed that, from 3050 measured proteins, only 1604 were stably expressed
in at least one of the 15 wheat cultivars. These authors also showed that heritability was
quite low for many of the 1604 proteins. Another study reported that contents of gliadins,
glutenins, albumins/globulins and peptides for celiac disease epitopes are affected more by
the year of cultivation of the wheat cultivars than by the wheat cultivars themselves [26,29].
Similarly, classically determined kernel raw protein appears to be influenced largely by
environmental factors such as nitrogen fertilization, weather conditions and soil types [2,4].
In line with these findings, the total protein content determined by NIRS technology in our
dataset had a heritability of 0.65, while the sedimentation volume or the thousand kernel
weight and hectoliter weight had heritability close to 0.9 [37].

Second, there exists a considerable variation in the expression of proteins across differ-
ent cultivars, which is manifested either in a presence/absence of variation (Figure 1b) or, if
present in many cultivars, in a large coefficient of variation across the cultivars (Figure 3b).
These findings are in line with the results from Afzal et al. [36]. Consequently, protein
profiles largely differ between cultivars, but the expression of that profile is also influenced
by environmental factors, with varying importance of both factors. This underlines the
large potential of proteomics for future wheat breeding and production but, also, the need
for proteomic research to rely on an adequate number of different cultivars per species
tested in several environments.

The BLUEs of the 299 proteins varied largely, with 43 proteins having a considerably
higher abundancy than the majority of proteins (Figure 3a). Except three, the other highly
abundant proteins were stable across the cultivars and environments, and most of them
belong to four protein families, according to the InterPro database: Cupin1, Glycoside
hydrolases, Bifunctional inhibitors/lipid transfer proteins/seed storage helical domain
family and Cereal seed allergen/grain softness/bifunctional inhibitors/lipid transfer pro-
teins/seed storage helical domain family. These protein families are large. According
to InterPro, the proteins annotated as bifunctional inhibitors or cereal seed allergens be-
long to the “seed storage helical domain”. The Cupin superfamily consists of 18 different
functional classes with functions including the modification of cell wall carbohydrates
and plant growth and development [38]. Nevertheless, we found other members of these
protein families that had lower abundancy. Furthermore, for the highly abundant proteins,
considerable coefficients of variation across the cultivars and heritability fairly below 1
were detected, underlining the complex interaction of genotype and environment for highly
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abundant proteins. In particular, estimates of the heritability for the proteins of the Cereal
seed allergen/grain softness protein family were medium-to-very low, indicating that their
expression depends on particular microclimatic effects of the crop location and less on
chosen cultivars, making their controlled manipulation across the wheat supply chain very
difficult. According to the UniProt database, most of the highly abundant proteins in the
Cereal seed allergen/grain softness protein family were ATIs, which stimulate, according
to the literature, intestinal innate immune cells via the activation of Toll-like receptor 4
and promote intestinal and extraintestinal inflammation [12–17]. Thus, further research is
warranted on applying the absolute quantification of important ATIs, for example, with
isotope-labeled standard peptides [39].

3.2. Breeding for the Supply Chain

For the proteins that were environmental stably expressed in at least one cultivar,
the mean values across the environments largely differed for the 150 cultivars, leading to
large CVs (Figure 3b) and representing an important prerequisite for a successful breeding.
Furthermore, heritability values ≥0.6 were determined for 124 of these proteins. Thus,
for 16% of the initially determined number of proteins, breeding might be successful, as
their expression can be considerably influenced by the varietal choice across wheat supply
chains. Afzal et al. [36] determined that about 3% and 5% of detected proteins in spelt and
bread wheat, respectively, had a heritability ≥0.6. Consequently, only a limited percentage
of proteins, which are detectable with modern proteomic tools, appear to be influenced
mainly by genetics, but these can be manipulated in a targeted way across the wheat supply
chain and, thus, also be incorporated into future wheat breeding.

The correlation coefficients with common wheat quality traits were small for most of
the 299 proteins. The highest coefficient of correlation was 0.54, which was determined
for the association of prot290 (Q9S6Y2) with SulC, as well as with HLW (Figure 4). To our
knowledge, however, a correlation coefficient of 0.54 shows only a moderate association.
Consequently, none of the environmentally stable expressed proteins in our aqueous wheat
extracts were associated with common wheat quality traits, enabling their incorporation
into existing wheat breeding programs without drawbacks on already established traits.

The varying degree of missing protein data across different cultivars and environments
(Figures 1 and 2) might lead to over/underestimation of their BLUEs, particularly for
proteins with high amounts of missing data. For the interpretation and discussion of single
proteins, we therefore applied a filter to keep only those proteins that had <20% missing
data and that were expressed in >50% and >80% cultivars in three and two environments,
respectively. This reduced the number of proteins for the final considerations further to 229.

As our cultivar panel consisted of important wheat cultivars registered from 1921 to
2013, we investigated temporal trends for proteins due to selection over time. According to
a Kruskal-Wallis and Dunn’s test, only eleven and seven proteins showed an upward and
downward temporal trend, respectively (Table 1 and Figure S1). This is in contrast to the
findings on important agronomic traits in wheat revealing that modern wheat cultivars
have higher yields and better disease resistance than old wheat cultivars [40]. Similarly,
it was demonstrated that modern wheat cultivars had higher sedimentation volumes but
lower protein contents than old wheat cultivars [1]. The lack of a temporal trend for almost
all proteins might be explained by the fact that they were not selected for either directly
or indirectly by chance due to the absence of a close correlation with important selection
traits like the protein content or sedimentation volume.

However, the detected upward trend for a few proteins towards a higher abundance
in modern wheat cultivars seems logical. For instance, we found an upward trend for
three proteins annotated as Gliadin/LMW glutenins in the InterPro database. This trend
corroborates the findings of Pronin et al. [29], who reported an increase in the HMW and
LMW glutenins across a set of 60 bread wheat cultivars registered during the last 100 years.
Since the pioneering work of Payne et al. and Jackson et al. [27,28], wheat breeders around
the world have intensively selected particular HMW/LMW subunits.
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We also found an upward trend from old to modern cultivars in the expression of heat
shock protein (Hsp) 90 (Hsp90). Hsp90 has a multitude of proposed roles, including signal
transduction, protein folding, protein degradation and growth and development under
both normal and stressed conditions [41]. Previously, it was suggested that Hsp90 was
implicated in controlling the seedling growth and resistance to stripe rust in wheat [42].
As modern wheat is selected for a high grain yield and high tolerance to biotic and abiotic
stresses [40], the identified upward trend of Hsp90 might be due to breeder selection.
Nevertheless, further work might be required to prove this deduction.

3.3. Application of New “Omics” Enables the Design of Better and Healthier Wheat

Proteins with high heritability and high variability across different cultivars can
successfully be manipulated across the wheat supply chain. We therefore extended our
filter for missing data by the prerequisite for each protein to have a heritability >0.60,
which gave us 114 proteins, presented in Table S2. Many of them have unfortunately
no concrete functional annotation, several annotations are proposed for a single protein
or their annotations differ between databases UniProt and InterPro, underpinning the
necessity of research for the functional characterization of wheat proteins. However, for a
few proteins, concrete annotations marking important functions were already available
(Table 2). This involves a few proteins important for baking quality, e.g., three gliadins, two
HMWs, two LMWs and puroindoline B. According to the database UniProt, the two HMWs
were the alleles Dx5 (loci Glu-D1) and Dy9 (Glu-B1) known for their role in good baking
quality [43]. Beside gluten proteins, puroindolines also influence the baking quality due to
their effect on kernel hardness [44] and appear to correlate positively with the bread loaf
volume [45], milling yield, dough extensibility and development time and water uptake of
the flour [44].

Beside important proteins for baking quality, the list of 114 proteins that can be
manipulated successfully across the supply chain also contained proteins known to be
involved in human health, according to Juhász et al. [21] and Allergome—The Platform for
Allergen Knowledge (http://www.allergome.org, accessed on 16 February 2021) (Table 2).
This involves three β-amylases, one Bowman-Birk-type trypsin inhibitor, one ATI, two
serpins, two nonspecific lipid transfer proteins and Hsp70 but, also, the three gliadins,
two HMWs and LMWs and the puroindoline B mentioned above for the baking quality.
Interestingly, prot139, an LMW, and prot245, a gliadin-like protein, showed an upward
trend across the wheat cultivars registered between 1921 and 2013. This shows that
demands for high baking quality might also negatively affect the health of sensitive humans,
which is yet lowly regarded in research and completely disregarded in the wheat supply
chain. Taking into account the high heritability and variability within wheat cultivars
for these proteins, the establishment of proteomics in wheat research and breeding bears
a large potential for designing wheat in the future with better quality and nutritional
attributes suitable for sensitive humans warrants further research.

In conclusion, high-throughput LC-MS methods for the label-free quantification of
high numbers of proteins in wheat grains represent a very promising technology to deepen
our knowledge on the important proteome characteristics in wheat. Many of the detected
proteins are mainly influenced by the environment and, thus, likely cannot be manipulated
in a targeted way in the wheat supply chain. Nevertheless, for proteins with high genetic
variance, robust data and intermediate-to-high heritability, an efficient varietal choice along
the supply chain and targeted breeding for them would be possible, as long as the market
demands it. Such breeding efforts, however, would require optimized and cost-effective
high-throughput proteomic workflows enabling proteomic characterizations within a few
minutes to enable their implementation into the wheat supply chain.

http://www.allergome.org
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4. Materials and Methods
4.1. Plant Material and Field Trials

Details of the plant material, field trials and quality trait assessment were reported
by Rapp et al. [37]. Briefly, 150 different European wheat cultivars (Table S3) were grown
in three field locations Hohenheim (HOH, 48◦43′07.3′′ N 9◦11′08.7′′ E, 403 m above sea
level (asl)—average annual temperature, precipitation and relative humidity were 10.12 ◦C,
595.4 mm and 81.67%, respectively); Eckartsweier (EWE, 48◦32′52.4′′ N 7◦52′32.5′′ E,
140 m asl—average annual temperature, precipitation and relative humidity were 10.96 ◦C,
538.9 mm and 87.01%, respectively) and Oberer Lindenhof (OLI, 48◦28′19.0′′ N 9◦18′29.3′′ E,
700 m asl—average annual temperature, precipitation and relative humidity were 8.5 ◦C,
779.3 mm and 85.93%, respectively) during wheat cultivation season 2015/2016 in a par-
tially replicated (p-rep) design. The type of soil of locations HOH, EWE and OLI is
loamy sand, brown earth and clayey loam, respectively. The following quality traits
were assessed: Asparagine content was measured in mg/kg (AspC, European Commis-
sion Regulation—EC No 152/2009, Annex III, Method F; for details, see Rapp et al. [37]),
sulphur content in mg/kg (SulC, Elementar Analysensysteme GmbH, Langenselbold,
Germany), total protein content in % (PC, ICC standard method 159, ICC, Vienna, Austria),
sedimentation value in mL according to Zeleny (Z-SDS, ICC standard method 116/1, ICC,
Vienna, Austria), falling number measured in seconds (FN, ICC standard method 107/1,
Vienna, Austria) and thousand kernel weight in grams (TKW), as well as kernel width and
length measured in mm using a Marvin seed analyzer (GTA Sensorik, Neubrandenburg,
Germany). Hectolitre weight was measured in kg (HLW) by weight of grains fitting in a
cylindrical can with a volume of 26 mL, as HLW = (grain weight (kg)/volume (L)) * 100 L.

4.2. Quantitative Proteomic Analyses

LFQ proteomic analyses using LC-MS were performed as described previously by
Sielaff et al. [39]. In this study, our aim was to set up a high-throughput method, allowing
single-shot LC-MS analyses by keeping the run-to-run variation as small as possible by
using a robust and fast microflow LC setup (compared to the more fragile nanoflow
LC commonly used in proteomics) and a non-stochastic, data-independent acquisition
method [39]. Fine whole grain flour of the harvested samples served as the starting
material, which was generated using the Cyclotec Laboratory Mill (Foss GmbH, Hamburg,
Germany) and stored at −20 ◦C until extraction. Extraction protocols were chosen with
the primary goal to investigate the reactions in cell cultures for wheat sensitivity. Native
water/salt-soluble proteins, i.e., albumins and globulins (and minor amounts of gliadins
and glutenins), represent up to 20% of the wheat proteome [46], and, thus, we also used
these extracts for proteomic profiling of the wheat cultivars. In particular, these proteins
were quantitatively extracted from 1 g of wheat flour using 5 mL of 10-mM sodium
bicarbonate and 500-mM sodium chloride, pH 7.8, with constant spinning at 4 ◦C overnight.
After centrifugation at 4600× g for 30 min, the supernatant was collected, and the extraction
was repeated from the pre-extracted pellet. Both supernatants were combined and sterile-
filtered (0.22 µm).

Sample preparation for the proteome analysis was performed in a 96-well format.
Five microliters (µL) of protein extracts (~5 µg of total protein) were diluted in 50-mM
ammonium bicarbonate and 0.1% (w/v) RapiGest surfactant (Waters Corporation, Milford,
MA, USA) to a final volume of 50 µL and incubated at 80 ◦C for 15 min. Disulphide
bridges were reduced by adding dithiothreitol (DTT) to a final concentration of 8 mM
and incubating the samples at 56 ◦C for 1 h. Afterwards, cysteines were alkylated by
adding iodoacetamide (IAA) to a final concentration of 16 mM and incubation in the dark
at 22 ◦C for 30 min. Excess IAA was quenched by adding DTT to a final concentration
of 8 mM. Proteins were digested using trypsin (Trypsin Gold, Mass Spectrometry Grade,
Promega, Madison, WI, USA) at a protease-to-protein ratio of 1:25 (w/w) and incubated
overnight at 37 ◦C. The reaction was stopped by acidifying the samples using 0.5% (v/v)
trifluoroacetic acid (TFA). After incubation at 37 ◦C for 45 min, hydrolysed RapiGest was
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pelleted by centrifugation at 4600× g at 22 ◦C for 30 min. Supernatants were desalted using
Sep-Pak tC18 cartridges (Waters Corporation), and purified peptides were eluted using
50% (v/v) acetonitrile (ACN) and 0.1% (v/v) TFA in water. Samples were lyophilized and
reconstituted in 20 µL of 0.1% (v/v) formic acid (FA) prior to liquid chromatography-mass
spectrometry (LC-MS) analyses.

LC-MS measurements were carried out using a nanoACQUITY Ultra-Performance
Liquid Chromatography (UPLC) system (Waters Corporation) online coupled to a SYNAPT
G2-S mass spectrometer (Waters Corporation) via a NanoLockSpray dual electrospray
ionization (ESI) source (Waters Corporation). A sample amount of 0.5 µL was loaded onto a
HSS T3 300 µm × 100 mm, 1.8-µm reversed-phase column (Waters Corporation). Peptides
were separated at a flow rate of 8 µL/min over 15 min using a gradient of 1 to 36% (v/v)
solvent B. Water with 0.1% (v/v) FA was used as solvent A, while ACN with 0.1% (v/v)
FA was used as solvent B. The column temperature was kept at 55 ◦C. To enhance the
ESI process, 25% (v/v) dimethyl sulfoxide (DMSO) at a flow rate of 1 µL/min was added
post-column to the eluting peptides, as detailed before [47]. The lock mass compound
[Glu1]-Fibrinopeptide B was directly delivered to the reference sprayer of the ESI source at
a concentration of 250 fmol/µL and a flow rate of 1.5 µL/min.

Acquisition of mass spectra was performed in data-independent mode (DIA) by
alternating between low (MS) and high-energy scans (MSE) [48]. The quadrupole was
set to transmit all ions of m/z 50–1990. Scan time was 0.4 s, with a 0.05-s interscan delay
for MS, as well as MSE, scans, resulting in an overall cycle time of 0.9 s. MS scans were
acquired at a collision energy of 4 eV, while the collision energy was ramped from 16 to
40 eV during the MSE scans. The reference sprayer was sampled every 30 s, and the doubly
charged monoisotopic ion of [Glu1]-Fibrinopeptide B was used for post-acquisition lock
mass correction.

Each sample was analyzed once by LC-MS, resulting in 486 sample measurements.
In order to monitor the system stability and reproducibility of the LC-MS measurements,
a tryptic digest of HeLa cell lysate was repeatedly injected between the sample runs and
analyzed using the same LC-MS method as described before.

Raw data were processed using ProteinLynx Global Server v2.0.3 (PLGS, Waters
Corporation) and searched against the UniProt T. aestivum protein database (UniProtKB
release 2019_02, taxon ID: 4565, 142,700 entries) concatenated with Escherichia coli proteins
(UniProtKB/Swiss-Prot release 2019_02, taxon ID: 83333, 4550 entries) and 171 common MS
contaminants. Trypsin was set as the digestion enzyme, with a maximum of two missed
cleavages. The carbamidomethylation of cysteine was set as the fixed modification, while
the oxidation of methionine was set as the variable modification. The false discovery rate
(FDR) was estimated by searching a reversed-sequence database.

Postprocessing and label-free quantification (LFQ), including retention time alignment,
feature clustering, multidimensional local regression-based normalization and protein
homology filtering, were performed using ISOQuant v1.8 [49]. Samples of each location
(HOH, EWE and OLI) were processed separately in ISOQuant, dividing the dataset into
three subsets. Peptides with a minimum ProteinLynx Global Server database search score of
6.0, a minimum sequence length of six amino acids, no missed cleavages and no methionine
oxidations were considered for LFQ. Proteins were only reported if they were identified
by at least two peptides. An FDR cut-off of 0.01 was used at the peptide and protein level.
Protein quantities were calculated as the mean signal of the three most-intense peptides
matching each protein (Top3) [50].

The 13 repeated measurements of the HeLa standard were processed in PLGS (searched
against a Homo sapiens UniProtKB/Swiss-Prot protein database) and ISOQuant in the same
way as described for the samples in order to confirm the high stability of the LC-MS system
and reproducibility of the measurements during the course of the experiment (Pearson cor-
relation coefficient of LFQ protein abundances >0.99 for all run-to-run comparisons and me-
dian coefficient of variation <5%).The mass spectrometry proteomics data were deposited
to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org, ac-

http://proteomecentral.proteomexchange.org
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cessed on 18 January 2021) via the PRIDE [51,52] partner repository with the dataset
identifier PXD023654.

4.3. Phenotypic Data Analysis

Phenotypic data analysis was performed according to the statistical model given in
Equation (1):

yikno = u + gi + envk + gi : envk + repkn + bkno + eikno , (1)

where yikno was the phenotypic observation for the ith genotype tested in the kth environ-
ment in the nth replication in the oth incomplete block, u was the general mean, gi the
genotypic effect of the ith genotype, envk the effect of the kth environment, gi : envk was
the genotype-by-environment interaction, repkn was the effect of the nth replication in the
kth environment, bkno was the effect of the oth incomplete block of the nth replication in the
kth environment and eikno was the residual.

Variance components were estimated using the restricted maximum likelihood (REML)
method assuming a random model in a classical one-stage analysis [53]. A likelihood
ratio test with model comparisons was performed [54] to check for significance of the
variance components. Best Linear Unbiased Estimates (BLUEs) were estimated across the
environments assuming fixed genotypic effects. Broad sense heritability (h2) was estimated
as given in Equation (2):

h2 = 1− ϑ

2σ2
G

, (2)

where ϑ is the mean variance of a difference of the two best linear unbiased predictors and
σ2

G the genotypic variance [55]. Pearson’s correlation coefficients (rp) were estimated among
the BLUEs of the examined traits. All analyses were performed utilizing the statistical
software R [56] and the software ASReml 3.0 [57].

Detection of Temporal Trend

To test whether the expression of proteins changed due to breeding, we compared cul-
tivars from different registration periods using the nonparametric Kruskal-Wallis test [58]
and Dunn’s test [59]. For multiple comparisons, the p-value was adjusted using the Holm’s
method. Kruskal-Wallis test and Dunn’s test were implemented using the R-package
rstatix. We chose nonparametric tests over the standard analysis of variance (ANOVA),
because the sample sizes between the six groups of varietal registration periods varied
greatly from 13 (1991–2000) to 53 (2001–2013). Other groups such as 1921–1960, 1961–1970,
1971–1980 and 1981–1990 had 22, 16, 22 and 23 samples, respectively. As a result, the
assumptions of ANOVA, i.e., data approximately normally distributed, sufficiently large
sample size (usually n > 30) and homoscedastic variance in the comparison groups, could
not be applied.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/3/424/s1: Figure S1: Boxplots of proteins that showed temporal trends. Table S1: Summary of
the phenotypic analysis of the proteins. Table S2: List of proteins for future breeding and research.
Table S3: List of the 150 wheat cultivars used in this study.
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