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Abstract
Mutations, duplication and triplication of α-synuclein genes are linked to familial Parkinson’s

disease (PD), and aggregation of α-synuclein (α-syn) in Lewy bodies (LB) is involved in the

pathogenesis of the disease. The targeted overexpression of α-syn in the substantia nigra

(SN) mediated by viral vectors may provide a better alternative to recapitulate the neurode-

generative features of PD. Therefore, we overexpressed human wild-type α-syn using

rAAV2/1 vectors in the bilateral SN of mouse and examined the effects for up to 12 weeks.

Delivery of rAAV-2/1-α-syn caused significant nigrostriatal degeneration including appear-

ance of dystrophic striatal neurites, loss of nigral dopaminergic (DA) neurons and dissolving

nigral neuron bodies in a time-dependent manner. In addition, the α-syn overexpressed

mice also developed significant deficits in motor function at 12 weeks when the loss of DA

neurons exceeded a threshold of 50%. To investigate the sensitivity to neurotoxins in mice

overexpressing α-syn, we performed an MPTP treatment with the subacute regimen 8

weeks after rAAV injection. The impact of the combined genetic and environmental insults

on DA neuronal loss, striatal dopamine depletion, dopamine turnover and motor dysfunction

was markedly greater than that of either alone. Moreover, we observed increased phos-

phorylation (S129), accumulation and nuclear distribution of α-syn after the combined

insults. In summary, these results reveal that the overexpressed α-syn induces progressive

nigrostriatal degeneration and increases the susceptibility of DA neurons to MPTP. There-

fore, the targeted overexpression of α-syn and the combination with environmental toxins

may provide valuable models for understanding PD pathogenesis and developing related

therapies.
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Introduction
Parkinson’s disease (PD) is an age-related and the second most common neurodegenerative
disorder. Clinical manifestations include motor impairments involving bradykinesia, resting
tremor, rigidity and postural instability. Progressive loss of dopaminergic (DA) neurons in the
substantia nigra (SN) and formation of Lewy Bodies (LB), which are cytoplasmic inclusions
mainly containing α-synuclein (α-syn), are the pathological hallmarks of PD [1]. Duplication,
triplication and mutations of α-synuclein genes are implicated in familial early-onset PD
patients [2, 3] and genome-wide association studies also suggest a critical linkage between α-
syn and PD pathogenesis [4, 5]. Studies have also implicated that the overexpressed wild-type,
mutated or truncated α-syn contributes to cell toxicity in vitro and in vivo, which further sug-
gests that elevated α-syn is involved in the pathogenesis of PD [6–9].

Although transgenic mice overexpressing wild type or mutated forms of α-syn have been
produced, most of them have failed to replicate key pathological features such as the progres-
sive loss of nigrostriatal DA neurons and neurites [10, 11]. With the exception of different
forms and expression levels of α-syn, it’s probable that some compensatory mechanisms dur-
ing development have counteracted the toxic effects caused by transgenes in these models.
Therefore, conditional knockouts or viral vector mediated delivery of related genes may be an
alternative approach to generate animal models that closely reproduce PD-like neurodegenera-
tion[12]. To date, adeno-associated virus (AAV) and lentivirus have been used to overexpress
α-syn in rats, and these models have replicated many PD-like pathological features [13–16].
However, the viral vector generated models show variability in neurodegeneration degrees and
time frames [6, 13, 14, 17–20].

Most cases of PD are sporadic, which suggests a linkage between environmental factors and
the pathogenesis. Exposure to pesticides such as rotenone, paraquat and maneb correlates with
an increased incidence for PD [21], thus these agents have been used to generate PD-like ani-
mal models [22, 23]. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
has been discovered to induce human parkinsonism [24, 25], since then it has been used for
modeling parkinsonism in rodents and non-human primates [26, 27]. Genetic susceptibility
and exposure to environmental toxins probably contribute to the pathogenesis in combination.

In the present study, we used the rAAV2/1 vector to overexpress human wild type α-syn in
the bilateral SN of mice. Since PD affects the brain bilaterally, bilateral lesions mimic the real
pathological situations and behavior tests used for bilateral lesions are usually easy to perform.
The overexpression of α-syn led to a progressive loss of nigral DA neurons and striatal TH pos-
itive neurites accompanied by motor behavior deficits during a period of 12 weeks. Meanwhile,
the neurotoxin MPTP was administered to investigate the sensitivity of mice overexpressing α-
syn. We observed a significant decrease in striatal dopamine, and a substantial loss of DA neu-
rons and neurites after MPTP treatment. The evaluation of DA neuron survival, striatal tyro-
sine hydroxylase expression, dopamine levels, and phosphorylated and accumulated forms of
α-syn revealed an increased vulnerability to the neurotoxin MPTP in the α-syn overexpression
mice.

Materials and Methods

Recombinant adeno-associated virus 2/1 preparation and cell culture
The production of recombinant adeno-associated virus 2/1 (rAAV2/1) vectors were previously
described [28]. Briefly, a human α-syn gene which was obtained previously [29] or GFP was
inserted into the transfer plasmid to construct pSNAV- α-syn or pSNAV-EGFP, which
encoded α-syn or EGFP transgene under the control of the CMV promoter. The transfer
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plasmids were transfected into BHK-21 cells (ATCC) using Lipofectamine 2000 (Invitrogen),
then the confluent cells were infected by helper virus HSV1-rc/4UL2, which was essential for
viron packaging. Cultures were collected until all of the cells were easy to fall into medium by
vigorous shaking. The rAAV2/1- α-syn and rAAV2/1-EGFP vectors were purified by chloro-
form and NaCl. Chloroform (10%, v/v) was added to the collected cells, which were incubated
at 37°C with vigorously shaking until all cells were lysed. Then solid NaCl was added till the
final concentration was 1 mol/L by shaking at room temperature. The supernatant was har-
vested and PEG 8000 was added and centrifuged, then discarded the supernatant. Re-suspend
the pellets in PBS buffer and add DAase I and RNase to obtain the final concentration of 1 μg/
mL, then the culture was incubated for 30 minutes. An equal volume of chloroform was added
to the suspension and the organic aqueous phases were separated by centrifugation. The aque-
ous phases containing the rAAV vectors were collected and referred to as the purified stock.
Then dot blot hybridization was used to determine the genome particles of virus. The final titer
for both vectors were 3.1×1011 genome copies/ml, aliquoted viruses were stored at -80°C and
kept on ice during surgery.

HEK293 cells (ATCC) were maintained in Dulbecco’s modified Eagle’s medium (DMEM,
Invitrogen) supplemented with 10% fetal bovine serum (FBS, Invitrogen), 100 unit/ml penicil-
lin, 100 μg/ml streptomycin and 2 mM L-glutamine. Cells were maintained at 37°C with 5%
CO2.

Animals and surgical procedures
Adult male C57BL/6 mice weighing 18–22g were used for surgery and housed four to five per
cage with access to food and water during a 12h light/dark cycle. Before surgery, mice were
anesthetized with chloral hydrate. Then they were placed in a stereotaxic flame and the rAAV
vectors were injected into the SN using the 10μl Hamilton syringe. 2μl rAAV2/1-α-syn solu-
tions were infused bilaterally at a rate of 0.2μl/min and the needle was left for an additional
10mins before it was retracted. The same volume of rAAV2/1-EGFP vectors were infused bilat-
erally as the control group. All injections were made into the substantia nigra at stereotaxic
coordinates: AP -3.2mm, ML 1.4mm, and DV -4.5mm below dura.

Mice injected with rAAV2/1-EGFP and rAAV2/1-α-syn vectors were used to investigate
the sensitivity to neurotoxin MPTP. These mice were treated with 30mg/kg free base MPTP or
saline for 5 consecutive days (i.p.) after 8 weeks of vector infusion and the animals were sacri-
ficed 2 weeks after the last MPTP injection. All procedures were performed in accordance with
the guidelines of National Institutes of Health for the care and use of laboratory animals and
animal study was approved by the Animal Care Committee of the Peking Union Medical Col-
lege and Chinese Academy of Medical Sciences. All efforts were made to minimize suffering.

Behavioral testing
Open-field test. Locomotion activity was assessed in the open field apparatus at 4, 8, 12

weeks after vectors injection. A white plastic box (50×50×30 cm) was used and the area was
divided into 25 grids of 100cm2. Mouse was placed individually in the center of the box and
their behavior was video-taped, the following behavioral parameters were measured manually
during the subsequent 5 min in normal lighting: horizontal locomotion (number of grids
crossed) and the rearing frequencies (rearing activity). The equipment was cleaned with 70%
alcohol and water between trials to avoid olfactory issues.

Swim test. Swim test was carried out in plastic containers [30]. The depth of water was
12cm and the temperature was maintained 22–25°C. Each mouse was scored in 1-min for 3
times with an interval of 10 mins. The score was a modification of that used by Marshall and
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Berrios: continuous swimming, 3; occasional floating, 2.5; floating time>50% of testing, 2;
occasional swimming, 1.5; occasional swimming using hind limbs while floating on one side, 1;
hind part sinks with head floating, 0. The observer was blind to the tested mice.

Pole test. A wood pole which was 50cm long and 1cm in diameter was used in pole test. It
was wrapped in gauze to avoid slipping and mouse was put on the top ball of the pole. The
time the mouse turned its nose down (inversion time) and the total time to climb down the
pole were recorded. The mouse was guided if it didn’t move in 1min. Mice were all pre-trained
before surgery, and during test each mouse performed 3 trials with an interval of 5 min. Three
trials were averaged for statistical analyses.

Immunochemistry and immunofluorescence
Mice were anesthetized using chloral hydrate (400mg/kg, i.p.) and then perfused with 0.1M
phosphate buffered saline (PBS), followed by 4% paraformaldehyde and 4% paraformaldehyde
with 3% w/v sucrose. Then the brain was moved and post-fixed in 20% sucrose (20% w/v in 4%
paraformaldehyde) overnight. The brains were changed into 40% sucrose solution (40% w/v in
4% paraformaldehyde) after sinking.

Brains were sectioned on a freezing microtome (Leica) at thickness of 35μm. Floating sec-
tions were quenched with 3% hydrogen peroxide for 10 min followed by three washes of PBS,
then incubated with 3% normal goat serum blocking for one hour. After that, the sections were
incubated with antibodies overnight at 4°C. The antibodies were against tyrosine hydroxylase
(TH) (1:200, sc-14007, Santa Cruz, Dallas, TX) or GFP (1:500, G6539, Sigma, St. Louis, MO),
human α-syn (1:500, Syn204, Cell Signaling Technology, Danvers, MA), mice and human α-
syn (1:200, sc-7011-R, Santa Cruz), phospho- α-syn (1:200, phosphor-S129, ab51253, Abcam,
Cambridge, MA) and Neuronal Nuclei (NeuN) (1:500, MAB377, Millipore, Temecula, CA).
Sections were rinsed three times in 0.1% tween 20-PBS and then incubated with HRP labeled
secondary antibodies (1:200) 2 hours at room temperature. After washes, sections were visual-
ized using 3, 3-diaminobenzidine (DAB) and coverslipped.

Fluorescence immunostaining was performed as above without quenching, the Alexa488 or
546 conjugated antibodies (Invitrogen, 1:200, Carlsbad, CA, USA) were used in the dark. The
slides were examined using a Zeiss laser scanning confocal microscope (LSCM).

Unbiased stereology
Numbers of TH-positive neurons in substantia nigra pars compacta (SNpc) were estimated
using Stereo Investigator (MBF Bioscience, USA) as described[31]. We used one in six sections
to assess the number of TH neurons in SNpc of both hemisphere and the counts were made
automatically within a counting frame of 100μm×100μm area. A systematic random sample
area was created by the Stereo Investigator which randomly positioned the counting frame
within the SNpc under a magnification of 40×. The z-dimension of the counting brick was
defined 16μm and a 2μm guard was used. Cells were counted within TH staining outlines and
the total estimates were obtained. Density of striatal TH-positive fibers was measured by densi-
tometry using Image-pro plus software 6.0. The values were corrected for non-specific back-
ground staining values from cortex. The rAAV-GFP injected mice were used as control.

Western Blotting
Mice were sacrificed at 4, 8 and 12 weeks after vector injection and 2 weeks after the last MPTP
treatment, brains were removed rapidly and midbrain and bilateral striatum were dissected
quickly then snap-frozen on dry ice. Tissues were homogenized in RIPA lysis buffer (with prote-
ase inhibitor cocktail, phosphatase inhibitors and PMSF). Homogenates were centrifuged at 4°C
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and the supernatants were stored at -80°C. Protein concentration was determined by bicinchoni-
nic acid protein assay and proteins were boiled for 5 min in loading buffer. A total of 20μg pro-
teins were separated by SDS-PAGE and then transferred to PVDFmembrane (Millipore). After
blocking with 3% BSA 2 hours, membranes were incubated with the following primary antibod-
ies: anti-TH (1:500, Santa Cruz, Dallas, TX), anti-dopamine transporter (DAT) (1:500, Santa
Cruz, Dallas, TX), anti-human α-syn (1:500, CST, Danvers, MA) overnight at 4°C. After washing
in TBST (Tris-buffered saline with 0.1% tween-20) with gentle agitation, membranes were incu-
bated with HRP-conjugated secondary antibodies for 2 hours at room temperature. The bands
were detected using enhanced chemiluminescence (GE). Densitometric analysis of each protein
was conducted using Gel-pro analyzer software (Media Cybernetics).

Nissl staining
Brain sections were stained with cresyl violet and washed in distilled water, then dehydrated
through graded alcohols (70%, 95% and 100%), placed in xylene and coverslipped. The count-
ing frame of 100μm×100μm area was used within the SNpc under a magnification of 40μ and
normal neuronal bodies were identified by size. One in six sections was used for neuronal
counting and the analysis was performed on six mice of each group. The rAAV-GFP trans-
duced mice of 12 weeks were used as control.

HPLC
Dopamine and metabolites were detected by high-performance liquid chromatography with elec-
trochemical detection (Waters 2465 electrochemical detector). Mice were sacrificed and striatal
tissues were dissected and quickly frozen in liquid N2. Samples were homogenized in 0.1M per-
chloric acid. After centrifugation, the supernatant was filtered and 20μl of it was injected into
Waters e2685 separations module equipped with a Diamonsil (5μ,100A) C18 HPLC column
(150×4.60mm) as previously described [21, 32]. The mobile phase of HPLC contains 85mM cit-
ric acid, 100mM anhydrous sodium acetate, 0.2mM EDTA, 0.5mM octane-1-sulfonic acid, 15%
(v/v) methanol in distilled water, pH3.68, and the flow rate was 1.0mL/min. A standard curve
generated from injection of standards of highest purity was used for the quantification.

Statistics
Statistics were analyzed by GraphPad Prism 5.0 and SPSS 17.0 Software. A two-way analysis of
variance (ANOVA) was performed for the time-dependent treatment, differences among
group means were analyzed using Bonferroni post-hoc test. Swim test was analyzed using Wil-
coxon signed ranks test by SPSS. Other experiments were analyzed using Student’s t-test or
one-way ANOVA followed by a Newman-Keuls post-hoc test. All values are presented as mean
±SEM. Statistical significance was set at P<0.05.

Results

Efficient overexpression of α-syn or GFP after delivery of rAAV vectors
rAAV2/1-α-syn vectors were firstly transduced to HEK293 cells to verify the overexpression of
α-syn, and rAAV2/1-EGFP vectors were used as the negative control. We analyzed total cell
lysates by western blotting and the result revealed that full length human α-syn was highly
expressed in rAAV2/1-α-syn vectors transduced cells but not in cells transduced by rAAV2/
1-EGFP vectors (Fig 1A).

After that, we investigated the effect of overexpressed α-syn in SN at 4 (S1 Fig) and 8 weeks.
The expression of α-syn or GFP were evaluated by performing double immunofluorescence
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Fig 1. Overexpression of α-syn in the SNpc after rAAV-α-syn transduction.Western blotting showed a significant expression of human-α-syn in
HEK293 cells 96 hours after transduction (A). The position of SNpc was indicated (B) and TH positive staining (Red) indicated a loss of DA neurons in the
SNpc 8 weeks after rAAV-α-syn injection, however, the co-staining of human-αsyn (Green) was also observed in the existing DA neurons (I-K). The
overexpression of GFP was also detected in TH-positive neurons in the SNpc after rAAV2/1-GFP injection (F-H). And no α-syn staining was observed in the
none-injected mouse (C-E). TH staining confirmed no loss of DA neurons in GFP and none injected group. Antibody against human α-syn was used (CST).
Scale bar: 100μm.

doi:10.1371/journal.pone.0131281.g001
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staining. Co-immunoreactive staining of human α-syn and TH showed a significant loss of
TH-positive neurons in the SNpc, but we also observed an efficient overexpression in the sur-
viving nigral neurons of rAAV2/1-α-syn infected mice (Fig 1I, 1J and 1K). In contrast, neither
human α-syn positive staining nor loss of TH positive neurons appeared in the SN of unin-
jected mice (Fig 1C, 1D and 1E). And we observed a high expression ofGFP with no insult in
the SN of rAAV2/1-EGFP infected mice (Fig 1F, 1G and 1H). These results demonstrated an
efficient transduction of α-syn or GFP in nigral DA neurons.

The overexpression of α-syn induces progressive loss of nigral neurons,
striatal neurites and morphological changes of neurons in SNpc
Mice were sacrificed for histological analysis at 4, 8, and 12 weeks after delivery of rAAV2/1-α-
syn or rAAV2/1-EGFP vectors. Immunohistochemical staining for TH revealed that the over-
expression of α-syn induced a progressive loss of dopaminergic neurons in the SNpc compared
with the GFP injected control (Fig 2A, 2B, 2C, 2D, 2E and 2F). And the quantifications indi-
cated a significant loss of TH+ neurons in SNpc at 8 weeks (34% reduction; P<0.001 compared
to control) and the deficit was more pronounced at 12 weeks (50% reduction, P<0.001) (Fig
2G). Furthermore, protein levels of TH and dopamine transporter (DAT) in the midbrain also
largely depleted at 8 and 12 weeks after rAAV-α-syn transduction (Fig 3A). We also observed
more dissolving and disappearing nissl bodies in neurons of SNpc 12 weeks after α-syn overex-
pression (Fig 3M, 3N and 3O) and cell counting showed significant decrease of normal neuro-
nal bodies in the SNpc of α-syn overexpressing mice (Fig 3P), which demonstrating a
progressively developed insult to nigral neurons.

To evaluate the impact of α-syn on axonal terminals of nigral DA neurons, optical density
of striatal TH-positive fibers was assessed (Fig 2H, 2I, 2J, 2K, 2L and 2M). Similar to the results
observed in neurons of the SNpc, TH staining density of striatal fibers reduced gradually over
time. Loss of striatal TH positive fibers was observed ranging from 10% at 4 weeks to 25% at 8
weeks (P<0.01) and a marked reduction of 45% at 12 weeks(P<0.001) (Fig 2N).

Impaired motor behavior induced by α-syn overexpression
We performed varieties of behavioral tests to evaluate the functional effects of overexpressing
α-syn or GFP in nigral neurons, and the mice were tested at 4, 8 and 12 weeks after injection.
We found that mice overexpressing α-syn showed deficient locomotor activities compared to
control group at 4 (Fig 4A, 170±26.7 vs. 205±29.5 squares) and 8 weeks (164±17.3 vs. 212±30.3
squares) in open field test, moreover, a significant decrease was observed at 12 weeks (104
±14.2 vs. 195±26.9, P<0.01). In addition, the rearing activities in open field test also decreased
significantly at 12 weeks (Fig 4B, 30±3.6 vs. 62±5.1, P<0.001). The locomotor deficiency was
compatible with a loss of 50% DA neurons at 12 weeks.

Pole test is often used in MPTP treated rodents models to indicate bradykinesia. Mice in the
α-syn group showed a delayed time to descend the pole and a lower score of the behavior on
the pole (data not shown). The total time to climb down the pole increased significantly at 12
weeks (Fig 4C, 12.2±0.78s compared to 9.1±0.52s, P<0.01). Furthermore, scores in swim test
(Fig 4D) also reduced significantly at 8 (P<0.05) and 12 weeks(P<0.01). These data demon-
strated that progressive loss of DA neurons triggered by α-syn overexpression impaired the
motor behavior function.

Targeted Overexpression of α-Synuclein and Vulnerability to MPTP

PLOSONE | DOI:10.1371/journal.pone.0131281 June 26, 2015 7 / 19



Combination of MPTP and overexpressed α-syn leads to more loss of
DA neurons and decline in motor function
Abnormal α-syn was widely observed in neurotoxin induced PD models including the rodent
MPTP model[33, 34], however, conflicting results on the sensitivity to MPTP were obtained in
human α-syn overexpressing mice[35, 36]. One of the possibilities associated with the contra-
diction results may be the different patterns among α-syn overexpression models. To find
whether α-syn overexpression mediated by rAAV vectors could make nigrostriatal system
more susceptible to environmental neurotoxin, we treated the mice MPTP in a subacute regi-
men at 8 weeks after rAAV-α-syn infusion, when modest decline of nigrostriatal system was
observed. Then behavioral activities were assessed after injections of 5 consecutive days (once
per day), and during which time the body weight of mice treated with MPTP decreased slightly
(Fig 5A). Twenty-four hours after the last MPTP injection, mice in α-syn-MPTP group didn’t
exhibit significantly increased time to descend the pole compared to the other three groups.
While on the 14th day after the last MPTP injection, mice of α-syn-MPTP showed a declined
motor behavior in pole test and the time to descend the pole significantly increased compared
to mice in control (6.83±0.66 vs. 3.93±0.35s, P<0.001), α-syn (6.83±0.66 vs. 4.74±0.37,

Fig 2. Immunohistological analysis of DA neurons in the SNpc and TH positive neurites in the
striatum.Representative micrographs of nigral sections immunostained for TH in mice at 4, 8 and 12 weeks
after delivery of rAAV-GFP (CON: A, C and E) and rAAV-α-syn (SYN: B, D and F) vectors. Scale bar: 400μm.
Illustration of striatal TH positive fiber density over time (H, J, L: rAAV-GFP; I, K, M: rAAV-α-syn). Scale bar:
50μm. Quantification of TH positive neurons in the SNpc and striatal TH immunoreactive fiber density was
shown (G, N). Data are means ± SEM of 6 mice, **P<0.01, ***P<0.001 as compared to rAAV-GFP control
(2-way ANOVA, Bonferroni post hoc test).

doi:10.1371/journal.pone.0131281.g002
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P<0.01), and control-MPTP (6.83±0.66 vs. 5.09±0.40, P<0.05) groups (Fig 5B). Locomotor
activities in open-field test reduced 2 and 14 days after the last MPTP injection, rearing activi-
ties showed a notable decrease too (Fig 5C and 5D). Behavior tests suggested increased motor
impairments to MPTP after the overexpression of α-syn.

To evaluate the pathological alterations of MPTP and α-syn to nigrostriatal system, we
assessed the TH positive neurons in SNpc after MPTP treatment. We found more loss of TH
positive neurons in the SNpc of α-syn-MPTP group compared with the α-syn group (Fig 5E,
5F, 5G, 5H and 5I) (75% reduction vs. 29% reduction, Newman-Keuls post-hoc test, P<0.001)
and control-MPTP group (75% reduction vs. 37% reduction, P<0.001). Consistent with lesions
of nigral DA neurons, a similar reduction of TH protein in striatum of α-syn-MPTP mice was
also detected by western blotting (Fig 6A and 6B).

Biochemical impairments after MPTP treatment
To determine the impact of MPTP on dopamine synthesis, storage and turnover, striatal dopa-
mine (DA) and its metabolites, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid
(HVA), and 5-hydroxytryptamin (5-HT) were assessed by HPLC (Table 1). Consistent with

Fig 3. Protein levels of α-syn, TH and DAT in midbrain andmorphology of DA neurons in the SNpc.
Representative bands for TH, DAT, α-syn and β-actin in the midbrain at 4, 8 and 12 weeks of the rAAV-GFP
(CON) and rAAV-α-syn (SYN) transduced mice (A). The densities were analyzed as protein/β-actin ratio and
normalized by the results of CON. Data are presented as mean±SEM of 3 mice (B, C), *P<0.05, **P<0.01
compared with the GFP control (unpaired, two-tailed Student’s t test). (Antibody against α-syn: Santa Cruz,
sc-7011-R). Neuronal morphology exhibited by nissl stain at 4 (G-I), 8 (G-L) and 12 weeks (M-O) after rAAV-
α-syn injection. Note that bigger arrowheads indicate normal staining of nissl bodies in nigral neurons at 12
weeks of rAAV-GFP transduced mice (F) and the smaller arrows denote dissolving nissl bodies of neurons.
Numbers of normal staining neuronal bodies in the SNpc were shown as percentage of the numbers in GFP
control mice (P). Data are means ± SEM of 6 mice, #, *P<0.05, +++, ***P<0.001 (one-way ANOVA
Newman-Keuls post-hoc test). Scale bars: 200μm (D, G, J, M); 50μm (E, H, K, N); 50μm (F, I, L, O).

doi:10.1371/journal.pone.0131281.g003
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the motor impairment, a reduction of striatal DA level in MPTP mice was found (1.60±0.12 vs.
12.22±0.89 ng/mg, P<0.001), and the depletion was more pronounced in the α-syn-MPTP
group (0.87±0.12 vs. 12.22±0.89ng/mg, P<0.001). Additionally, we found a significant increase
in DA turnover, as measured by DOPAC/DA and HVA/DA ratios (Fig 6C). Ratio of DOPAC/
DA exhibited an increase of 14 times in mice of α-syn-MPTP group compared to control,
while the ratio of mice in MPTP group just increased approximately 8 times. And the HVA/
DA ratio revealed a similar change to the DOPAC/DA ratio. The notable changes revealed a
more pronounced inhibitory effect on neurotransmitters triggered by combination of MPTP
and α-syn.

Combination with MPTP induces more phosphorylation, accumulation
and nuclear distribution of α-syn
Abnormal aggregation of α-syn is linked to its toxicity in animal models of PD and double
fluorescence immunostaining was performed to visualize the condition of α-syn in DA neu-
rons in SNpc. Though toxic forms of α-syn are not clearly confirmed, oligomeric, phosphory-
lated and other posttranslational modifications of α-syn may all contribute to lesions of DA
neurons [37–39], and cell distribution of α-syn may also impact the neuronal toxicity. We

Fig 4. Motor behavior assessment.Motor functions were assessed in open-field arena, pole test and swim test. Spontaneous horizontal locomotor
activities (A) and rearing activities (B) at 4, 8, and 12 weeks after rAAV-α-syn injection (SYN), in comparison with rAAV-GFP group (CON). Total time to
descend the pole (C) and the behavioral score (D) in swimming test of rAAV-α-syn transduced mice, in comparison with rAAV-GFPmice. Data are expressed
as meanαSEM of 8 mice. *P<0.05, ** P<0.01, ***P<0.001 (unpaired, two-tailed Student’s t test for open-field and pole test; Wilcoxon signed rank tests for
swimming test).

doi:10.1371/journal.pone.0131281.g004
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Fig 5. Motor dysfunction assessment and numbers of TH positive neurons in the SNpc after MPTP treatment. Body weights of mice during MPTP
injection (5 consecutive days: A). *, compared to CON (rAAV-GFP+saline); +, compared to SYN (rAAV-α-syn+saline); #, compared to MPTP (rAAV-GFP
+MPTP); SYN-MPTP (rAAV-α-syn+MPTP). ANOVAMotor dysfunction assessment: pole test was performed 1 and 14 days after the last MPTP injection (B),
and locomotor activities as well as rearing activities in open field test were recorded 2 and 14 days after the last MPTP injection (C-D), data are means±SEM
of 9 mice, *, +, #P<0.05, ++P<0.01, ***P<0.001 (one-way ANOVA Newman-Keuls post-hoc test). Representative images and quantification for TH positive
neurons in the SNpc after MPTP treatment (E-I), scale bar: 400μm. Data are means±SEM of 6 mice, **P<0.01; ***, +++, ### P<0.001 (one-way ANOVA
Newman-Keuls post-hoc test).

doi:10.1371/journal.pone.0131281.g005

Fig 6. Loss of striatal protein TH and increased dopamine turnover after MPTP treatment. Protein blots
for striatal TH were analyzed TH/β-actin ratio and normalized by the results of CON (A, B). Dopamine
turnover, which was analyzed by DOPAC/DA and HVA/DA ratio, exhibited significant increase after MPTP
treatment (C). Data are presented as mean±SEM of 3 mice; *, compared to CON; #, compared to SYN; +,
compared to MPTP. *, +, #: P<0.05; **, ++, ##: P<0.01; ***, ###, +++: P<0.001 (one-way ANOVA Newman-
Keuls post-hoc test).

doi:10.1371/journal.pone.0131281.g006
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found the overexpression of α-syn was maintained after MPTP treatment and the staining
sizes increased surrounding the nucleus in α-syn transduced neurons (Fig 7D, 7E and 7F).
Meanwhile, more α-syn positive accumulations were observed distributing in nucleus of neu-
rons in the SNpc of α-syn+MPTP group (Fig 7J, 7K and 7L). Nuclear aggregation of α-syn
may be toxic to neurons according to researches by Kontopoulos and Ma [40, 41]. Previous
studies have shown that aggregation of α-syn can induce damage to mitochondria, autophagy,
ubiquitin-protease system as well as production of ROS, thus destroy the normal function of
neurons and contribute to neuronal degeneration [42, 43].

After that, we visualized the phosphorylated forms in nigral DA neurons with an antibody
specific for phosphor-Ser129- α-syn (Fig 8A, 8D, 8G and 8J). In α-syn+MPTP mice, we
detected pronounced staining of phosphorylated forms distributing both in cytoplasm and
nucleus of DA neurons, in which the TH staining was markedly decreased (Fig 8J, 8K and 8L).
Moreover, phosphorylated α-syn was also detected in DA neurons of rAAV- α-syn and MPTP
group (Fig 8D, 8E, 8F, 8G, 8H and 8I), while none was observed in DA neurons of control mice
(Fig 8A, 8B and 8C). Consistent with the immunofluorescence staining, quantification for pro-
tein levels of the phosphorylated forms in midbrain of α-syn+MPTP mice also supported the
significant accumulation (Fig 8M and 8N).

Discussion
In the current study, we have induced widespread overexpression of human wild type α-syn in
the mouse SN by stereotaxic delivery of rAAV2/1 vectors. A progressive lesion of DA neurons
in the SNpc was observed after rAAV2/1- α-syn injection, and the loss of TH positive neurons
in the SNpc increased from 30% at 8 weeks to nearly 50% at 12 weeks. Long term effects of the
overexpressed α-syn consisted of degeneration of DA neurons in the SNpc, appearance of stria-
tal dystrophic neurites throughout and motor dysfunction. Comparing to previous unilateral
models, we performed a bilateral rAAV2/1- α-syn administration. The bilateral insults are sim-
ilar to the situations in clinical patients and motor activities are easy detected in the behavioral
experiments. Rodent models of PD by overexpressing α-syn in the nigrostriatal pathway using
viral vectors are usually unilateral models. The overexpression of human α-syn in bilateral SN
led to significant motor impairments and pathological damages in our study, however, most
unilateral lesions by rAAV induced α-syn overexpression with comparative titers showed min-
imal neurodegeneration and behavioral impairments [6, 12, 14, 16, 17, 44]. The bilateral lesions
may produce more damage than unilateral lesions and behavioral impairments may be more

Table 1. Striatal dopamine depletion after MPTP treatment.

Striatal level, ng/mg of tissue (mean±SEM)

Treatment Dopamine DOPAC HVA 5-HT

CON 12.22±0.89 1.69±0.40 0.85±0.09 0.41±0.07

SYN 9.31±0.86* 1.24±0.24 0.69±0.07* 0.43±0.08

MPTP 1.60±0.12***,### 1.71±0.01 1.09±0.00## 0.41±0.01

SYN-MPTP 0.87±0.12***,### 1.65±0.11 1.15±0.07*,## 0.31±0.12

*: P<0.05,

***: P<0.001 compared to CON;

##: P<0.01,

###: P<0.001 compared to SYN.

One-way ANOVA Newman-Keuls post-hoc test.

doi:10.1371/journal.pone.0131281.t001
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significant. In addition to bilateral lesions, different rAAV systems which could influence the
transduction efficacy should also be considered.

Models based on rAAV mediated overexpression of human wild-type α-syn exhibit differ-
ent timeframes and severity of pathology [6, 12, 14, 16, 17, 44]. The variability is most likely
due to distinct serotypes of the rAAV virus as well as the different promoters and enhancers,
which all lead to diverse transduction efficacy and selectivity of neurons. In addition, dose-
dependent degeneration after rAAV- α-synuclein delivery has been implicated in research by
Oliveras, which has demonstrated that the expression levels of α-syn notably influence the
rates of neurodegeneration [17]. Moreover, rats, mice and non-human primates subjected to
the same administration may display different time-courses of changes. It has been shown that
the expression levels of α-syn should be considered as a primary factor in determining the
extent and time-span of neurodegeneration.

In addition to triggering degeneration of DA neurons and neurites, the overexpression of α-
syn led to dysfunction of motor activities monitored in spontaneous behavioral tests. Motor
behavior impairments appeared to be significant at 12 weeks after injection of rAAV2/1- α-syn

Fig 7. α-syn aggregation and nuclear distribution in nigral neurons after MPTP treatment.Double Immunofluorescence staining for NeuN (green) and
α-syn (red) was performed to assess the condition of α-syn (antibody against α-syn, Santa Cruz, sc-7011-R). Small arrows denote dot-like accumulation of α-
syn surround the nucleus after rAAV- α-syn transduction (E). More α-syn accumulation in cytoplasm (small arrows, K) and nucleus distribution (big arrow, K)
in neurons of the α-syn and MPTP combined treatments. A-C: CON (rAAV-GFP+saline); D-F: SYN (rAAV- α-syn+saline); G-I: MPTP (rAAV-GFP+MPTP);
J-L: SYN-MPTP (rAAV- α-syn+MPTP). Scale bar: 50um (A, B, D, E, G, H, J, K); 20μm (C, F, I, L).

doi:10.1371/journal.pone.0131281.g007

Fig 8. Accumulation of phosphorylated α-syn in TH positive neurons of SN and increased protein
levels of phosphorylated α-syn in midbrain. Double Immunofluorescence staining for phosphorylated α-
syn (P-S129) (green) and TH (red) was performed. Phosphorylated forms were observed in TH positive
neurons of SYN (D-F) and MPTP (G-I) mice, furthermore, notable accumulation was also detected in DA
neurons of the SYN-MPTPmice (J-L). Scale bar: 20μm. Phosphorylated α-syn (P-S129) was quantified by
western blotting (M) and the accumulation in midbrain of SYN-MPTPmice was significant (N). Data are
presented as mean±SEM of 3 mice; *P<0.05, ***P<0.001 compared to SYN-MPTP (one-way ANOVA
Newman-Keuls post-hoc test).

doi:10.1371/journal.pone.0131281.g008
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vectors. Previous studies have shown that only more than half loss of DA neurons or depletion
of striatal DA was sufficient to induce significant behavioral manifestations. So in most
instances, virus-mediated models of α-synuclein overexpression do not display significant
behavioral deficits [45].

Etiology of PD is complex, both clinical and experimental studies have proposed that the
interactions between genetic and environmental factors are involved in the disease. Neurotox-
ins such as 6-hydroxydopamine (6-OHDA), MPTP, rotenone and paraquat can mimic one or
more characteristics of PD, thus they are widely used to create PD models. MPTP is converted
to 1-methyl-4-phenylpyridium ion (MPP+) by monoamine oxidase B (MAO-B) in glia and
serotonergic neurons after crossing the blood–brain barrier [46]. And MPP+ is released into
extracellular space and selectively transported into neurons by DAT [47]. It inhibits function
of mitochondria complex I and induces oxidative stress, thus to exert cytotoxic effects [48].

C57BL/6 mice are more sensitive to MPTP than rats, and three MPTP regimens have been
used to induce nigrostriatal damage: acute, subacute and chronic [27]. MPTP models are not
sufficient to produce progressive neurodegeneration, therefore nigrostriatal lesions are usually
detected one or two days after the last MPTP injection, and partial recovery has been observed
in acute and subacute regimens at longer time points after MPTP administration [49]. There-
fore, we treated the rAAV- α-syn transduced mice with MPTP to investigate the impact of
combined genetic and environmental insults.

MPTP administration after α-syn overexpression induced greater nigrostriatal impairments
compared to the α-syn+saline and control+MPTP groups, and deficits in motor activities were
observed in pole and open field test 14 days after the last injection. Moreover, a neurochemical
analysis indicated markedly decreased striatal DA levels and increased DA turnover after
MPTP administration. These results demonstrate an increased susceptibility of mice to MPTP
after nigral α-syn overexpression. In addition, our findings suggest that the neurotoxin MPTP
induces more striatal DA reduction than α-syn. Phosphorylation of α-syn at the serine residue
in position 129, a post-transcriptional modification, is also considered to be associated with α-
syn pathology [50–52]. Positive staining of S129-phosphorylated x-syn increased significantly
after the combined treatment of α-syn and MPTP. Some in vitro and in vivo studies have sug-
gested that the phosphorylated form of α-syn is toxic to DA neurons [53–55].

The overexpression of α-syn can induce increased oxidative stress and decreased mitochon-
dria complex I activity. The oxidative stress in turn may induce α-syn to aggregate into toxic
forms, which would further damage mitochondria and produce more ROS [56, 57]. Therefore,
the overexpressed α-syn probably leads to impaired mitochondria more vulnerable to MPTP
and induces more insults. Furthermore, the overexpressed α-syn is able to impact the protein
degradation system including the ubiquitin-proteasome system and autophagy [58, 59]. The
damaged protein degradation system in turn leads to more α-syn accumulation, and a vicious
cycle is created. Mitochondria damage and ROS production induced by MPTP may impair the
protein degradation system and accelerate the toxic aggregation of α-syn. Moreover, α-syn has
also been reported a prion-like spread between cells and the cell-to-cell transmission of patho-
logical α-syn may cause more aggregation of α-syn and neuronal degeneration [60–63]. The
neuronal insults of mitochondria, protein degradation system and oxidative stress, together
with the toxic aggregation of α-syn may increase the sensitivity of DA neurons to MPTP. And
the toxic role of aberrant α-syn in neurons as well as the exact mechanisms underlying the
interaction with MPTP require further exploration.

Many in vitro studies have shown that α-syn overexpression enhances cell death following
MPP+ exposure, and some have reported a resistant effect to MPTP in α-syn null mouse mod-
els [64]. These studies support the notion that the overexpression of α-syn is involved in an
increased vulnerability of DA neurons to MPTP. However, Rathke’s research in transgenic
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mice overexpressing mutant α-syn A30P has failed to show heightened susceptibility to MPTP
[65]. The motor phenotype and pathological impairments are different between transgenic and
rAAV generated α-syn mouse models in many studies. It is probable that adaptive changes of
DA neurons in response to α-syn overexpression prevent heightened sensitivity to MPTP in
transgenic models. However, mice generated by rAAV mediated overexpression of the α-syn
A53T mutant have also failed to show increased sensitivity to MPTP [66]. The overexpression
of the α-syn A53T mutant did not produce loss of DA neuron and striatal fiber before MPTP
treatment in their study, while modest impairments appeared in our α-syn overexpressing
mice. It’s possible that the expression levels and pathological stages induced by α-syn influence
the vulnerability to MPTP. Due to the variable effects caused by the overexpression of α-syn,
the characteristics of neurons with increased sensitivity to MPTP require further clarification.

In conclusion, we used rAAV2/1- α-syn vectors to generate progressive nigrostriatal pathol-
ogy and motor behavior deficits, the lesions mimicked primary features observed in PD
patients. Furthermore, we also investigated the influence of neurotoxin MPTP after rAAV vec-
tors mediated overexpression of α-syn, and the results suggested increased vulnerability of
mice to MPTP. These models extend the role of overexpressed α-syn in the nigrostriatal system
under conditions of environmental insults, and simultaneously provide effective approaches
for exploring the pathologic mechanisms of PD and the development of related therapies.

Supporting Information
S1 Fig. Overexpression of α-syn in the SNpc at 4 weeks after rAAV- α-syn transduction.
TH positive staining (Red) and co-staining of human- α-syn (Green) were observed in DA
neurons (D-F). The overexpression of GFP was also detected in TH-positive neurons in the
SNpc after rAAV2/1-GFP injection (A-C). Western blotting showed significant increases of α-
syn in midbrain of rAAV2/1- α-syn injected mice at 4 weeks after transduction (G-H). Data
are expressed as mean±SEM of 3 mice. �P<0.05 (unpaired, two-tailed Student’s t test). Scale
bar: 100μm.
(TIF)

Author Contributions
Conceived and designed the experiments: LKS KLM YHY NHC. Performed the experiments:
LKS ZM XYS FN NH. Analyzed the data: LKS. Wrote the paper: LKS YHY.

References
1. Spillantini MG, Schmidt ML, Lee VM- Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bod-

ies. Nature. 1997; 388(6645): 839–40. PMID: 9278044

2. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein
gene identified in families with Parkinson's disease. Science. 1997; 276(5321): 2045–7. PMID:
9197268

3. Singleton A, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. α-Synuclein locus triplica-
tion causes Parkinson's disease. Science. 2003; 302(5646): 841–841. PMID: 14593171

4. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. Genome-wide association
study reveals genetic risk underlying Parkinson's disease. Nature genetics. 2009; 41(12): 1308–12.
doi: 10.1038/ng.487 PMID: 19915575

5. Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, et al. Genomewide association
study for susceptibility genes contributing to familial Parkinson disease. HumGenet. 2009; 124(6):
593–605. doi: 10.1007/s00439-008-0582-9 PMID: 18985386

6. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, et al. Parkinson-like neurode-
generation induced by targeted overexpression of synuclein in the nigrostriatal system. journal of neu-
roscience. 2002; 22(7): 2780–91. PMID: 11923443

Targeted Overexpression of α-Synuclein and Vulnerability to MPTP

PLOSONE | DOI:10.1371/journal.pone.0131281 June 26, 2015 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0131281.s001
http://www.ncbi.nlm.nih.gov/pubmed/9278044
http://www.ncbi.nlm.nih.gov/pubmed/9197268
http://www.ncbi.nlm.nih.gov/pubmed/14593171
http://dx.doi.org/10.1038/ng.487
http://www.ncbi.nlm.nih.gov/pubmed/19915575
http://dx.doi.org/10.1007/s00439-008-0582-9
http://www.ncbi.nlm.nih.gov/pubmed/18985386
http://www.ncbi.nlm.nih.gov/pubmed/11923443


7. Lee M, Hyun DH, Halliwell B, Jenner P. Effect of the overexpression of wild-type or mutant α-synuclein
on cell susceptibility to insult. Journal of neurochemistry. 2001; 76(4): 998–1009. PMID: 11181819

8. El-Agnaf O, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, et al. Aggregates frommutant
and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblas-
toma cells by formation of β-sheet and amyloid-like filaments. FEBS letters. 1998; 440(1): 71–5. PMID:
9862428

9. Wakamatsu M, Ishii A, Iwata S, Sakagami J, Ukai Y, Ono M, et al. Selective loss of nigral dopamine
neurons induced by overexpression of truncated human α-synuclein in mice. Neurobiology of aging.
2008; 29(4): 574–85. PMID: 17174013

10. Matsuoka Y, Vila M, Lincoln S, McCormack A, Picciano M, LaFrancois J, et al. Lack of nigral pathology
in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter. Neuro-
biol Dis. 2001; 8(3): 535–9. PMID: 11442360

11. Fernagut P-O, Chesselet M-F. Alpha-synuclein and transgenic mouse models. Neurobiol Dis. 2004; 17
(2): 123–30. doi: 10.1016/j.nbd.2004.07.001 PMID: 15474350

12. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Björklund A. Nigrostriatal α-synucleinopathy
induced by viral vector-mediated overexpression of human α-synuclein: a new primate model of Parkin-
son's disease. Proceedings of the National Academy of Sciences. 2003; 100(5): 2884–9. PMID:
12601150

13. Bianco CL, Ridet J, Schneider B, Deglon N, Aebischer P. α-Synucleinopathy and selective dopaminer-
gic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proceedings of the National
Academy of Sciences. 2002; 99(16): 10813–8. PMID: 12122208

14. Gombash SE, Manfredsson FP, Kemp CJ, Kuhn NC, Fleming SM, Egan AE, et al. Morphological and
behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat
nigrostriatal system. PLoS One. 2013; 8(11). doi: 10.1371/journal.pone.0081426 PMID: 24312298

15. Lauwers E, Debyser Z, Dorpe J, Strooper B, Nuttin B, Baekelandt V. Neuropathology and Neurodegen-
eration in Rodent Brain Induced by Lentiviral Vectormediated Overexpression of α-Synuclein. Brain
pathology. 2003; 13(3): 364–72. doi: 10.1111/j.1750-3639.2003.tb00035.x PMID: 12946025

16. YamadaM, Iwatsubo T, Mizuno Y, Mochizuki H. Overexpression of alpha-synuclein in rat substantia
nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of cas-
pase-9: resemblance to pathogenetic changes in Parkinson's disease. J Neurochem. 2004; 91(2):
451–61. PMID: 15447678

17. Oliveras-Salva M, Van der Perren A, Casadei N, Stroobants S, Nuber S, D'Hooge R, et al. rAAV2/7 vec-
tor-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation
and progressive dose-dependent neurodegeneration. Mol Neurodegener. 2013; 8(44): 1750–326. doi:
10.1186/1750-1326-8-44 PMID: 24267638

18. Koprich JB, Johnston TH, Huot P, Reyes MG, Espinosa M, Brotchie JM. Progressive neurodegenera-
tion or endogenous compensation in an animal model of Parkinson's disease produced by decreasing
doses of alpha-synuclein. PLoS One. 2011; 6(3): e17698. doi: 10.1371/journal.pone.0017698 PMID:
21408191

19. Low K, Aebischer P. Use of viral vectors to create animal models for Parkinson's disease. Neurobiol
Dis. 2012; 48(2): 189–201. doi: 10.1016/j.nbd.2011.12.038 PMID: 22227451

20. Van der Perren A, Van den Haute C, Baekelandt V. Viral Vector-Based Models of Parkinson's Disease.
Curr Top Behav Neurosci. 2014; 18: 18. doi: 10.1007/7854_2014_310 PMID: 24839101

21. Mulcahy P, Walsh S, Paucard A, Rea K, Dowd E. Characterisation of a novel model of Parkinson's dis-
ease by intra-striatal infusion of the pesticide rotenone. Neuroscience. 2011; 181: 234–42. doi: 10.
1016/j.neuroscience.2011.01.038 PMID: 21277943

22. Bove J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson's disease. NeuroRx.
2005; 2(3): 484–94. doi: 10.1602/neurorx.2.3.484 PMID: 16389312

23. Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson's disease: what have we
learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009; 30(9): 475–83. doi: 10.
1016/j.tips.2009.06.005 PMID: 19729209

24. Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord. 1998; 1: 35–8. PMID:
9613716

25. Langston JW, Ballard PA Jr. Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-
tetrahydropyridine. N Engl J Med. 1983 Aug 4; 309(5): 310. PMID: 6602944

26. Fox SH, Brotchie JM. The MPTP-lesioned non-human primate models of Parkinson's disease. Past,
present, and future. Prog Brain Res. 2010; 184: 133–57. doi: 10.1016/S0079-6123(10)84007-5 PMID:
20887873

Targeted Overexpression of α-Synuclein and Vulnerability to MPTP

PLOSONE | DOI:10.1371/journal.pone.0131281 June 26, 2015 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/11181819
http://www.ncbi.nlm.nih.gov/pubmed/9862428
http://www.ncbi.nlm.nih.gov/pubmed/17174013
http://www.ncbi.nlm.nih.gov/pubmed/11442360
http://dx.doi.org/10.1016/j.nbd.2004.07.001
http://www.ncbi.nlm.nih.gov/pubmed/15474350
http://www.ncbi.nlm.nih.gov/pubmed/12601150
http://www.ncbi.nlm.nih.gov/pubmed/12122208
http://dx.doi.org/10.1371/journal.pone.0081426
http://www.ncbi.nlm.nih.gov/pubmed/24312298
http://dx.doi.org/10.1111/j.1750-3639.2003.tb00035.x
http://www.ncbi.nlm.nih.gov/pubmed/12946025
http://www.ncbi.nlm.nih.gov/pubmed/15447678
http://dx.doi.org/10.1186/1750-1326-8-44
http://www.ncbi.nlm.nih.gov/pubmed/24267638
http://dx.doi.org/10.1371/journal.pone.0017698
http://www.ncbi.nlm.nih.gov/pubmed/21408191
http://dx.doi.org/10.1016/j.nbd.2011.12.038
http://www.ncbi.nlm.nih.gov/pubmed/22227451
http://dx.doi.org/10.1007/7854_2014_310
http://www.ncbi.nlm.nih.gov/pubmed/24839101
http://dx.doi.org/10.1016/j.neuroscience.2011.01.038
http://dx.doi.org/10.1016/j.neuroscience.2011.01.038
http://www.ncbi.nlm.nih.gov/pubmed/21277943
http://dx.doi.org/10.1602/neurorx.2.3.484
http://www.ncbi.nlm.nih.gov/pubmed/16389312
http://dx.doi.org/10.1016/j.tips.2009.06.005
http://dx.doi.org/10.1016/j.tips.2009.06.005
http://www.ncbi.nlm.nih.gov/pubmed/19729209
http://www.ncbi.nlm.nih.gov/pubmed/9613716
http://www.ncbi.nlm.nih.gov/pubmed/6602944
http://dx.doi.org/10.1016/S0079-6123(10)84007-5
http://www.ncbi.nlm.nih.gov/pubmed/20887873


27. Jackson-Lewis V, Przedborski S. Protocol for the MPTPmouse model of Parkinson's disease. Nat Pro-
toc. 2007; 2(1): 141–51. PMID: 17401348

28. Tsui TY, Lau CK, Ma J, Wu X, Wang YQ, Farkas S, et al. rAAV-mediated stable expression of heme
oxygenase-1 in stellate cells: a new approach to attenuate liver fibrosis in rats. Hepatology. 2005; 42
(2): 335–42. PMID: 16025519

29. Yuan Y, Jin J, Yang B, ZhangW, Hu J, Zhang Y, et al. Overexpressed alpha-synuclein regulated the
nuclear factor-kappaB signal pathway. Cell Mol Neurobiol. 2008; 28(1): 21–33. PMID: 17712623

30. Haobam R, Sindhu KM, Chandra G, Mohanakumar KP. Swim-test as a function of motor impairment in
MPTPmodel of Parkinson's disease: a comparative study in two mouse strains. Behav Brain Res.
2005; 163(2): 159–67. PMID: 15941598

31. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone
model of Parkinson's disease. Neurobiol Dis. 2009; 34(2): 279–90. PMID: 19385059

32. Connor TJ, Kelly JP, Leonard BE. Forced swim test-induced neurochemical endocrine, and immune
changes in the rat. Pharmacology, biochemistry, and behavior. 1997; 58(4): 961–7. PMID: 9408201

33. Jethva PN, Kardani JR, Roy I. Modulation of alpha-synuclein aggregation by dopamine in the presence
of MPTP and its metabolite. The FEBS journal. 2011; 278(10): 1688–98. doi: 10.1111/j.1742-4658.
2011.08093.x PMID: 21410644

34. Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S. Alpha-synuclein up-reg-
ulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin
MPTP. J Neurochem. 2000; 74(2): 721–9. PMID: 10646524

35. Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL. Mice lacking alpha-synuclein have an attenuated
loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology. 2004; 25
(5): 761–9. PMID: 15288507

36. Thomas B, Mandir AS, West N, Liu Y, Andrabi SA, Stirling W, et al. Resistance to MPTP-neurotoxicity
in alpha-synuclein knockout mice is complemented by human alpha-synuclein and associated with
increased beta-synuclein and Akt activation. PloS one. 2011; 6(1): 0016706. doi: 10.1371/journal.
pone.0016706 PMID: 21304957

37. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, et al. Phosphorylation
of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body
disease. Journal of Biological Chemistry. 2006; 281(40): 29739–52. PMID: 16847063

38. Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ. The formation of highly solu-
ble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron.
2003; 37(4): 583–95. PMID: 12597857

39. Beyer K. α-Synuclein structure, posttranslational modification and alternative splicing as aggregation
enhancers. Acta Neuropathol. 2006; 112(3): 237–51. PMID: 16845533

40. Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation
and promote neurotoxicity. HumMol Genet. 2006; 15(20): 3012–23. PMID: 16959795

41. Ma KL, Song LK, Yuan YH, Zhang Y, Han N, Gao K, et al. The nuclear accumulation of alpha-synuclein
is mediated by importin alpha and promotes neurotoxicity by accelerating the cell cycle. Neuropharma-
cology. 2014; 82: 132–42. doi: 10.1016/j.neuropharm.2013.07.035 PMID: 23973294

42. Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci. 2001; 2(7): 492–
501. PMID: 11433374

43. Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K. The role of α-synuclein in Parkinson's dis-
ease: insights from animal models. Nature Reviews Neuroscience. 2003; 4(9): 727–38. PMID:
12951565

44. Decressac M, Mattsson B, Lundblad M, Weikop P, Bjorklund A. Progressive neurodegenerative and
behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopa-
mine neurons. Neurobiology of disease. 2012; 45(3): 939–53. doi: 10.1016/j.nbd.2011.12.013 PMID:
22182688

45. Chesselet MF. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's dis-
ease? Exp Neurol. 2008; 209(1): 22–7. PMID: 17949715

46. Chiba K, Trevor A, Castagnoli N Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain mono-
amine oxidase. Biochem Biophys Res Commun. 1984; 120(2): 574–8. PMID: 6428396

47. Javitch JA, D'Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine
neurons explains selective toxicity. Proc Natl Acad Sci U S A. 1985; 82(7): 2173–7. PMID: 3872460

48. Przedborski S, Tieu K, Perier C, Vila M. MPTP as a mitochondrial neurotoxic model of Parkinson's dis-
ease. J Bioenerg Biomembr. 2004; 36(4): 375–9. PMID: 15377875

Targeted Overexpression of α-Synuclein and Vulnerability to MPTP

PLOSONE | DOI:10.1371/journal.pone.0131281 June 26, 2015 18 / 19

http://www.ncbi.nlm.nih.gov/pubmed/17401348
http://www.ncbi.nlm.nih.gov/pubmed/16025519
http://www.ncbi.nlm.nih.gov/pubmed/17712623
http://www.ncbi.nlm.nih.gov/pubmed/15941598
http://www.ncbi.nlm.nih.gov/pubmed/19385059
http://www.ncbi.nlm.nih.gov/pubmed/9408201
http://dx.doi.org/10.1111/j.1742-4658.2011.08093.x
http://dx.doi.org/10.1111/j.1742-4658.2011.08093.x
http://www.ncbi.nlm.nih.gov/pubmed/21410644
http://www.ncbi.nlm.nih.gov/pubmed/10646524
http://www.ncbi.nlm.nih.gov/pubmed/15288507
http://dx.doi.org/10.1371/journal.pone.0016706
http://dx.doi.org/10.1371/journal.pone.0016706
http://www.ncbi.nlm.nih.gov/pubmed/21304957
http://www.ncbi.nlm.nih.gov/pubmed/16847063
http://www.ncbi.nlm.nih.gov/pubmed/12597857
http://www.ncbi.nlm.nih.gov/pubmed/16845533
http://www.ncbi.nlm.nih.gov/pubmed/16959795
http://dx.doi.org/10.1016/j.neuropharm.2013.07.035
http://www.ncbi.nlm.nih.gov/pubmed/23973294
http://www.ncbi.nlm.nih.gov/pubmed/11433374
http://www.ncbi.nlm.nih.gov/pubmed/12951565
http://dx.doi.org/10.1016/j.nbd.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22182688
http://www.ncbi.nlm.nih.gov/pubmed/17949715
http://www.ncbi.nlm.nih.gov/pubmed/6428396
http://www.ncbi.nlm.nih.gov/pubmed/3872460
http://www.ncbi.nlm.nih.gov/pubmed/15377875


49. Luchtman DW, Shao D, Song C. Behavior, neurotransmitters and inflammation in three regimens of the
MPTPmouse model of Parkinson's disease. Physiol Behav. 2009; 98(1–2): 130–8. doi: 10.1016/j.
physbeh.2009.04.021 PMID: 19410592

50. Gorbatyuk OS, Li S, Sullivan LF, ChenW, Kondrikova G, Manfredsson FP, et al. The phosphorylation
state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson
disease. Proc Natl Acad Sci U S A. 2008; 105(2): 763–8. doi: 10.1073/pnas.0711053105 PMID:
18178617

51. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. alpha-Synuclein is
phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002; 4(2): 160–4. PMID: 11813001

52. Schell H, Hasegawa T, Neumann M, Kahle PJ. Nuclear and neuritic distribution of serine-129 phos-
phorylated alpha-synuclein in transgenic mice. Neuroscience. 2009; 160(4): 796–804. doi: 10.1016/j.
neuroscience.2009.03.002 PMID: 19272424

53. Sugeno N, Takeda A, Hasegawa T, Kobayashi M, Kikuchi A, Mori F, et al. Serine 129 phosphorylation
of alpha-synuclein induces unfolded protein response-mediated cell death. J Biol Chem. 2008; 283
(34): 23179–88. doi: 10.1074/jbc.M802223200 PMID: 18562315

54. Chau KY, Ching HL, Schapira AH, Cooper JM. Relationship between alpha synuclein phosphorylation,
proteasomal inhibition and cell death: relevance to Parkinson's disease pathogenesis. J Neurochem.
2009; 110(3): 1005–13. doi: 10.1111/j.1471-4159.2009.06191.x PMID: 19493164

55. Chen L, Feany MB. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a
Drosophila model of Parkinson disease. Nat Neurosci. 2005; 8(5): 657–63. PMID: 15834418

56. Xie W, Chung KK. Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models
of Parkinson's disease. J Neurochem. 2012; 122(2): 404–14. doi: 10.1111/j.1471-4159.2012.07769.x
PMID: 22537068

57. Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM. Neuroinflammation and oxidation/
nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci. 2008; 28(30):
7687–98. doi: 10.1523/JNEUROSCI.0143-07.2008 PMID: 18650345

58. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant α-synu-
clein by chaperone-mediated autophagy. Science. 2004; 305(5688): 1292–5. PMID: 15333840

59. Emmanouilidou E, Stefanis L, Vekrellis K. Cell-produced alpha-synuclein oligomers are targeted to,
and impair, the 26S proteasome. Neurobiol Aging. 2010; 31(6): 953–68. doi: 10.1016/j.neurobiolaging.
2008.07.008 PMID: 18715677

60. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein
transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012; 338
(6109): 949–53. doi: 10.1126/science.1227157 PMID: 23161999

61. Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, et al. alpha-Synuclein propagates from
mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin
Invest. 2011; 121(2): 715–25. doi: 10.1172/JCI43366 PMID: 21245577

62. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, et al. Transmission of multiple
system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A. 2013; 110(48): 19555–60. doi: 10.
1073/pnas.1318268110 PMID: 24218576

63. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, et al. Inclusion formation and neuronal
cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A. 2009;
106(31): 13010–5. doi: 10.1073/pnas.0903691106 PMID: 19651612

64. Dauer W, Kholodilov N, Vila M, Trillat A- C, Goodchild R, Larsen KE, et al. Resistance of α-synuclein
null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences.
2002; 99(22): 14524–9. PMID: 12376616

65. Rathke-Hartlieb S, Kahle PJ, NeumannM, Ozmen L, Haid S, Okochi M, et al. Sensitivity to MPTP is not
increased in Parkinson's disease-associated mutant alpha-synuclein transgenic mice. J Neurochem.
2001; 77(4): 1181–4. PMID: 11359883

66. Dong Z, Ferger B, Feldon J, Bueler H. Overexpression of Parkinson's disease-associated alpha-synu-
cleinA53T by recombinant adeno-associated virus in mice does not increase the vulnerability of dopa-
minergic neurons to MPTP. J Neurobiol. 2002; 53(1): 1–10. PMID: 12360578

Targeted Overexpression of α-Synuclein and Vulnerability to MPTP

PLOSONE | DOI:10.1371/journal.pone.0131281 June 26, 2015 19 / 19

http://dx.doi.org/10.1016/j.physbeh.2009.04.021
http://dx.doi.org/10.1016/j.physbeh.2009.04.021
http://www.ncbi.nlm.nih.gov/pubmed/19410592
http://dx.doi.org/10.1073/pnas.0711053105
http://www.ncbi.nlm.nih.gov/pubmed/18178617
http://www.ncbi.nlm.nih.gov/pubmed/11813001
http://dx.doi.org/10.1016/j.neuroscience.2009.03.002
http://dx.doi.org/10.1016/j.neuroscience.2009.03.002
http://www.ncbi.nlm.nih.gov/pubmed/19272424
http://dx.doi.org/10.1074/jbc.M802223200
http://www.ncbi.nlm.nih.gov/pubmed/18562315
http://dx.doi.org/10.1111/j.1471-4159.2009.06191.x
http://www.ncbi.nlm.nih.gov/pubmed/19493164
http://www.ncbi.nlm.nih.gov/pubmed/15834418
http://dx.doi.org/10.1111/j.1471-4159.2012.07769.x
http://www.ncbi.nlm.nih.gov/pubmed/22537068
http://dx.doi.org/10.1523/JNEUROSCI.0143-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18650345
http://www.ncbi.nlm.nih.gov/pubmed/15333840
http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.008
http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.008
http://www.ncbi.nlm.nih.gov/pubmed/18715677
http://dx.doi.org/10.1126/science.1227157
http://www.ncbi.nlm.nih.gov/pubmed/23161999
http://dx.doi.org/10.1172/JCI43366
http://www.ncbi.nlm.nih.gov/pubmed/21245577
http://dx.doi.org/10.1073/pnas.1318268110
http://dx.doi.org/10.1073/pnas.1318268110
http://www.ncbi.nlm.nih.gov/pubmed/24218576
http://dx.doi.org/10.1073/pnas.0903691106
http://www.ncbi.nlm.nih.gov/pubmed/19651612
http://www.ncbi.nlm.nih.gov/pubmed/12376616
http://www.ncbi.nlm.nih.gov/pubmed/11359883
http://www.ncbi.nlm.nih.gov/pubmed/12360578

