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Abstract: Steroid receptor coactivator-1 (SRC-1) is a transcription coactivator playing a pivotal role
in mediating a wide range of signaling pathways by interacting with related transcription factors
and nuclear receptors. Aberrantly elevated SRC-1 activity is associated with cancer metastasis and
progression, and therefore, suppression of SRC-1 is emerging as a promising therapeutic strategy.
In this study, we developed a novel SRC-1 degrader for targeted degradation of cellular SRC-1.
This molecule consists of a selective ligand for SRC-1 and a bulky hydrophobic group. Since the
hydrophobic moiety on the protein surface could mimic a partially denatured hydrophobic region of
a protein, SRC-1 could be recognized as an unfolded protein and experience the chaperone-mediated
degradation in the cells through the ubiquitin–proteasome system (UPS). Our results demonstrate
that a hydrophobic-tagged chimeric molecule is shown to significantly reduce cellular levels of
SRC-1 and suppress cancer cell migration and invasion. Together, these results highlight that our
SRC-1 degrader represents a novel class of therapeutic candidates for targeting cancer metastasis.
Moreover, we believe that the hydrophobic tagging strategy would be widely applicable to develop
peptide-based protein degraders with enhanced cellular activity.

Keywords: PROTACs; hydrophobic tagging; ubiquitin–proteasome system; ubiquitination; proteaso-
mal degradation; cancer metastasis; SRC-1 transcriptional coactivator

1. Introduction

Abnormally elevated levels of proteins are closely associated with various diseases [1–3].
Therefore, downregulation of such aberrantly activated proteins has emerged as a legit-
imate therapeutic strategy [4–6]. To this end, classical genetic techniques such as gene
knockouts and small-interfering RNA (siRNA) have been widely used to suppress protein
expression at the DNA or mRNA levels [7,8]. Although these conventional methods have
been useful, their biological instability and difficulties in delivering such nucleic-acid-
based therapeutics have hindered their clinical applications [9,10]. Alternatively, chemical
knockdown methods that function at the post-translational level have been proposed as
complementary strategies to circumvent these issues [11]. Proteolysis-targeting chimeras
(PROTACs) are one such technology that induces the degradation of a target protein in the
cells via the ubiquitin–proteasome system (UPS) [12–14]. PROTACs are heterobifunctional
molecules composed of two recognition motifs, a ligand that binds to a target protein and
a ligand that recruits E3 ubiquitin ligase (Figure 1a). Thus, PROTACs can bind to both the
target protein and E3 ligase simultaneously and form a ternary complex, thereby leading
to polyubiquitination of a target and subsequent elimination by the 26S proteasome. PRO-
TACs have several important advantages compared with conventional biological methods.
For example, PROTACs are not only cell permeable, but also relatively stable in biological
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systems. Moreover, they act in a catalytic manner in inducing protein degradation; PRO-
TACs can exert sufficient pharmacological effects even at low dosages [5,14]. Despite these
prominent benefits of PROTACs, their general applications might be limited. While there
are over 600 E3 ligases in the human genome, only a few E3 ligases are targeted by current
PROTACs, which are overexpressed in cancer cells (e.g., cereblon and Von Hippel–Lindau
tumor suppressor). As a result, when target cells or tissues do not express such E3 ligases,
it is challenging to develop PROTACs. Indeed, most PROTACs have been developed for
cancer therapy [15–18].

Figure 1. (a) Mechanism of PROTAC-mediated protein degradation. (b) Chaperone-assisted degradation of misfolded
proteins through recognition of hydrophobic patches. (c) Schematic showing SRC-1 degradation with a hydrophobic
tagging strategy.

In an effort to circumvent the restriction, we recently developed a new class of
PROTACs based on the N-degron pathway [19]. The N-degron pathway is a ubiquitin-
dependent proteolytic system for protein degradation through the recognition of N-
terminal residues of proteins (called N-degrons) [20,21]. These N-degrons containing
a few amino acids are recognized by ubiquitin ligase E3 component N-recognin (UBR)
proteins, a unique class of E3 ligases that share the UBR box domain, for ubiquitination
and proteasomal degradation. Therefore, the N-degron determines the half-life of substrate
proteins. In contrast to the E3 ligases targeted by current PROTAC molecules, UBR proteins
are ubiquitously expressed in most cells, and thus PROTACs based on the N-degron path-
way could degrade proteins irrespective of cell type [22,23]. As such, this type of PROTACs
could be generally applicable for targeting a wide range of diseases. In our previous study,
we demonstrated the utility of PROTACs based on the N-degron pathway by developing
a selective degrader (ND1-YL2) of steroid receptor coactivator-1 (SRC-1) [19]. SRC-1 is a
transcription coactivator that interacts with various nuclear receptors (NRs) and transcrip-
tional factors to regulate the transcriptional network [24,25]. It consists of an NR interaction
domain, activation domain (AD) 3 in N-terminus, and AD1 and AD2 in C-terminus [26].
SRC-1 is a member of the p160 SRC family that includes its homologous proteins, such
as SRC-2 and SRC-3 [25]. Abnormally elevated SRC-1 activity is found to be linked to
cancer progression, recurrence, and poor survival rate [27–29]. Hence, downregulation
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of SRC-1 activity has emerged as a valid therapeutic strategy for the treatment of various
cancers [30].

The SRC-1 degrader ND1-YL2 is a chimeric molecule composed of a ligand (YL2) for
SRC-1 [31] and a UBR E3 ligase binder [32] (Figure 2). YL2 is a cell-permeable, stapled pep-
tide that binds selectively to SRC-1 with a Ki value of 140 nM [19]. ND1-YL2 was generated
by conjugating a tetrapeptide RLAA, the N-degron peptide as a binder for UBR. Thus, this
bifunctional molecule enables the recruitment of SRC-1 to UBR protein, thereby promoting
the formation of a ternary complex for polyubiquitination and proteasomal degradation of
SRC-1. We found that ND1-YL2 effectively suppressed SRC-1-mediated transcriptional
activity by inducing the degradation of cellular SRC-1, thereby resulting in inhibition of the
invasion and migration of cancer cells [19]. Taken together, we successfully demonstrated
that PROTACs based on the N-degron pathway could be a generally applicable strategy
for targeted degradation of proteins regardless of cell types.

Figure 2. Chemical structures of ND1-YL2 and hydrophobic-tag-conjugated stapled peptides (YL2-HyT1–6).

Although ND1-YL2 displays robust SRC-1 degradation and inhibitory activity on
tumor metastasis, its further development as a therapeutic candidate is limited. Unfortu-
nately, ND1-YL2 was found to be rapidly degraded within 10 min when administered in
mice probably due to the metabolic instability of the N-degron peptide part. Note that the
stapled peptide part (YL2) of ND1-YL2 was shown to have increased proteolytic resistance
compared with the corresponding native peptide sequence [31]. In addition, ND1-YL2
exhibited significantly weaker cellular activity in degrading SRC-1 (DC50 ≈ 10µM), com-
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pared with its in vitro binding activity (Ki ≈ 320 nM) [19]. We reasoned that the discrepancy
between in vitro binding activity and cellular activity might be due to its relatively low
cell permeability. Since YL2 was shown to have reasonable cell penetration ability [31], the
N-degron peptide moiety was thought to interfere with the cellular uptake of ND1-YL2. In
this study, we explore a hydrophobic tagging strategy to develop SRC-1 degraders with
improved cellular activity. Hydrophobic tagging is a chemical biology technology that
enables the inducement of the degradation of a protein of interest in living cells. This
system uses a bifunctional molecule that consists of a ligand for a target protein conjugated
with a bulky hydrophobic tag (e.g., adamantyl group) [33–37]. If this chimeric molecule is
added to cells, it binds to its target protein, and the hydrophobic tag acts like a degron. That
is, the bulky hydrophobic moiety on the protein surface could mimic a partially denatured
hydrophobic region of a protein. Note that exposure of internal hydrophobic regions of a
protein is a hallmark of protein unfolding. These unfolded proteins are eliminated by the
chaperone-mediated degradation by the UPS (Figure 1b) [38]. As such, upon binding of
the bifunctional molecule to a protein of interest, the bulky hydrophobic moiety could be
recognized as hydrophobic regions of misfolded or unfolded proteins in the cells, thereby
resulting in the degradation of the protein. We envisaged that replacing the N-degron
peptide part of ND1-YL2 with a hydrophobic tag would considerably improve the cell
permeability and metabolic stability (Figure 1c).

2. Results and Discussion
2.1. Design and Synthesis of Hydrophobic-Tagged SRC-1 Degraders

We sought to develop hydrophobic-tagged SRC-1 degraders by attaching the adamantyl
group to YL2. We previously solved the high-resolution crystal structure of YL2 complexed
with the PAS-B domain of SRC-1 showing that the N-terminal of stapled peptide is solvent
exposed [31]. As such, the N-terminal position of YL2 was predicted to be suitable for conju-
gating a linker and the hydrophobic tag. Based on this structural information, we designed
a series of adamantane-conjugated derivatives, YL2-HyT1–6 (Figure 2), with various link-
ers, such as aminobutanoic acid, aminovaleric acid, aminohexanoic acid, mono(ethylene
glycol), di(ethylene glycol), and tri(ethylene glycol). For the preparation of YL2-HyT1–
6, peptide sequences of YL2 were synthesized by standard fluorenylmethyloxycarbonyl
(Fmoc) solid-phase peptide synthesis method. Two (S)-2-(4-pentenyl)alanine residues of
peptide were cross-linked by ring-closing olefin metathesis reaction to form a stapled pep-
tide. After coupling various kinds of linkers to the stapled peptide, the adamantyl group
was introduced to a linker by amine substitution reaction to give hydrophobic-tagged sta-
pled peptides ((Scheme S1 in the Supplementary Materials). These products were cleaved
from the resin and purified by reverse-phase HPLC (Figure S1).

Increased helical propensity in a stapled peptide is known to be an important factor
for the improved binding ability of the stapled peptide for a target protein [31]. To examine
whether the hydrophobic tagging affected the helical propensity of the stapled peptide
YL2, circular dichroism (CD) spectroscopy was employed (Figure 3a). As expected, all the
synthesized hydrophobic-tagged peptides displayed similar helical propensity, indicating
that N-terminal modification with a linker and the adamantyl group had no effect on the
helicity of the original stapled peptide YL2. Next, we conducted a competitive fluorescence
polarization (FP) assay to measure the binding affinities of the synthesized compounds to
SRC-1 (Figure 3b). Most compounds retained their abilities to bind to the recombinant PAS-
B domain of SRC-1. This result was in good agreement with CD results. Among them, YL2-
HyT6 with a tri(ethylene glycol) linker exhibited the best binding affinity (Ki = 237 nM),
which was compatible with that of the original stapled peptide YL2 (Ki = 137 nM).



Int. J. Mol. Sci. 2021, 22, 6407 5 of 15

Figure 3. (a) CD spectra and calculated helicities (%) of YL2-HyT1–6 and YL2 (50 µM), (b) inhibition curves of YL2-HyT1–6
and YL2 for fluorescein-labeled STAT-6 peptide binding to SRC-1 determined by competitive FP assays. Error bars indicate
standard deviation from three independent experiments.

2.2. Hydrophobic-Tag-Coupled YL2 Molecules Degraded SRC-1

To investigate whether stapled peptides with a hydrophobic tag could degrade SRC-1
in cells, human triple-negative breast cancer (TNBC) MDA-MB-231 cells were treated with
DMSO or various concentrations of the synthesized bifunctional compounds (YL2-HyT1–6).
Cellular levels of SRC-1 were analyzed at various time points (12, 18, and 24 h) by im-
munoblotting. As depicted in Figure 4a (18 h), Figure S2 (12 h), and Figure S3 (24 h), some
of the compounds induced SRC-1 degradation at micromolar concentrations. Consistent
with the competitive FP assay results, YL2-HyT6 exhibited the most effective SRC-1 degra-
dation activity at all three time points. As a control, we performed the same experiment
with adamantane alone. As shown in Figure 4b, adamantane itself had no effect. Note
that we previously found that the stapled peptide (YL2) lacking the hydrophobic tag was
unable to induce SRC-1 degradation [19]. These results confirmed that the chimeric struc-
ture of YL2-HyT6 was essential for the hydrophobic-tagged strategy for targeted protein
degradation. Notably, YL2-HyT6 reduced cellular SRC-1 levels with a DC50 value of ~5 µM
(Figure S4), which is more than twice as good as that of ND1-YL2 (DC50 ≈ 10 µM) [19].
This result suggests that hydrophobic tagging leads to the improvement of cell permeabil-
ity presumably due to the nonpeptidic character and hydrophobicity of the adamantyl
group [36]. YL2-HyT6 was selected for further biological studies.
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Figure 4. (a) Immunoblot analysis of SRC-1 levels in MDA-MB-231 cells after treatment with YL2-HyT1–6 for 18 h. SRC-1
levels (%) were normalized to GAPDH and DMSO controls. (b) Immunoblot analysis of SRC-1 after incubating MDA-MB-231
cells with YL2-HyT6 (20 µM), YL2 (20 µM), or adamantane (20 µM) for 18 h.

2.3. Evaluation of Cell Permeability and Serum Stability of YL2-HyT6

Since the increased protein degradation activity of YL2-HyT6 was thought to be due
to its improved cell permeability, we sought to compare the cell permeability of YL2-HyT6
and ND1-YL2. To this end, we prepared carboxytetramethylrhodamine (TAMRA)-labeled
derivatives of YL2-HyT6 and ND1-YL2 (Schemes S2 and S3). MDA-MB-231 cells were
incubated with these fluorescently labeled compounds (TAMRA-YL2-HyT6 and TAMRA-
ND1-YL2) and analyzed by flow cytometry. As shown in Figure 5a, the mean fluorescence
intensity of the cells treated with TAMRA-YL2-HyT6 was higher than that of the cells
with TAMRA-ND1-YL2, highlighting that the hydrophobic-tagged compound YL2-HyT6
indeed had better cell-penetrating ability than the peptide-based PROTAC ND1-YL2.

Next, we examined whether the hydrophobic-tagged compound YL2-HyT6 had en-
hanced stability to proteolytic degradation. YL2-HyT6 or ND1-YL2 was incubated in
the media containing fetal bovine serum (FBS) for various time periods. Unsurprisingly,
YL2-HyT6 showed improved stability relative to the peptide-based PROTAC (ND1-YL2),
likely due to its nonpeptidic character (Figure 5b).
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Figure 5. (a) Flow cytometry analysis of cellular uptake efficiency of TAMRA-YL2-HyT6 and TAMRA-ND1-YL2 in MDA-
MB-231 cells. MDA-MB-231 cells were incubated with 10 µM compounds for 4 h at 37 ◦C. (b) Serum stabilities of YL2-HyT6
and ND1-YL2.

2.4. SRC-1 Degradation Relies on the Proteasome- and the Chaperone-Mediated Pathway

To assess whether YL2-HyT6 degrades SRC-1 in a time-dependent fashion, MDA-
MB-231 cells were treated with YL2-HyT6 (20 µM) for the indicated time period. Cellular
levels of SRC-1 were then monitored by immunoblotting. As shown in Figure 6a, SRC-1
was evidently degraded after 6 h of YL2-HyT6 treatment. Detectable recovery of SRC-1
levels was not observed over 24 h. Next, we monitored whether SRC-1 was recovered after
washing out YL2-HyT6. After treating the cells with YL2-HyT6 for 18 h, the compound was
washed away. SRC-1 was shown to be recovered within 12 h (Figure 6b), indicating that
SRC-1 degradation by YL2-HyT6 was reversible, unlike traditional genetic methods. To test
whether YL2-HyT6 induced SRC-1 degradation by the proteasome-dependent pathway,
MDA-MB-231 cells were cotreated with YL2-HyT6 and MG-132, a proteasome inhibitor.
As expected, SRC-1 levels were not changed in the presence of MG-132, suggesting that
YL2-HyT6 degrades SRC through the proteasome-mediated process (Figure 6c).

Figure 6. (a) Immunoblot analysis of SRC-1 levels in MDA-MB-231 cells after treatment with YL2-HyT6 (20 µM) for various
time periods. (b) Immunoblot analysis of SRC-1 levels in MDA-MB-231 cells after washing out YL2-HyT6 (20 µM) at various
time points. (c) Immunoblot analysis of SRC-1 after incubation of MDA-MB-231 cells with YL2-HyT6 or MG-132 (5 µM) for
18 h. (d) Immunoblot analysis of SRC-1 after incubating MDA-MB-231 cells with YL2-HyT6 (2.5 µM) or 17-AAG (1 µM) for 18 h.
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Protein degradation achieved by hijacking the unfolded protein pathway is known to
be associated with molecular chaperones, such as heat shock proteins (HSPs). For example,
Hsp70 recognizes exposed hydrophobic regions of unfolded or misfolded proteins and
mediates polyubiquitination and proteasomal degradation. To examine this, cells were in-
cubated with 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a well-known Hsp90
inhibitor that induces the upregulation of Hsp70 expression [39]. Immunoblot analysis
showed that elevated levels of Hsp70 efficiently increased the cellular activity of YL2-HyT6,
finally leading to SRC-1 degradation even at a concentration that did not affect SRC-1 levels
previously (Figure 6d). These results were consistent with a previous study showing en-
hanced degradation activity toward the androgen receptor after cotreatment with an Hsp90
inhibitor [33]. These results indicate that SRC-1 degradation via hydrophobic tagging
strategy can be induced through a chaperone-mediated ubiquitin proteasome system.

2.5. Evaluating the Effects of YL2-HyT6 on Cell Migration and Invasion In Vitro

Next, we investigated the pharmacological effects of YL2-HyT6 on the SRC-1-mediated
signaling. Overexpression of SRC-1 is frequently found in various cancers and linked to cell
migration and invasion by regulating the expression of associated genes [27,28,40]. Deple-
tion of SRC-1 is known to downregulate colony-stimulating factor-1 (CSF-1), which induces
cell differentiation and migration [40]. In contrast, suppression of SRC-1 upregulates E-
cadherin, a tumor suppressor gene and a key component of cell adhesion [27]. YL2-HyT6
would affect the SRC-1-dependent gene expression by downregulating SRC-1 in the cells.
To examine this, TNBC MDA-MB-231 cells were treated with DMSO, a hydrophobic tag,
YL2, ND1-YL2, or YL2-HyT6 for 18 h. CSF-1 and E-cadherin messenger RNA (mRNA)
levels were then evaluated by quantitative real-time polymerase chain reaction (RT-qPCR)
and normalized to 18S levels. Consistent with previous studies [19,27,40], treatment of
YL2-HyT6 resulted in a dose-dependent decrease in CSF-1 (Figure 7a) and increase in
E-cadherin (Figure 7b), whereas the hydrophobic tag and YL2 had no effect.

Finally, we tested whether YL2-HyT6 could suppress the migration and invasion of
cancer cells by modulating SRC-1-mediated transcription. To this end, we performed a
wound healing assay to measure cell migration in vitro. Invasive TNBC MDA-MB-231
cells were seeded in culture insert wells. After these cells formed a confluent monolayer,
inserts were removed to make a scratch (an artificial gap). Subsequently, cells were treated
with DMSO, a hydrophobic tag, YL2, ND1-YL2, or YL2-HyT6 for 72 h. The acquired
cellular images were quantitatively analyzed to determine the cell migration. As shown in
Figure 7c,d, YL2-HyT6 significantly inhibited gap closing. We then examined the effect of
YL2-HyT6 on cancer cell invasion. MDA-MB-231 cells cultured in chambers containing Ma-
trigel barrier were treated with DMSO, a hydrophobic tag (20 µM), YL2 (20 µM), ND1-YL2
(20 µM), or varying concentrations of YL2-HyT6. After incubating for 24 h, invading cells
were quantified by immunofluorescent microscopy. Expectedly, YL2-HyT6 remarkably
decreased the invasion of the invasive cancer cells (Figure 7e,f), which was consistent with
the cell migration assay results (Figure 7c,d). It is noteworthy that the hydrophobic-tagged
compound YL2-HyT6 displayed better cellular activities in suppressing cancer cell mi-
gration and invasion compared with peptide-based PROTAC (ND1-YL2) as anticipated
(Figure 7c–f, Figures S6 and S7). Next, we investigated whether the suppression of cell
invasion and migration by YL2-HyT6 resulted from its cytotoxicity. As shown in Figure 7g,
reduction in SRC-1 levels had little effect on cell viability. This observation suggests that
SRC-1 as a transcription coactivator plays a major role in promoting cancer metastasis,
rather than in mediating cancer cell growth and proliferation, consistent with previous
studies (e.g., SRC-1 knockout experiments) [19,28,30]. Taken together, our results high-
light that SRC-1 degradation by the hydrophobic tagging method represents a promising
therapeutic strategy for targeting cancer metastasis.
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Figure 7. Cellular activities of YL2-HyT6. (a) CSF-1 and (b) E-cadherin mRNA expression levels in MDA-MB-231 cells after
treatment with DMSO, hydrophobic tag, YL2, ND1-YL2, or YL2-HyT6 for 18 h were analyzed by RT-qPCR. Results are
presented as levels of CSF-1 and E-cadherin genes in cells, which were normalized to the expression of the reference gene
18S. (c) Representative images from wound healing assay showing changes in MDA-MB-231 cell migration after treatment
with DMSO, hydrophobic tag (20 µM), YL2 (20 µM), or YL2-HyT6 (20 µM). Images of wound gap were taken at 0 and 72 h.
(d) Quantitative analysis of wound gap closure in MDA-MB-231 cells. Results are presented as a percentage of gap-closed
area. (e) Representative images of transwell invasion assay of MDA-MB-231 cells after treatment with DMSO, hydrophobic
tag (20 µM), YL2 (20 µM), or YL2-HyT6 (20 µM) for 24 h. (f) Quantitation of the invasion assay in MDA-MB-231 cells.
Results are expressed as a percentage of invaded cells. (g) The effect of YL2-HyT6 on the survival of MDA-MB-231 and
HEK293T cells after treatment for 48 h. Error bars in data represent standard deviation from three independent experiments.
Statistical comparisons were performed using a two-tailed Student’s t-test. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 vs.
DMSO control.
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3. Material and Methods
3.1. Reagents and General Methods

Rink amide MBHA resin (0.52 mmol/g) and Fmoc-protected amino acids were pur-
chased from BeadTech (Gyeonggi, Korea). All other chemical reagents were obtained from
commercial suppliers (Sigma-Aldrich, St Louis, MO, USA), TCI (Tokyo, Japan), Alfa Aesar,
HarefreerMA, USA), and Ambeed (Arlington Heights, IL, USA)) and used without further
purification. Antibodies were purchased from the following commercial suppliers: anti-
SRC-1 (Santa Cruz Biotechnology, Dallas, TX, USA, sc-32789), anti-Hsp70 (Cell Signaling
Technology, Danvers, MA, USA, 4872S), anti-GAPDH (Santa Cruz Biotechnology, sc-32233),
anti-mouse IgG-horseradish peroxidase (HRP) (Cell Signaling Technology, 7076S), and
anti-rabbit IgG-HRP (Cell Signaling Technology, 7074S). Synthesized compounds were
characterized with an Agilent 1220 LC system Ontario, CA, USA) using a C18 reverse-phase
HPLC column (Eclipse XDB, 3.5 µm, 4.6 mm× 150 mm). A gradient elution of 10% to 100%
B in 7 min (maintain 100% B until 10 min) was used at a flow rate of 0.7 mL/min (solvent A:
H2O with 0.01% trifluoroacetic acid (TFA); B: acetonitrile with 0.01% TFA). Crude peptides
were purified by preparative HPLC (YL9100 GPC system) using a C18 reverse-phase HPLC
column (Eclipse XDB, 5 µm, 21.2 mm× 150 mm) with a linear gradient of 10% to 100% B by
changing the solvent composition over 60 min. Matrix-assisted laser desorption ionization–
time-of-flight mass spectrometry (MALDI–TOF MS) was performed on an Autoflex Speed
LRF (Bruker, Billerica, MA, USA) using 2,5-dihydroxybenzoic acid as a matrix.

3.2. Peptide Synthesis and Purification
3.2.1. Synthesis of YL2-coupled adamantane with different linkers, YL2-HyT1–6
and ND1-YL2

Rink amide MBHA resins (200 mg, 104 µmol) were swollen in dimethylformamide
(DMF) (2 mL) in a 6 mL fritted syringe for 2 h (h) at room temperature (rt). After removing
the Fmoc protecting group with 20% piperidine in DMF (10 min × 2), Fmoc-protected
amino acid (5 equiv) was coupled to the NH2 functional group on resins in the pres-
ence of 1-hydroxybenzotriazole hydrate (HOBt, 5 equiv); 2-(1H-benzotriazol-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate (HBTU, 5 equiv); and N,N-diisopropylethylamine
(DIPEA, 10 equiv) in DMF (2 mL) at rt. After shaking for 2 h, the reaction mixture was
drained, and resins were washed with DMF (5×), methanol (MeOH) (3×), dichloromethane
(DCM) (3×), MeOH (3×), and DMF (5×). This peptide coupling process was repeated
until desired sequences (15 residues) of linear peptide were afforded. The peptide on resins
was treated with 10 mM solution of Grubbs’ first-generation catalyst in anhydrous DCM
for 2 h three times at rt. For the synthesis of YL2-HyT1–YL2-HyT6, after removing the
Fmoc protecting group, resins were treated with 2 M bromoacetic acid (BAA, 20 equiv)
and 2 M N,N-diisopropylcarbodiimide (DIC, 20 equiv) in DMF for 20 min at rt. Then 2 M
adamantylamine (20 equiv) in DMF was coupled to resins for 4 h at 37 ◦C (Scheme S1).
For the synthesis of ND1-YL2, two Fmoc-Ala-OHs were coupled to the N-terminal of the
peptide as a linker. Then the N-degron peptide (RLAA) was synthesized with the same
peptide coupling reaction. Next, products on resins were cleaved by treating with 2 mL
of a cleavage cocktail (95% TFA, 2.5% H2O, and 2.5% triisopropylsilane (TIS)) for 2 h at
rt. The crude product was purified by reverse-phase HPLC. The purity and identity were
determined by LC and MALDI–TOF MS (Figure S1).

3.2.2. Synthesis of TAMRA-labeled compounds (TAMRA-YL2-HyT6 and
TAMRA-ND1-YL2)

After swelling Rink amide MBHA resins (100 mg, 52 µmol) in DMF (1 mL) in a
6 mL fritted syringe for 2 h at rt, the Fmoc protection group was removed with 20%
piperidine in DMF (10 min × 2). These resins were treated with N-alpha-Fmoc-N-epsilon-
(4-methyltrityl)-L-lysine (Fmoc-Lys(Mtt)-OH, 5 equiv) in the presence of HOBt (5 equiv),
HBTU (5 equiv), and DIPEA (10 equiv) in DMF (1 mL) at rt. After shaking for 2 h, the
reaction mixture was drained, and resins were washed with DMF (5×), MeOH (3×), DCM
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(3×), MeOH (3×), and DMF (5×). After removing the Fmoc protecting group, 6-(Fmoc-
amino)hexanoic acid (Fmoc-6-Ahx-OH) was coupled to the N-terminal of the peptide as
a linker with the same peptide coupling reaction. After removing the Fmoc protecting
group, the peptide was synthesized at the same peptide coupling conditions described in
Section 2.1. The Mtt protection group was then deprotected with a solution of 2% TFA and
2% TIS in DCM at rt (2 min × 10). For neutralization, these resins were treated with 10%
DIPEA in DMF (1 mL) for 1 h at rt. Then 5-(and-6)-carboxytetramethylrhodamine (5(6)-
TAMRA) was coupled in the presence of 1-hydroxy-7-azabenzotriazole (HOAt) (2 equiv),
1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluo-
rophosphate (HATU) (2 equiv), and DIPEA (4 equiv) in DMF (1 mL) for 3 h at rt with
blocking light (Schemes S2 and S3). The product was cleaved from resins by treating with
1 mL of a cleavage cocktail solution. Subsequently, the crude product was purified by
reverse-phase HPLC, and its purity and identity were determined by LC and MALDI–TOF
(Figure S5).

3.3. Circular Dichroism (CD) Measurement

Lyophilized compounds (YL2 and YL2-HyT1 through YL2-HyT6) were dissolved
in 30% PBS (pH 7.4) and 70% acetonitrile solution to a final concentration of 50 µM. CD
spectra were measured with a Jasco J-815 CD spectropolarimeter using a quartz cuvette
(2 mm path length). These spectra were averages of five successive accumulations with a
scan rate of 100 nm/min. Raw data were converted in terms of per-residue molar ellip-
ticity (deg·cm2·dmol−1·residue−1) as calculated per mole of amide groups present and
normalized by the molar concentration of peptides. Smoothing and correction of back-
ground spectra were performed with Origin Pro 8.0 (OriginLab Corporation, Northampton,
MA, USA). Then α-helical propensities of YL2 and YL2-HyT1 through YL2-HyT6 were
calculated as previously reported [41].

3.4. Protein Expression and Purification

A plasmid expressing the PAS-B domain of human SRC-1 (residues 257–385) tagged
with His6 was provided by John A. Robinson (University of Zürich at Switzerland). It
was transformed into Rosetta E. coli cells. SRC-1 protein purification was performed as
described previously [42].

3.5. Competitive Fluorescence Polarization

After incubating 100 nM of fluorescein-labeled 15-mer STAT-6 peptide with 1 µM
of PAS-B domain of SRC-1 in a binding buffer (50 mM HEPES pH 7.4, 150 mM NaCl,
3.4 mM EDTA, and 0.01% Tween 20) in a black Greiner 384-well plate for 30 min, indicated
concentrations of YL2 and YL2-HyT1 through YL2-HyT6 were added to each well. After
incubation for another 1.5 h, fluorescence polarization was measured on a Tecan Infinite
F200 Pro microplate reader (excitation wavelength: 485 nm, emission wavelength: 535 nm).
The Ki values of the compounds in the competition assay were determined using the
following equation [43].

Ki =
[I]50

[L]50
KD

+
[P]0
KD

+ 1
(1)

where [I]50 is the concentration of the free inhibitor at 50% inhibition, KD is the dissociation
constant of the protein–ligand complex, [L]50 is the concentration of the free labeled ligand
at 50% inhibition, and [P]0 is the concentration of the free protein at 0% inhibition.

3.6. Cell Culture

MDA-MB-231 and HEK293T cells were cultured in a medium containing Dulbecco’s
modified eagle medium (DMEM) supplemented with 1% penicillin–streptomycin (PS) and
10% FBS with 5% CO2 at 37 ◦C.
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3.7. Immunoblotting

MDA-MB-231 cells were seeded into 6-well pates (Corning, 3506) at a density of
6 × 105 cell per well. After incubation at 37 ◦C for 24 h, cells were treated with synthesized
compounds in Opti-MEM medium for 12, 18, or 24 h. Cells were washed twice with cold
Dulbecco’s phosphate-buffered saline (DPBS) prior to cell lysis using a cell lysis buffer (1%
Triton X-100, 150 mM NaCl, 50 mM Tris-HCl pH 7.6, 0.1% SDS, 0.5% sodium deoxycholate,
and 1 × protease inhibitor cocktail) on ice. Cell lysates were centrifuged at 13,000 rpm at
4 ◦C for 15 min. The supernatant was collected, and protein concentration was determined
using PierceTM 660nm protein assay. A 6 × SDS loading buffer was added to the cell
lysate and incubated at 95 ◦C for 5 min. The same amount of protein was subjected to
SDS-PAGE and transferred to PVDF membranes. After blocking membranes with 5%
skim milk in TBST (Tris-buffered saline with 0.05% Tween 20), membranes were incubated
with a primary antibody at 4 ◦C overnight. Membranes were then incubated with HRP-
linked secondary antibody at rt for 1 h and developed with Pico ECL solution. In MG-132
and 17-AAG treatment experiments, MDA-MB-231 cells were cotreated with synthesized
compounds and MG-132 (5 µM) or 17-AAG (1 µM) at 37 ◦C for 18 h.

3.8. Flow Cytometry

MDA-MB-231 cells (1 × 105 cells/well) were seeded into a 24-well plate (Corning,
3527) and incubated at 37 ◦C for 24 h. Cells were then incubated with 10 µM of TAMRA
dye-labeled compound solutions in Opti-MEM. After 4 h of incubation, cells were washed
twice with DPBS buffer and collected by trypsinization. Resulting cells were again washed
with cold DPBS twice and placed on ice. These cells were treated with propidium iodide
(PI) (0.5 µg/mL) and subsequently analyzed with an LSRFortessa flow cytometer (BD
Biosciences). PI-stained cells were excluded from the results.

3.9. Serum Stability

YL2-HyT6 and ND1-YL2 solutions (200 µL, 40 µM in DPBS containing 25% FBS) were
incubated at 37 ◦C for different time periods (0–24 h). For the precipitation of serum
proteins, each sample was treated with 100 µL of 15% TFA and incubated at 4 ◦C overnight.
Final samples were then centrifuged at 15,000 rpm for 10 min and filtrated for analysis
using LC–MS with a C18 column. The ratio of the remaining compound (%) was calculated
by integrating the chromatographic peak of a compound and normalized in comparison
with a control sample (incubated without FBS).

3.10. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

Quantitative real-time PCR was performed for CSF-1, E-cadherin, and 18S (as a refer-
ence gene) mRNAs. MDA-MB-231 cells (1.2 × 105 cells/well) were seeded into a 12-well
plate and incubated at 37 ◦C with 5% CO2 for 24 h. These cells were treated with indicated
compounds (YL2, adamantane, ND1-YL2, or YL2-HyT6) for 18 h in Opti-MEM medium.
After cells were washed with cold DPBS, mRNAs were isolated from these cells using an
AccuPrep Universal RNA extraction kit (Bioneer, Daejeon, Korea). Then 1.5 µg of mRNAs
were reverse-transcribed using AccuPower RocketScript Cycle RT PreMix (Bioneer) to
generate complementary DNAs. RT-qPCR for CSF-1, E-cadherin, and 18S was performed
with a StepOnePlus Real-Time PCR System (Applied Biosystems, Waltham, MA, USA) and
SYBR Green mix (Applied Biosystems) according to the manufacturer’s instructions with
gene-specific primers (Table 1).

Table 1. List of primers used in real-time qPCR.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

18S GAGGCCGTAGGCTTATTGTG GAGTAGCTCATATGTCTTCCCTACCT
CSF-1 GTTTGTAGACCAGGAACAGTTGAA CGCATGGTGTCCTCCATTAT

E-cadherin TGCTGCAGGTCTCCTCTTGG AGTCCCAGGCGTAGACCAAG
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3.11. Gap Closure Migration Assay

MDA-MB-231 cells (2.8 × 104 cells/well) were seeded into Culture-Insert 2 wells
(ibidi, 80209) placed in a 35 mm culture dish. After incubation at 37 ◦C with 5% CO2 for
24 h, Culture-Insert 2 wells were carefully removed from the culture dish with a sterilized
tweezer. These cells were then treated with indicated compounds (YL2, adamantane,
ND1-YL2, or YL2-HyT6) in Opti-MEM medium for 72 h. Cell images were obtained with a
culture microscope (Olympus, Tokyo, Japan, CKX41). The cell-free area of the image was
quantified with ImageJ software (NIH, Bethesda, MD, USA) [44]. The relative gap-closure
area was calculated using the following equation: where A was the cell-free area.

Gap−Closure % =
At=0 h − At=72 h

At=0 h
× 100 (2)

3.12. Invasion Assay

Matrigel invasion chambers (Corning 354480) were placed in 24-well plates and
rehydrated with FBS-free DMEM medium at 37 ◦C in a CO2 incubator for 2 h. After
removing the medium, 4 × 104 cells of MDA-MB-231 were seeded into Matrigel invasion
chambers and control chambers (Corning, 354578) with 125 µL of Opti-MEM medium.
Then another 125 µL of each compound (YL2, adamantane, ND1-YL2, or YL2-HyT6) in
Opti-MEM medium was added to each chamber. The bottom of the well was filled with
500 µL of DMEM medium containing 10% FBS 1% PS. The chambers were then incubated at
37 ◦C with 5% CO2 for 24 h. After removing the medium, the chambers were washed with
cold PBS. Then noninvading cells on the upper surface of the membrane were removed
by scrubbing with a cotton swab. Cells on the bottom side of the membrane were fixed
with 500 µL of 4% formaldehyde for 10 min at rt. After washing with PBS, the bottom side
of the chamber was stained with 500 µL of Hoechst 33342 (5 µg/mL) for 5 min at 37 ◦C
in the CO2 incubator. After washing with PBS, cells were observed with a fluorescence
microscope (Nikon, Tokyo, Japan, Eclipse TE 2000). The percent invasion (% invasion) of
each sample was determined with the following equation:

% Invasion =
Mean # o f cells invading through Matrigel chamber membrane
Mean # o f cells migrating through control chamber membrane

× 100 (3)

3.13. Cell Viability Assay

MDA-MB-231 (1× 104 cells/well) and HEK293T (1× 104 cells/well) cells were seeded
into a 96-well plate (Corning, 3595) and incubated at 37 ◦C with 5% CO2 for 24 h. These cells
were then washed twice with DPBS and treated with 1% DMSO or various concentrations
of YL2-HyT6 for 48 h in Opti-MEM medium. The remaining cells were then used to
measure cell viability using a Cyto X cell viability assay kit (LPS solution, Daejeon, Korea,
CYT3000) following the manufacturer’s instruction.

4. Conclusions

In this work, we developed a hydrophobic-tagged bifunctional molecule (YL2-HyT6)
as a selective SRC-1 degrader. YL2-HyT6 was found to have significantly increased cell
permeability and proteolytic stability. As anticipated, this hydrophobic-tagged chimeric
molecule indeed exhibited enhanced cellular activity in degrading SRC-1, in comparison
with the previously reported peptide-based SRC-1 degrader. Therefore, YL2-HyT6 rep-
resents a novel class of SRC-1 degrader that enables the elimination of cellular SRC-1 by
hijacking the unfolded protein degradation pathway. We also demonstrated that YL2-HyT6
efficiently suppressed cancer cell migration and invasion. Together, these results indicate
that the chemical knockdown of cellular SRC-1 by the hydrophobic tagging method would
be a viable therapeutic strategy for targeting cancer metastasis. Our study suggests that
hydrophobic tagging could be a compelling strategy to develop peptide-based PROTACs
with improved cell permeability and proteolytic stability.
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