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ABSTRACT Many complex human traits exhibit differences between sexes. While numerous factors likely contribute to this
phenomenon, growing evidence from genome-wide studies suggest a partial explanation: that males and females from the same
population possess differing genetic architectures. Despite this, mapping gene-by-sex (G3S) interactions remains a challenge likely
because the magnitude of such an interaction is typically and exceedingly small; traditional genome-wide association techniques may
be underpowered to detect such events, due partly to the burden of multiple test correction. Here, we developed a local Bayesian
regression (LBR) method to estimate sex-specific SNP marker effects after fully accounting for local linkage-disequilibrium (LD) patterns.
This enabled us to infer sex-specific effects and G3S interactions either at the single SNP level, or by aggregating the effects of multiple
SNPs to make inferences at the level of small LD-based regions. Using simulations in which there was imperfect LD between SNPs and
causal variants, we showed that aggregating sex-specific marker effects with LBR provides improved power and resolution to detect
G3S interactions over traditional single-SNP-based tests. When using LBR to analyze traits from the UK Biobank, we detected a
relatively large G3S interaction impacting bone mineral density within ABO, and replicated many previously detected large-magnitude
G3S interactions impacting waist-to-hip ratio. We also discovered many new G3S interactions impacting such traits as height and
body mass index (BMI) within regions of the genome where both male- and female-specific effects explain a small proportion of
phenotypic variance (R2 , 1 3 1024), but are enriched in known expression quantitative trait loci.
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SEX differences are widespread in nature, and observed
readily amongmany human traits and diseases. For quan-

titative traits, sex may affect the distribution of phenotypes at
various levels, including mean-differences between genetic
males and genetic females (hereafter referred to asmales and
females, respectively) as well as differences in variance. Sex

differences are likely due to myriad factors, including differ-
ential environmental exposures andunequal gene dosages for
sex-linked genes, as well as sex-heterogeneity in the archi-
tecture of genetic effects at one or more autosomal loci [i.e.,
gene-by-sex (G3S) interactions]. In this way, sex provides
two well-defined conditions in which allele frequencies and
linkage disequilibrium (LD) patterns are equivalent, but nev-
ertheless genetic effects of one or many autosomal loci may
differ.

Evidence for different genetic architectures between sexes
among human populations is largely supported by genome-
wide parameters (Weiss et al. 2006; Zillikens et al. 2008;
Yang et al. 2015; Rawlik et al. 2016) including unequal
within-sex heritabilities (h2male 6¼ h2 female) and between-
sex genetic correlations rg , 1; the former suggests that the
proportion of phenotypic variance explained by genetic fac-
tors varies between sexes, while the latter suggests genetic
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effects are disproportional between sexes (Lynch 1998). Al-
though many traits seem to have a between-sex genetic cor-
relation that is evidentially ,1, genome-wide association
(GWA) studies intended tomap G3S interactions have strug-
gled to pinpoint such loci (Liu et al. 2012; Hoffmann et al.
2017). Based on this dichotomy, G3S interactions presum-
ably exist for many traits, but the magnitude of a typical G3S
interaction is suspected to be exceedingly small, explaining
why such events commonly elude detection, particularly af-
ter multiple test correction. However, just as numerous small
effect causal loci accumulate to affect phenotypic variance,
small G3S interactions may accumulate to influence both sex
differences and phenotypic variance.

Most GWA studies utilize single-marker regression (SMR),
in which the phenotype is regressed upon allele content one
SNP at a time, thereby obtaining marginal SNP effect size
estimates that donot fully account for LDpatterns. In contrast,
whole-genome regressionmethods, inwhich the phenotype is
regressed upon all SNPs across the genome concurrently, fully
account for multi-locus LD. These methods are increasingly
beingusedasaone-stop solution toestimate conditional (with
respect to other SNPs) effect sizes of SNP markers and to
provide genome-wide estimates including genomic heritabil-
ity (Meuwissen et al. 2001; Yang et al. 2010; de Los Campos
et al. 2015a) and between-sex genetic correlations (Zillikens
et al. 2008; Yang et al. 2015; Rawlik et al. 2016). By estimat-
ing conditional SNP effect sizes, the goal across many studies
is to select SNPs with nonzero effects and to build a model for
predicting polygenic scores (de los Campos et al. 2010, 2013;
Lello et al. 2018). Other works have directly illustrated the
use of whole-genome regression methods for GWAS (Yi et al.
2003; Ayers and Cordell 2010; Guan and Stephens 2011;
Zeng et al. 2012; Fernando et al. 2017). Whole-genome re-
gressions are computationally challenging to use with bio-
bank-level data; however, recent work suggests relatively
accurate genomic prediction and SNP effect estimation can
be achieved simply by accounting for local (as opposed to
global) LD patterns (Vilhjálmsson et al. 2015).

Building on the idea of utilizing conditional SNP marker
effects, herewedeveloped local Bayesian regressions (LBR) in
which the phenotype is regressed upon multiple SNPs span-
ning multiple LD blocks (thereby accounting for local LD
patterns) to study sex differences in complex traits from the
UK Biobank. The LBR model uses random-effect SNP-by-sex
interactions (de Los Campos et al. 2015b; Veturi et al. 2019)
that decompose conditional SNP effects into three compo-
nents: (i) one shared across sexes, (ii) a male-specific devia-
tion from the shared component, and (iii) a female-specific
deviation from the shared component. Using samples from
the posterior distribution of conditional SNP effects, we de-
veloped methods to infer sex-specific effects and G3S inter-
actions at the single SNP level and by aggregating SNP effects
within small LD-based regions, offering multiple perspectives
to study sex-specific genetic architectures.

In this study, we have utilized genotypes for 607,497
autosomal SNPs from�259,000 distantly related Caucasians

from the UK Biobank for assessing the performance of LBR in
analyzing simulated and real complex traits including height,
body mass index (BMI), waist-to-hip ratio (WHR), and heel
bone mineral density (BMD). Using simulations, we showed
that (i) for inferences of G3S interactions, LBR offers higher
power with lower false discovery rate (FDR) than methods
based on marginal effects (aka single-marker regression),
and (ii) under imperfect LD between SNPs and causal vari-
ants (i.e., when causal variants are not genotyped), aggregat-
ing SNP effects within small LD-based regions offers higher
power than methods based on testing individual SNPs.

The traits analyzed in this study span a range of genome-
wide metrics and G3S plausibility, from height and BMI, for
which previous studies indicate males and females possess
very similar genetic architectures (Yang et al. 2015), toWHR,
a trait with well-documented G3S interactions (Heid et al.
2010; Randall et al. 2013; Shungin et al. 2015; Winkler et al.
2015), and BMD, for which G3S interactions are thought to
exist but have eluded detection (Karasik and Ferrari 2008).
LBR provided evidence of G3S interactions impacting height,
BMI, and BMD at regions of the genome where sex-specific
genetic effects are relatively small; however, such regions are
enriched in known eQTL. For WHR, LBR replicated many
large-magnitude G3S interactions previously discovered us-
ing single-marker regression, but also located novel G3S
interactions near such genes as the estrogen receptor ESR1.

Materials and Methods

Genotype and phenotype data

Genotyped SNPs from the custom UK Biobank Axiom Array
(http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-
array/) were used in all analysis. Prior to analysis, all pheno-
types were precorrected for sex, age, batch, genotyping cen-
ter, and the first five genomic principal components. More
information on genotypes and phenotypes can be found in
the Supplemental Methods.

Overview of the LBR model, inference methods,
and implementation

Here, we present brief details of the LBR model and imple-
mentation, with more details found in the Supplemental
Methods. An example of how to fit LBR and perform post-
processing of posterior samples of model parameters is avail-
able at: https://github.com/funkhou9/LBR-sex-interactions.

To study sex differences, we regressed male and female
phenotypes (ym and yf ) on male and female genotypes (Xm

and Xf ) using a SNP-by-sex interaction model of the form
�
ym
yf

�
¼

�
1mm
1mf

�
þ
�
Xm
Xf

�
b0 þ

�
Xm
0

�
bm þ

�
0
Xf

�
bf þ

�
em
ef

�
:

(1)

Above, mm and mf are male and female intercepts, b0 ¼ fb0jg
(j = 1, . . ., p) is a vector of main effects, bm ¼ fbmjg and
bf ¼ fbf jg are male and female interactions, respectively,
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and em ¼ femig and ef ¼ fef ig are male and female errors that
were assumed to follow normal distributions with zero mean
and sex-specific variances. Female-specific and male-specific
SNP effects are defined as bf j ¼ b0j þ bf j and bmj

¼ b0j þ bmj;

respectively.

Prior assumptions: For SNP effects, we adopted priors from
the spike-slab family with a point of mass at zero and a
Gaussian slab (Habier et al. 2011); specifically,
PrðbkjÞ ¼ pkNð0;s2

bk
Þ þ ð12pkÞ1ðbkj ¼ 0Þ; where k ¼ 0; f

or m. Here, pk and s2
bk

are hyper-parameters representing
the proportion of nonzero effects and the variance of the slab;
these hyper-parameters were treated as unknown and given
their own hyper-priors.

Local-regression: Implementing the above model with
whole-genome SNPs (p �600K) and very large sample size
(n �300K) is computationally extremely challenging. How-
ever, LD in homogeneous unstructured human populations
spans over relatively short regions (R2 between allele dosages
typically vanishes within 1–2 Mb; Supplemental Material,
Figure S1). Therefore, we applied LBR to long, overlapping
chromosome segments (Figure 1). Specifically, we divided
the genome into “core” segments containing 1500 contiguous
SNPs (roughly 8 Mb, on average), then applied the regres-
sion in Equation 1 to SNPs in the core segment plus 250 SNPs
(i.e., roughly 1 Mb) in each flanking region, which were
added to account for LD between SNPs at the edge of each
core segment with SNPs in neighboring segments.

Inferences: We used the BGLR (Pérez and De Los Campos
2014) software to draw samples from the posterior distribu-
tion of the model parameters, and used these samples to
make inference about individual SNP effects including: (i)
the posterior probability that the jth SNP has a nonzero effect
in males ðPPMSNPjÞ and females ðPPFSNPjÞ; and (ii) the poste-
rior probability that the female and male effects are different
ðPPDiffSNPjÞ:

In regions involvingmultiple SNPs in strong LD, inferences
at the individual-SNP level may be questionable. Therefore,
we borrowed upon previous work by Fernando et al. (2017),

enabling us to aggregate multiple sex-specific SNP effects
within relatively small regions using “window variances.”
For each SNP jwe defined a window j* around the SNP based
on local LD patterns. We then defined the male-specific and
female-specific window variances as s2

gm j*
¼ varðX j*bmj*

Þ and
s2
gf j*

¼ varðX j*bf j*Þ; respectively. Here, X j* represent geno-
types at SNPs within the j* window, and varðÞ is the sample
variance operator. Prior to model fitting, the phenotype is
scaled across sexes; thus, sex-specific window variances
may be interpreted as the proportion of total phenotypic var-
iance explained by sex-specific SNP effects. From samples of
sex-specific window variances, we computed the posterior
probability of (i) nonzero male-specific window variance
ðPPMs2

gj*
Þ; (ii) nonzero female-specific window variance

ðPPFs2
gj*
Þ; and (iii) sex difference in window variances

(denoted as PPDiffs2
gj*
).

Overview of simulations

Weused simulations to assess the power and FDRof LBR, and
to compare them with that of standard single-marker-regres-
sion (SMR). Traits were simulated using SNP genotypes from
the UK Biobank (119,190 males and 139,738 females, all
distantly related Caucasians), thus providing realistic LD
patterns.We simulated a highly complex trait with one causal
variant per �2 Mb, which, on average, explained a propor-
tion of the phenotypic variance equal to 3.3 3 1024. Our
simulations used a total of 60,000 genotyped SNPs (�one-
tenth of the genome, consisting of 6000 consecutive SNPs
taken from 10 different chromosomes) and 150 causal var-
iants; on the complete human genome “scale” this corre-
sponds to a trait with 1500 causal variants and a heritability
of 0.5 (see Supplemental Methods for further details). Of
the causal variants, 40% (a total of 60 SNPs) had differing
sex-specific effects and the remaining 60% (90 SNPs) had
effects that were the same in males and females. Estimates
of power and FDR were based on 30 Monte Carlo (MC)
replicates.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully

Figure 1 Strategy for implement-
ing local Bayesian regressions ge-
nome-wide. The phenotype is
regressed upon multiple sequential
SNPs using a sliding window ap-
proach. The core region contained
1500 SNPs (roughly 8 Mb, on aver-
age), and each buffer region con-
tained 250 SNPs (roughly 1 Mb,
on average). Core parameters (pos-
terior samples) are stitched together,
then sex-specific effects and G3S
interactions are inferred at the level
of SNP j and window j*.
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within the article. Genotype and phenotype data from the UK
Biobank are available to all researchers upon application at
http://www.ukbiobank.ac.uk/register-apply/. The script
used to simulate phenotypes is available at https://github.
com/funkhou9/LBR-sex-interactions. For eQTL enrichment
analysis, single-tissue cis-eQTL data (significant variant-gene
associations based on permutations) from GTEx V7 was
downloaded from https://gtexportal.org/home/datasets.

Supplemental Methods, Figure S1 through S5, and Table
S1 through S4 are available at Figshare at https://doi.org/
10.25386/genetics.11900247.

Results

LBRs offer improved power with lower FDRs

Power and FDR when causal variants are genotyped: First,
we analyzed the simulated phenotypes using all SNPs (in-
cluding all 150 causal SNPs). Initially interested in inferring
G3S interactions, we ranked SNPs based on the PPDiffSNP
metric of LBR and on SMR’s P-value for sex difference
(P value-diff, see Supplemental Methods) and used the two
ranks to estimate power and FDR as a function of the number
of SNPs selected (Figure 2). We observed little variation in
power and false discoveries across MC replicates (Table S2);
this was expected because eachMC replicate involved 60,000
loci, 150 of which had causal effects. LBR showed consis-
tently higher power (achieving a power of �75% when
selecting the top 50 SNPs with highest PPDiffSNP) and lower
FDR than SMR. The FDR of LBR was very low when selecting
the top 50 SNPs with highest PPDiffSNP and exhibited a very
sharp phase-transition with fast increase in FDR thereafter.

We also compared the two methods based on arbitrary,
albeit commonly used, mapping thresholds for SMR and
LBR. At PPDiffSNP $ 0:95 [a posterior probability threshold
used in GWAS to minimize the local false discovery rate
(Efron 2008)], LBR selected an average (across simulation

replicates) of 38.33 SNPs with an estimated power of 0.634
and estimated FDR of 0.007. Conversely, at P value-diff
# 5 3 1028 [a P-value threshold routinely used in human
GWA studies, based on the number of approximately inde-
pendent SNPs in the human genome (International HapMap
Consortium et al. 2007)] SMR selected an average of 50.7
SNPs with an estimated power of 0.436 and estimated FDRof
0.451. Altogether, these results suggest that for G3S discov-
ery, LBR offers higher power and lower FDR than SMR—the
method most widely used in GWA studies—at least when
G3S interactions are observed.

When trying tomapSNPs that had effect in at least one sex,
we used PPSNPj ¼ max½PPMSNPj; PPFSNPj� and P-values from
an F-test (see Supplemental Methods) as metrics for LBR and
SMRmethods, respectively. Again, LBR showed higher power
with lower FDR than a standard SMR P-value (Figure S2). At
traditional mapping thresholds, LBR and SMR had similar
power but LBR achieved that power with much lower FDR;
at PPSNPj $ 0:95, the average number of SNPs selected was
120.83 with an estimated power of 0.799 and estimated FDR
of 0.009, whereas at P-value# 53 1028, the number of SNPs
selected was 374.56 with an estimated power of 0.794 and
FDR of 0.66.

Power and FDR when causal variants are masked: In a
second roundof analyses,we removedall causal variants from
the panel of SNPs used in the analysis to represent a situation
where causal variants are not observed, and genotyped SNPs
are tagging causal variants at varying degrees. We initially
assessed the relative performance of LBR to infer segments
harboring G3S interactions. Power and FDRwere assessed at
several resolutions: 1 Mb, 500 kb, and 250 kb regions
around each causal variant. At each resolution, a discovery
was considered true if the finding laid within a segment
harboring a G3S causal variant. In this scenario, we again
observed that LBR had small variability in power and false
discoveries between MC replicates (Table S3). Power

Figure 2 Estimated power and false discovery rate for discovering observed SNPs with G3S interactions. Shown as a function of the number of SNPs
selected. Each point represents a sample average and error bars represent 95% confidence intervals, each derived using 30 Monte Carlo replicates. LBR
(SNP): local Bayesian regression, utilizing PPDiffSNP: SMR: single-marker regression, utilizing P value-diff.
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and FDR were computed at different thresholds (using
PPDiffSNP and PPDiffs2

g
for LBR and P value-diff for SMR;

Figure 3). When using a 1 Mb target area—such that correct
G3S discoveries must be within 500 kb on either side of a
true G3S event—PPDiffs2

g
thresholds (LBR’s window-based

metric) provided highest powerwithin an FDR range of 0–0.3;
thereafter, SMR provided slightly higher power. As expected,
when removing causal variants, power was estimated to be
much lower than when causal variants were observed; at
PPDiffs2

g
$0:95; the estimated power and FDR were 0.454

and 0.004, respectively, while at P value-diff # 5 3 1028,
estimated power and FDR were 0.22 and 0.006. As seen in
Figure 3, when considering a finer resolution (500 kb and
250 kb) the performance of both LBR-based approaches was
more robust than that of SMR. Altogether this indicates that
for the discovery and mapping of unobserved G3S interac-
tions, LBR’s window-based metric provides higher power with
equivalent FDR and finer resolution than single-marker regres-
sion methods.

To infer segments containing causal variants that affect
at least one sex, we again used LBR to decide whether
either sex-specific effect was nonzero at the level of indi-
vidual SNPs or windows. Using a 1-MB target area, LBR’s
window-based metrics provided the highest power within
an FDR range of 0–0.025. When decreasing the target area,
LBR provided the highest power over larger FDR ranges
(Figure S3).

For real human traits, many novel G3S interactions
showed relatively small sex-specific effects

We analyzed four complex human traits (height, BMI, BMD,
and WHR) measured among �259,000 distantly related
Caucasians from the UK Biobank (�119,000 males and
�140,000 females). For each trait, we fit the LBR model
(Equation 1) across the entire autosome consisting of
607,497 genotyped SNPs using 417 overlapping segments
(Figure 1) and obtained evidence of G3S interactions at
the level of SNP j and window j*.

To compare both the magnitude and sign of sex-specific
SNP effects, we plotted each b̂f j against b̂mj

(Figure 4A). The
trait was scaled across sexes prior to model fitting; thus, ma-
le- and female- specific effects were not constrained to the
same scale. In this way, one might expect male-specific SNP
effects to uniformly differ from female-specific SNP effects by
a multiplicative factor if the variance of the phenotype is
different between sexes (sample statistics within each sex
are provided within Table S1). Surprisingly, we did not ob-
serve evidence of sex-specific SNP effects uniformly differing
due to differences in phenotypic scale; for height, BMD, and
BMI, as seen in Figure 4A, most large effect SNPs lie near the
blue diagonal line. For WHR, we observed largely consistent
results from prior studies (Heid et al. 2010; Randall et al.
2013; Winkler et al. 2015): namely the prevalence of numer-
ous SNPs with relatively large effects in females but little to
no effect in males. No traits exhibited evidence of any SNPs

Figure 3 Power vs. false discov-
ery rate for discovering genomic
regions containing masked G3S
interactions. Here, power is de-
fined as the expected proportion
of G3S interactions that are be-
ing tagged by at least one se-
lected SNP j or window j*. False
discovery rate is defined as the
expected proportion of selected
SNPs or windows that are not tag-
ging any G3S interactions. Each
point is an estimate, and error
bars for both axes represent
95% confidence intervals. Point
estimates and intervals were de-
rived using 30 Monte Carlo repli-
cates. Each facet corresponds to a
different “target area,” a fixed
width around each G3S interac-
tion that defines the set of SNPs
effectively tagging it. LBR (SNP):
uses the PPDiffSNP metric span-
ning 1-0. LBR (Window): uses
the PPDiffs2

g
metric spanning 1-0.

SMR: uses the P value-diff metric
spanning (on the –log10 scale)
8-0.
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with (i) high confidence male- and female- specific effects
(no SNPs with PPMSNP $ 0:9 and PPFSNP $ 0:9) and (ii) dif-
fering signs between sexes.

We then aggregated sex-specific SNP effects within small
LD-based regions to estimate sex-specific window variances
s2
gm j*

and s2
gf j*

and compared the magnitude of each (Figure
4B). Interestingly, for traits such as height, many large effect
regions bear slightly larger window variances for males than
for females. This was not observed at the single SNP level,
suggesting that many regions bearing numerous small effect
SNPs produce aggregate effects that are potentially larger
(although not reaching a PPDiffs2

g
$ 0:9 threshold) in males

than in females. One example is the GDF5 locus, previously
known to strongly associate with adult height (Sanna et al.
2008), where a peak PPDiffs2

g
signal centered on rs143384

had slightly different estimated sex-specific window

variances (ŝ2
gm 5 3:03 1023 and ŝ2

gf 5 2:63 1023) but
weak evidence of a G3S interaction ðPPDiffs2

g
¼ 0:544Þ.

For BMD, several large effect regions show suggestive evi-
dence of G3S interactions, including the AKAP11 locus and
the CCDC170 locus (PPDiffs2

g
¼ 0:856 and 0.745, respec-

tively), both previously associated with BMD (Mullin et al.
2016, 2017; Correa-Rodríguez et al. 2018; Zhu et al. 2018).

To make G3S inferences at the level of window vari-
ances irrespective of the magnitude of sex-specific effects,
we adopted a PPDiffs2

g
threshold of 0.9, which, in simula-

tions (Figure 3), provided optimal power at an estimated
FDR of 0.029 when using a 1-MB target area. For height, a
total of eight distinct regions possessed a PPDiffs2

g
$ 0:9;

two of which possessed a PPDiffs2
g
$ 0:95: For BMI, five

distinct regions possessed a PPDiffs2
g
$ 0:9; with none

reaching a more stringent PPDiffs2
g
$ 0:95 threshold, and

Figure 4 Comparing sex-specific genetic effects. (A) Plot of estimated female SNP effects against estimated male SNP effects for all 607,497 genotyped
autosomal SNPs. Points are colored by their posterior probability of sex difference at the level of individual SNPs. (B) Plot of estimated female window
variances against estimated male window variances for all 607,497 LD-based windows, with each window j* centered on a different focal SNP j. Points
are colored by their posterior probability of sex difference at the level of window variances. (C) Miami-like plot depicting location and magnitude of G3S
interactions identified through sex-specific window variances. For each trait, showing estimated male window variance above the x-axis and estimated
female window variance below the x-axis. Vertical lines denote changing chromosomes. A sample of windows is labeled with nearest gene annotation,
obtained from Axiom UKB WCSG annotations, release 34. Gray labels indicate nearest genes with relatively large window variances evidently shared
across sexes, while red labels indicate nearest genes with detected G3S interactions.
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none overlapping with two previously suggested BMI G3S
SNPs (Locke et al. 2015). As seen in Figure 4C, inferred G3S
interactions for height and BMI possess relatively small
sex-specific window variances; as an example, for height,
the window centered on SNP rs1535515 (near LRRC8C)
had a PPDiffs2

g
¼ 0:96; whereas ŝ2

gm ¼ 2:13 1025 and
ŝ2
gf ¼ 1:13 1024: For BMD, seven regions reached a 0.9

PPDiffs2
g
threshold, while one higher-confidence G3S in-

teraction ðPPDiffs2
g
$ 0:95Þ was detected within ABO, the

gene controlling blood type.
ForWHR, roughly 45 distinct genomic regions possessed a

PPDiffs2
g
$ 0:9;while 34 of these possessed a PPDiffs2

g
$ 0:95:

We foundmany previously detected G3S interactions known

to associate with WHR or a related trait, WHR adjusted for
BMI (WHRadjBMI) (Heid et al. 2010; Randall et al. 2013;
Shungin et al. 2015; Winkler et al. 2015). These included
interactions at LYPLAL1, MAP3K1, COBLL1, RSPO3, and
VEGFA, among others. We also detected numerous novel
G3S interactions (Table 1) near physiologically intriguing
genes such as the estrogen receptor gene ESR1 and the ATP
binding cassette transporter A1 gene ABCA1 known to play
a role in HDL metabolism ðPPDiffs2

g
$ 0:95Þ: As seen in Ta-

ble 1, both novel signals possessed a high-confidence fe-
male-specific effect with weak evidence for a male-specific
effect (PPFs2

g
$0:95; PPMs2

g
# 0:6); however, the magni-

tude of the female-specific effect was relatively small

Table 1 G3S interactions inferred through sex-specific window variances.

Focal SNPa trait ŝ2
gm

b ŝ2
gf

c PPMs2
g

PPFs2
g

PPDiffs2
g

Nearest gened Location eQTLe

rs8176719 BMD 0.06 0.00182 1 0.794 1 ABO Exon/frameshift Yes
rs1535515 height 0.00211 0.0117 0.819 0.999 0.956 LRRC8C Intron Yes
rs1544926 height 0.00763 0.00035 0.983 0.418 0.955 COL23A1 UTR-3 Yes
rs6905288 WHR 0.00567 0.222 0.92 1 1 VEGFA Downstream
rs72961013 WHR 0.0326 0.181 1 1 1 RSPO3 Downstream
rs1128249 WHR 0.00132 0.107 0.614 1 1 COBLL1 Intron Yes
rs12022722 WHR 0.0008 0.0718 0.49 1 1 LYPLAL1 Downstream Yes
rs1776897 WHR 0.0087 0.0614 0.976 1 0.95 HMGA1 Upstream Yes
rs11057401 WHR 0.00438 0.0603 0.846 1 1 CCDC92 Exon/missense Yes
rs17777180 WHR 0.00031 0.0595 0.291 1 1 CMIP Intron Yes
rs4607103 WHR 0.00195 0.0592 0.809 1 1 ADAMTS9-AS2 Intron Yes
rs6937293 WHR 0.00457 0.0466 0.839 1 1 LOC728012 Downstream Yes
rs16861373 WHR 0.00066 0.043 0.389 1 0.995 PLXND1 Intron
rs73068463 WHR 0.00068 0.0422 0.461 1 1 SNX10 Intron Yes
rs9376422 WHR 0.00107 0.0418 0.524 1 1 LOC645434 Upstream
rs6867983 WHR 0.00192 0.0382 0.44 1 0.998 MAP3K1 Upstream
rs2171522 WHR 0.00241 0.0365 0.561 1 0.998 ITPR2 Downstream Yes
rs3810068 WHR 0.00026 0.0359 0.174 1 1 EMILIN2 Upstream Yes
rs568890 WHR 0.00129 0.0311 0.809 1 1 NKX2-6 Upstream Yes
rs1332955 WHR 0.00647 0.0294 0.97 1 0.973 LOC284688 Downstream Yes
rs13133548 WHR 0.00019 0.024 0.175 0.969 0.956 FAM13A Intron Yes
rs11263641 WHR 0.00207 0.0234 0.723 1 0.991 MYEOV Downstream Yes
rs2800999 WHR 0.00201 0.0222 0.691 1 0.979 TSHZ2 Intron
rs2244506 WHR 0.00101 0.0207 0.453 0.998 0.985 MIR5694 Downstream
rs7259285 WHR 0.00182 0.0171 0.767 1 0.989 HAUS8 Downstream Yes
rs4450871 WHR 0.00002 0.0168 0.027 1 1 CYTL1 Downstream
rs4080890 WHR 0.00153 0.0163 0.594 0.999 0.975 KCNJ2 Downstream
rs4684859 WHR 0.00039 0.0157 0.33 0.998 0.994 PPARG Downstream
rs7704120 WHR 0.00049 0.0137 0.476 0.998 0.991 STC2 Downstream
rs10991417 WHR 0.00048 0.0123 0.339 0.986 0.966 ABCA1 Intron Yes
rs12454712 WHR 0.00087 0.0102 0.36 0.996 0.965 BCL2 Intron Yes
rs62070804 WHR 0.00004 0.00887 0.052 0.969 0.961 ABHD15 Exon/missense Yes
rs10760322 WHR 0.00027 0.00812 0.282 0.986 0.968 LHX2 Downstream
rs1361024 WHR 0.00022 0.0076 0.203 0.982 0.962 ESR1 Intron
rs1358503 WHR 0.00021 0.00716 0.309 0.989 0.966 SEMA3C Upstream Yes
rs13156948 WHR 0.00016 0.0066 0.079 0.97 0.957 IRX1 Downstream
rs12432376 WHR 0.0174 0.00074 1 0.552 0.994 STXBP6 Upstream

Listed are loci with at least 0.95 posterior probability that sex-specific window variances differ. The table is sorted first by trait, then by magnitude of the female-specific
window variance. Results are filtered such that each window listed consisted of a distinct set of SNPs. A full list of all G3S signals at a PPDiffs2

g
$ 0.90 threshold is provided in

Table S4.
a Focal SNP is defined as the center SNP j in window j*.
b The proportion of variance explained by male-specific SNP effects, expressed as a percentage.
c The proportion of variance explained by female-specific SNP effects, expressed as a percentage.
d Nearest gene and location identified through Axiom UKB WCSG annotations, release 34. The gene/locus is bold if it has been previously detected as a G3S interaction for
WHR or WHR adjusted for BMI (Heid et al. 2010; Randall et al. 2013; Shungin et al. 2015; Winkler et al. 2015).

e If “yes,” the focal SNP is significantly associated with gene expression in at least one tissue, according to GTEx V7
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ðŝ2
gf # 1:43 1024Þ: As evident from Table 1, most novel

WHR G3S interactions detectable with LBR are those with
relatively small sex-specific effects.

Additionally, we utilized a traditional SMR approach (see
SupplementalMethods) for the discovery ofG3S interactions
among traits to compare P value-diff signals to PPDiffs2

g
sig-

nals (Figure S4). At P value-diff # 5 3 1028, there were no
genome-wide significant G3S-interacting SNPs for height,
one significant SNP for BMI near a window with
PPDiffs2

g
$ 0:9; and one significant peak within ABO for

BMD (the same signal detected using PPDiffs2
g
). Regions with

a PPDiffs2
g
$ 0:9 generally coincided with at least nominally

significant P value-diff signals; for height and BMD, regions
with PPDiffs2

g
$0:9 also possessed a peak SNP with P value-

diff # 0.01. For BMI, PPDiffs2
g
$ 0:9 signals possessed a

peak SNP of P value-diff # 0.1. This, together with the fact
that novel G3S interactions found using LBR possess rel-
atively small sex-specific effects, suggests that LBR may be
detecting G3S interactions that are otherwise missed due
to low power. Lastly, for WHR, most of the high-confidence
PPDiffs2

g
$ 0:9 signals coincided with clear and obvious

P value-diff peaks.

Inferred G3S interactions were enriched in tissue-
specific eQTL

As seen previously,manyG3S interactions inferred using LBR
have exceedingly small sex-specific effects. To further inves-
tigate whether G3S detections using the PPDiffs2

g
metric may

be functionally relevant, we inferred whether such signals
are enriched in eQTL identified fromGTEx. Specifically, using
a hyper-geometric test we asked whether PPDiffs2

g
-selected

focal SNPs (SNP j within window j*) were enriched in eQTL,
then compared to eQTL enrichment from P value-diff-se-
lected SNPs as a function of the number of SNPs selected
(Figure S5). PPDiffs2

g
-selected focal SNPs showed consis-

tently higher eQTL enrichment than P value-diff-selected
SNPs for all traits except WHR. For instance, at
PPDiffs2

g
$ 0:9; the total number of windows (focal SNPs)

selected was 36, 264, 34, and 13, for height, WHR, BMD,
and BMI, respectively. With these selections, eQTL enrich-
ment P-values were 2.39 3 1024, 1.52 3 10212, 2.01 3
10212, and 8.33 3 1024, for height, WHR, BMD, and BMI,
respectively. When selecting the same number of SNPs using
P value-diff, enrichment P-values were 2.25 3 1022, 1.56 3
10228, 5.54 3 1028, 1.93 3 1021, for height, WHR, BMD,
and BMI, respectively.

To provide more information about how genetic regions
bearing G3S interactions may impact gene expression in
specific tissues, we determined whether focal SNPs at
PPDiffs2

g
$ 0:9 are enriched in tissue-specific eQTL (Figure

5). For height, BMD, andWHR, such SNPs showed significant
eQTL enrichment in at least one tissue, using a conservative
Bonferroni corrected enrichment P-value of 2.6 3 1024

(correcting for 192 tests in total; 48 tissues and four traits).
Interestingly, BMD G3S signals are very strongly enriched in
eQTL with associated eGenes (including ABO and CYP3A5)

expressed in the adrenal gland, among other tissues. For
height, we observed small enrichment P-values across
many tissues since G3S focal SNPs are enriched in eQTL
with associated eGenes (including LOC101927975 and
CNDP2) expressed across many tissues. Lastly, for WHR,
we observed G3S detections to be heavily enriched in
eQTL with associated eGenes expressed in fibroblast, ad-
ipose, and skin tissues.

Discussion

Wehave investigated the degree to which sex-specific genetic
architectures differ at local regions, using large biobank data
(N �119,000 males and �140,000 females) and Bayesian
multiple regression techniques that estimate sex-specific
marker effects accounting for local LD patterns. The flexibil-
ity of the Bayesian approach enables multi-resolution infer-
ence of sex-specific effects, from individual SNP effects to
window-variances that aggregate SNP effects within chromo-
some segments. These inferences can all be drawn using the
results of the same model fit (Equation 1), but different post-
processing of samples of SNP effects from the posterior
distribution.

The Bayesian multiple regression technique performed in
this study, along with estimation of window variances, was
largely inspired by Fernando et al. (2017). In that study,
windows were defined using disjoint, fixed intervals. In con-
trast, for each SNP, we define a window based on local LD
patterns, resulting in heavily overlapping, dynamically sized
windows. Themethods presented here also bear resemblance
to those of Vilhjálmsson et al. (2015), which utilized point-
normal priors to estimate human SNP effects after accounting
for local LD patterns. In that study, posterior means of SNP
effects were estimated for the purposes of prediction,
whereas, in this study, we derive the full posterior distribu-
tion numerically, allowing for inference of non-null SNP ef-
fects and window variances.

Through simulations, we showed that LBR provides supe-
rior power and precision to detect causal variants and those
specifically bearing G3S interactions. We rationalize im-
provements in power upon traditional SMR methods by not-
ing that the magnitude of a typical causal variant or G3S
interaction is exceedingly small, and can elude hypothesis
testing, due partly to the burden of multiple test correction.
We also note that the resolution (peak size) in SMR signals is
relatively large when using large sample sizes (due to not
fully accounting for local LD patterns). To overcome this
problem, we provided evidence that LBR methods—either
by estimating conditional (accounting for local LD) marker
effects or by aggregating conditional marker effects within
relatively small regions—can achieve improved resolution
when working with large sample sizes such as biobank-level
data.

When using LBR to analyze real human traits, we have
provided credence to our posterior probability-based discov-
eries by determining that LBR-detected G3S interactions are
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Figure 5 Evidence that LBR-identified G3S interactions are enriched in tissue-specific eQTL. Plotted on the x-axis is the P-value obtained from a hyper-
geometic test providing evidence that focal SNPs selected using PPDiffs2

g
$ 0:9 are enriched in tissue-specific eQTL. The dashed line represents a

Bonferroni corrected significance threshold of 2.6 3 1024.
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generally more enriched in eQTL than SMR-detected inter-
actions. For BMD,we provided new evidence that sex-specific
effects differ within ABO, and that G3S interactions are
highly enriched in adrenal gland-specific eQTL. This encour-
ages the hypothesis that some G3S are eQTL that may mod-
ulate gene expression in the adrenal gland, with gene
function dependent on the level of sex hormones. This was
also an intriguing finding given that ABO blood groups have
been known to associate with osteoporosis and osteoporosis
severity (Choi and Pai 2004; Lu and Li 2011). For WHR, we
detected previously known, large-magnitude G3S interac-
tions that were discovered using WHR or WHRadjBMI
(Heid et al. 2010; Randall et al. 2013; Shungin et al. 2015;
Winkler et al. 2015), but additionally discovered novel, small
magnitude G3S interactions near such genes as ESR1 and
ABCA1. In a previous work analyzing WHRadjBMI, ABCA1
showed a significant female-specific genetic effect only; how-
ever, the test for G3S interaction failed to reach significance
(Shungin et al. 2015).

For traits likeheight andBMI, largeeffect loci areestimated
to have very similar effects between males and females, and
loci with evidence of G3S interactions were those possessing
relatively small sex-specific effects. As seen in Figure 4B,
many relatively large window variances for height are esti-
mated to be slightly higher for males than for females, albeit
not reaching a PPDiffs2

g
$ 0:9 threshold. This is consistent

with the fact that the global genomic variance for height
was estimated to be higher in males than in females in a
previous study using the interim release of the UK Biobank
(Rawlik et al. 2016). Similarly, the same prior study esti-
mated the global genomic variance of BMI to be higher in
females than in males, and we observe, if anything, evidence
of sex-specific window variances leading to the same conclu-
sion. These observations may potentially indicate that rela-
tively large causal variants have slightly different sex-specific
effects for traits like height and BMI; however, if that is the
case, we are still underpowered to confidently detect such
interactions.

It is important to acknowledge that, while the methods
presented here appear useful to decipher sex-specific genetic
architectures from large human samples, additional workwill
be required to determine how these techniques may infer
heterogeneous genetic effects in other contexts (other types of
gene-by-covariate interactions), or when using different sam-
ple sizes or samples from different populations. With large
sample sizes, the increased power andflexibility of LBR comes
at the cost of a significantly larger computational burden than
that involved in the traditional SMR approach; however,
working with large datasets can be made manageable by
adjusting the size of each fitted segment (Figure 1) and par-
allel processing the fitting of each segment. Alternatively,
LBR may be used as a follow up to traditional SMR tests,
using preselected regions of interest. Another limitation in-
herent to aggregating SNP effects using window variances is
that the sign of the effect is lost. In this way, when inferring
G3S interactions through window variance differences, we

cannot comment on whether sex-specific effects had the
same sign or differing signs.

To conclude, we have demonstrated the powerful and
flexible use of local Bayesian regressions for GWA to infer
sex-specific genetic effects and G3S interactions using the
UK Biobank. This was done largely by showing various
means to utilize estimates of conditional (accounting for
local LD), sex-specific SNP marker effects for GWA even
when causal variants are not on the SNP panel for analysis.
We anticipate that many more traits will be analyzed with
this method to increasingly learn more about what is con-
tributing to differences between males and females in hu-
man populations.
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