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LK-DFBA: a linear programming-based
modeling strategy for capturing dynamics
and metabolite-dependent regulation in
metabolism
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Abstract

Background: The systems-scale analysis of cellular metabolites, “metabolomics,” provides data ideal for applications
in metabolic engineering. However, many of the computational tools for strain design are built around Flux Balance
Analysis (FBA), which makes assumptions that preclude direct integration of metabolomics data into the underlying
models. Finding a way to retain the advantages of FBA’s linear structure while relaxing some of its assumptions
could allow us to account for metabolite levels and metabolite-dependent regulation in strain design tools built
from FBA, improving the accuracy of predictions made by these tools. We designed, implemented, and
characterized a modeling strategy based on Dynamic FBA (DFBA), called Linear Kinetics-Dynamic Flux Balance
Analysis (LK-DFBA), to satisfy these specifications. Our strategy adds constraints describing the dynamics and
regulation of metabolism that are strictly linear. We evaluated LK-DFBA against alternative modeling frameworks
using simulated noisy data from a small in silico model and a larger model of central carbon metabolism in E. coli,
and compared each framework’s ability to recapitulate the original system.

Results: In the smaller model, we found that we could use regression from a dynamic flux estimation (DFE) with an
optional non-linear parameter optimization to reproduce metabolite concentration dynamic trends more effectively
than an ordinary differential equation model with generalized mass action rate laws when tested under realistic
data sampling frequency and noise levels. We observed detrimental effects across all tested modeling approaches
when metabolite time course data were missing, but found these effects to be smaller for LK-DFBA in most cases.
With the E. coli model, we produced qualitatively reasonable results with similar properties to the smaller model
and explored two different parameterization structures that yield trade-offs in computation time and accuracy.

Conclusions: LK-DFBA allows for calculation of metabolite concentrations and considers metabolite-dependent
regulation while still retaining many computational advantages of FBA. This provides the proof-of-principle for a
new metabolic modeling framework with the potential to create genome-scale dynamic models and the potential
to be applied in strain engineering tools that currently use FBA.
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Background
Metabolism is the biochemical supply chain for all other
cellular processes, such as DNA replication, transcrip-
tion of RNA, and protein synthesis. It is perhaps the
most immediate readout available of cellular state. An
increasing focus on systems-level behavior in cellular
biology coupled with the development of appropriate
chemical analyses to enable studies of metabolism has
led to the field of metabolomics, which measures meta-
bolic intermediates (metabolites) at the systems scale [1].
As a direct readout of the state of cellular metabolism,

metabolomics is a natural complement to efforts in
metabolic engineering, in which an organism is genetic-
ally engineered to facilitate the overproduction of a tar-
get small molecule [2]. Some metabolic engineering
targets are known products or byproducts of primary
metabolism in commonly used model organisms; others
derive from secondary metabolism in organisms that
may be difficult to culture and thus can be produced in
a more cost-efficient manner by exporting the corre-
sponding metabolic pathway into a more amenable host,
such as Bacillus subtilis, Escherichia coli or Saccharomy-
ces cerevisiae [3, 4].
Given how tightly tied metabolism is to so many other

cellular processes and the fact that some metabolites
that are necessary intermediates in metabolism can actu-
ally have inherent toxicity to the cell, the metabolic reac-
tion network is highly connected and tightly regulated
[5, 6]. Metabolic modeling and computational strain de-
sign tools are valuable methods for metabolic engineers
to deal with these interactions, allowing them to more
strategically allocate the significant time and resources
required to produce an engineered strain in the lab.
The primary methods for metabolic engineering strain

modeling are constraint-based models (CBMs), of which
Flux Balance Analysis (FBA) is the prototypical example [7,
8]. In FBA, the stoichiometry of the metabolic reaction net-
work is combined with an assumption of metabolic steady-
state, meaning that for all metabolites their rate of depletion
equals their rate of consumption and thus differential equa-
tions are not necessary to model the system. This simplified
model, combined with restrictions on rates of enzyme re-
versibility and saturation as well as an objective function
describing the cell’s preferred behavior, specify a linear pro-
gram (LP) [7], which is a tractable optimization problem
with extensive prior literature for theoretical and algorith-
mic treatments. From this, an optimal metabolic flux distri-
bution can be calculated with relatively few data
requirements. Due to its simplicity over models based on
ordinary differential equations (ODEs) (which involve com-
plex reaction equations and many parameters) and the
range of potential modifications, FBA has been the basis for
a host of tools for strain design, including OptKnock [9]
and its derivatives [10–14]. Complementing these efforts, a

great amount of work has gone into genome-scale model
reconstructions of many organisms critical to metabolic en-
gineering [15].
However, FBA was developed well before the advent of

metabolomics, and some of its core assumptions preclude
directly and fully integrating metabolomics data into the
model. Other types of data, such as proteomics, tran-
scriptomics, and gene expression data represented as
Boolean networks, have been successfully integrated into
FBA using various approaches [16–19]. However, the
steady-state assumption of FBA, which asserts that metab-
olite levels do not change over time, removes metabolite
concentrations from the model in favor of a computation-
ally convenient linear system of fluxes and network stoi-
chiometry, leaving few clear routes for exploitation of
metabolomics data in model development or
parameterization. While metabolomics data have been
used to estimate reaction feasibility via thermodynamic
constraints, direct integration of metabolite concentra-
tions into model development remains largely in the realm
of kinetic models, which have the disadvantage of long
computation times and difficulties in defining appropriate
functional forms for reaction terms, making kinetic
models difficult to build at the genome scale [20, 21].
Moreover, the steady-state assumption also compli-

cates the tracking of metabolic dynamics (the changes of
metabolite concentrations and reaction fluxes as a func-
tion of time due to biochemical and regulatory changes
in the cell) because one expects extracellular concentra-
tions and the state of the organism to vary temporally
for many industrially and ecologically relevant growth
conditions [22, 23]. Information about metabolite con-
centrations can lead to improvements in metabolic en-
gineering [24] and inform researchers which strain
designs are more likely to be feasible (e.g. based on me-
tabolite availability or the level of toxic metabolites).
Additionally, the lack of metabolite concentration repre-
sentation in FBA models also precludes the incorpor-
ation of metabolite-level regulation in the model, which
is known to have a major impact on metabolic dynamics
[25]. Some previously published FBA methods have used
metabolite concentrations to better constrain flux values
[26, 27] or compartmental modeling to approximate
temporal variations [28], but these approaches are still
limited to steady-state flux distributions and cannot
model full dynamics or regulation. Recently, Moxley
et al. combined CBM and kinetic modeling together,
which allowed for integration of concentration data and
tracking of metabolite dynamics, but their approach is
ultimately still an ODE-based framework [29]. Alterna-
tively, the Dynamic Optimization Approach (DOA) of
Dynamic Flux Balance Analysis (DFBA) is an extension
of FBA that discards the steady-state assumption and
adds non-linear constraints, such as those describing
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batch growth kinetics or kinetic rate laws [30]. However,
because of the many non-linear constraints involved,
FBA’s most attractive mathematical properties are lost,
as linear programs like FBA are a well-understood con-
vex optimization problem that can be solved quite effi-
ciently. The Static Optimization Approach (SOA) of
DFBA avoids this issue by removing any non-linear con-
straints and only driving metabolic dynamics through
rate of change of flux constraints. Values for the max-
imum rate of change of flux are difficult to find in litera-
ture, and the parameters were estimated using
transcription and translation rates (and thus inherently
ignore multiple types of post-transcriptional and post-
translational regulation known to be important in me-
tabolism). While the SOA approach retains an LP struc-
ture, it cannot incorporate available kinetic or regulatory
information as in the DOA approach; overcoming this
limitation could improve model accuracy and provide
more insight on the dynamic behavior of the system.
Table 1 summarizes the advantages and disadvantages of
each aforementioned modeling approach.
In this work, we modified the DFBA formulation with

the goals of allowing the integration of metabolomics data
and capturing metabolite-level regulation and dynamics
while still maintaining an LP structure. Kinetics and regu-
lation are approximated from metabolomics data as a set
of linear equations specifying upper bounds on flux values,
which in turn drive metabolite dynamics. These equations
are applied over the discretized simulation interval and
represent kinetic expressions similar to the constraints
found in the DOA approach of DFBA, but are completely
linear and are combined with the other elements of FBA
to form an LP problem that can be solved as efficiently as
the SOA approach [30]. The result, which we call Linear
Kinetics-Dynamic Flux Balance Analysis or LK-DFBA, is a
system that combines the main advantages of the DOA
and SOA approaches of DFBA, and can be directly com-
bined with any of the strain design tools that work with
FBA models as their input. The linear structure of LK-
DFBA provides the potential for our framework to be
eventually applied at the genome scale (a task that is espe-
cially problematic for ODE-based models) while continu-
ing to track metabolite dynamics.

As a first demonstration of the proof-of-principle for
such an approach, we explored this framework in two
model systems of varying scale, generating in silico refer-
ence time course data and noisy synthetic time course
data by varying the data sampling frequency and the co-
efficient of variance (CoV) of added noise. We compared
our approach to ODE-based frameworks that use Bio-
chemical Systems Theory (BST) power-law kinetics and
Michaelis-Menten (MM) rate laws, finding that LK-
DFBA is able to capture the behavior of the original
model systems and can outperform the BST-based com-
parator under the conditions most relevant to metabolo-
mics data (low sampling frequency and high noise). We
also explored some challenges associated with model
scale-up and structural features unique to the different
model systems. Finally, we briefly discuss some of the
next steps that could lead to LK-DFBA becoming a
widely-adopted approach for modeling metabolic
systems.

Methods
Simulating regulated metabolite dynamics with a linearly-
constrained program
LK-DFBA takes as input two sets of information. The
first set comprises the constraints and objective from
FBA: a stoichiometric matrix describing the relationship
between metabolites and fluxes in the model, a set of
upper and lower bounds on metabolic fluxes, and an ob-
jective function specifying the flux(es) the network tries
to locally maximize or minimize. To these, we add me-
tabolite concentration initial conditions, a simulation
time interval, a parameter describing the number of seg-
ments into which the interval is to be evenly divided,
and a list of regulatory interactions (and the correspond-
ing parameters to describe them). These elements are
described in more detail in Fig. S1 and the Methods S1
in the Supplementary Information (Additional file 1).

The solution vector
In LK-DFBA, we relax the steady-state assumption,
working from

Table 1 Advantages and disadvantages of several constraint-based and ODE-based models

Method Advantages Disadvantages

FBA Efficient to solve for steady-state fluxes; many
metabolic engineering tools built around FBA

Cannot track metabolite dynamics

ODE-based models Able to track metabolite dynamics; accurately
model reaction kinetics

Abundant kinetic parameters; difficult to scale
up to large systems

DFBA (DOA) Able to track metabolite dynamics; does not
require complex kinetic equations for each flux

Contains non-linear constraints that can make
the optimization problem difficult to solve

DFBA (SOA) Able to track metabolite dynamics; does not
require non-linear constraints

Cannot incorporate kinetic or regulatory information

Dromms et al. BMC Bioinformatics           (2020) 21:93 Page 3 of 14



d x*

dt
¼ S v*¼ v*p ð1Þ

where S is the nm × nv stoichiometric matrix from FBA,

v* is the flux distribution from FBA, and d x*
dt is equivalent

to the vector of “pooling fluxes” (using the nomenclature
of Covert et al. in iFBA [31]) for metabolites, such that

vp,i corresponds to changes in xi. Rearranging the v*p

term and combining it with the original solution vector

term v* gives us

0 ¼ A w*¼ S −I½ � v*

v*p

� �
ð2Þ

where A is the (nm × (nm + nv)) augmented stoichiomet-
ric matrix and w* is the ((nm + nv) × 1) augmented flux
vector. Combining the augmented flux vector over each
time segment and the concentrations at each time point,
the final solution vector for the LP is constructed as

ω ¼ w*
T
t1ð Þ;…;w*

T
tnTð Þ; x*T

t0ð Þ; x*T
t1ð Þ;…; x*

T
tnTð Þ

h iT
ð3Þ

and is of dimension ((nv + nm) ∙ nT + nm ∙ (nT + 1) × 1),
where nv is the number of system fluxes, nm is the num-
ber of metabolites, and nT is the number of time inter-
vals into which the simulation period has been
discretized.

Linearized kinetics constraints
The key feature of LK-DFBA is the addition of linear
equations to describe constraints in which fluxes are
controlled by metabolites, as is the case in circumstances
ranging from mass action kinetics to allosteric regulation
(on short time scales) or transcriptional regulation (on
longer time scales). Any dependence of flux on metabol-
ite concentrations is implemented in this manner, a crit-
ical element for driving biologically relevant dynamics in
the model.
These constraints are specified by a list of nr map-

pings. Corresponding to each mapping is a pair of pa-
rameters (a, b) such that for mapping n between
“controller” metabolites {x}n and “target” fluxes {v}n,

X
i

vi;n tkþ1ð Þ≤an
X
j

x j;n tkð Þ
 !

þ bn; ð4Þ

where vi,n is a target flux in {v}n, xj,n is a controller me-
tabolite in {x}n, and (an, bn) are the parameters describ-
ing the linear kinetics constraint. When an > 0, this
interaction produces a promotional effect, and when
an < 0, this interaction has an inhibitory effect.
To perform a given simulation, the set of (a, b) param-

eter values is provided along with the list of controller

and target mappings. In practice, this will need to be de-
termined via parameter fitting, as the linear equations in
general are simplified approximations that do not dir-
ectly correspond to intrinsic physical quantities. We dis-
cuss these constraints and their parameterization further
in the Methods S1, Additional file 1. In addition to linear
kinetics constraints, fluxes are also constrained by lower
and upper bounds, as in FBA. While arbitrary, large
nominal values can be used as upper bounds, known
values can also be used to represent saturation.

The LK-DFBA optimization problem
Assembling constraints produces the following linearly-
constrained quadratic program (QP) (penalizing the so-
lution vector norm) for simulating metabolic time
courses which we refer to as LK-DFBA. For

ω*¼ w
*T

t1ð Þ;…;w
*T

tnTð Þ; x*T
t0ð Þ; x*T

t1ð Þ;…; x
*T

tnTð Þ
h iT

;

maxω* z ¼ c*
T
ω* −λω*

T
ω* ð5Þ

ðs:tÞ 0 ¼ A w* ðtkÞ ∀k∈ ½1; nT �

w*LB≤ w* ðtkÞ≤w*UB ∀k∈ ½1; nT �

x
*
LB≤ x

* ðtkÞ≤ x
*

UB ∀k∈ ½1; nT �

x
*

t0ð Þ ¼ x
*
0

xi ðtkÞ ¼ xi ðtk−1Þ þ Δt∙vp;i ðtkÞ ∀k∈ ½1; nT �
X

i
vi;n tkþ1ð Þ≤bn þ an

X
j
x j;n tkð Þ

∀k∈ 1; nTð Þ; ∀i∈ vf gn; ∀ j∈ xf gn; ∀n∈ 1; nrð Þ

Model generation code
We developed MATLAB code to automatically translate
a standard FBA model into an LK-DFBA model and
solve the resulting optimization problem using the Gur-
obi Optimizer [32]. This code has been made publicly
available on GitHub at https://github.com/gtStyLab/lk-
dfba.

Test models
The branched pathway model
Our first test model is a modified version of a popular,
well-established in silico model from BST [33] describ-
ing a simple branched pathway with both positive and
negative regulatory interactions; it is shown in Fig. 1. As
in the original BST model, we use power-law kinetics.
Parameterizations for this model are shown in Table S1,
Additional file 1.
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Glycolysis and pentose phosphate pathway in E. coli
To explore initial scale-up and to better gauge the chal-
lenges of implementing LK-DFBA, we tested a model of
central carbon metabolism in E. coli comprising glycoly-
sis and the pentose phosphate pathway (PPP) with em-
pirically derived rate laws [34, 35]. The network
structure is shown in Fig. S2, with a list of model abbre-
viations in Table S2 and S3 in the Supplementary Infor-
mation (Additional file 1). Because LK-DFBA retains a
linear structure, the framework could potentially be ap-
plied to much larger systems if the stoichiometry and
regulation of the system are known, and if metabolomics
data from the system are available. Noiseless data at high
resolution were generated [36] from the default model
initial conditions and parameters in COPASI 4.14 (Build
89), with the exception that moieties such as ATP, ADP,
and NADH, etc. were held at constant concentrations
during simulation [34, 35, 37, 38].

Generating noise-added datasets
We generated datasets with different sampling frequen-
cies and noise characteristics using a previously de-
scribed procedure, allowing us to produce multiple
replicates of noisy data with a specified sampling fre-
quency and measurement noise [36].
Briefly, the noiseless data at high sampling frequency

were down-sampled such that the initial conditions and
nT additional time points are sampled evenly over the
time interval of interest. Then, the metabolite or flux
values are replaced with a random value drawn from
Ni,k~(yi(tk), CoV ∙ yi(tk)), where yi(tk) is the value of spe-
cies (metabolite or flux) i at time point k, and CoV is the
coefficient of variance. We leave the initial conditions at

the original values from the source model, and use it as
unfitted input for the LK-DFBA simulation.

Parameter fitting
We pose the parameter-fitting problem as follows: given
data describing a set of metabolite (and flux) time
courses, determine the set of model parameters that
minimize the weighted sum of squares error between
the data and the time courses predicted by the model.
We explored several strategies for addressing this prob-
lem. For all methods, we assumed that the structure of
the network and the regulatory interactions were known,
including the signs of the interactions. In all cases, the
true initial conditions (i.e. with no noise added) were
provided for all metabolites.

Dynamic flux estimation and parameter regression
Figure 2 presents a workflow for building each model.
We started with a Dynamic Flux Estimation (DFE)
scheme to fit noisy data and infer flux data [39]. We
smoothed concentration time course profiles using an
impulse function as previously described [36], and deter-
mined the slope (metabolite accumulation or pooling
flux) from the derivative of the smoothed function. From
these slope values the dynamic flux distribution was cal-
culated according to a procedure based on the method
of Ishii et al. [38]. Fluxes were divided into “static” and
“dynamic” sets, and the stoichiometric mass balance
equations were re-organized to solve for the “dynamic”
fluxes using MATLAB’s backslash pseudo-inverse. From
this, we paired the resulting calculated dynamic flux dis-
tribution data with the original noisy concentration data,

Fig. 1 The modified branched pathway model used in this work, adapted from Voit and Almeida [33]. Black arrows indicate fluxes. The green and
red arrows denote positive and negative regulatory interactions, respectively. The dashed line denotes the system boundary. Metabolites are X1,
X2, X3, X4, and XBM. System fluxes are v1, v2, v3, v4, and v5. Pooling fluxes for X1, X2, X3, X4, and XBM are v6, v7, v8, v9, and vBM, respectively. The
parameters in blue specify reaction rates and stoichiometry, such that bm3X3 + bm4X4→ XBM. Not shown are initial conditions. Kinetic rate laws
are implemented as generalized mass action (GMA) rate laws from BST
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system stoichiometry, and regulatory information for
subsequent regression analysis (blue arrow in Fig. 2).
To estimate model parameters in the two ODE-based

approaches (‘BST’,‘MM’) and our new approach (‘LK-
DFBA (LR)’), we used linear or non-linear regression on
the inferred flux data and the concentration data to fit
the parameters of the individual rate law equations to
the corresponding flux and metabolite data (green ar-
rows in Fig. 2). For the BST-based generalized mass ac-
tion kinetic rate law model (‘BST’), we log-transformed
the data to linearize the system and solved for the
power-law parameters using linear regression. For the
Michaelis-Menten kinetic rate law model (‘MM’), we
performed a non-linear regression by seeding the solver
with 100 random initial parameters and selecting the fit
with the lowest residuals. For the Linear Regression LK-
DFBA model (LK-DFBA (LR)), we performed linear re-
gression on the combined flux and concentration data
for each target-controller mapping as appropriate (for
example, regression on the sum (v2 + v4) against X1

when controller metabolite X1 is mapped to target fluxes
v2 and v4).

Parameter optimization
To fit parameters using a non-linear optimization ap-
proach (red arrows in Fig. 2), we constructed a fitness
function from the weighted sum-of-squares error (SSE)
between the provided data and model predictions, subject

to an L2 regularization penalty on the fitted parameters.
The SSE weights are specified by the user, and we used
them to reflect features such as differences in scale be-
tween metabolites. For the “Linear Regression-Plus”
method (‘LKDFBA-(LR+)’), we used the results of the Lin-
ear Regression (‘LK-DFBA (LR)’) method (described
above) as an initial starting point for the Nelder-Mead
simplex solver using the MATLAB function fminsearch()
to fit an LK-DFBA model. We also tested a global
optimization approach using a genetic algorithm
(Methods S1, Additional file 1) but found the LK-DFBA
(LR+) method to be much less computationally expensive
with similar accuracy (Fig. S8, Additional file 1).

Missing metabolite time courses
During our analysis, we explore the impact of incom-
plete data in the form of missing time course data. To
model this, we select a metabolite, designate it as “miss-
ing,” and withhold the time course data for that metab-
olite from the analysis (with the exception that we
provide the initial concentration of the metabolite as a
means of starting the process). For the DFE procedure,
we designate the pooling flux as a static flux and set its
value to 0 on the basis that we have no information to
justify assigning it a non-zero value. Similarly, the weight
of this metabolite is set to 0 in the fitness function to
preclude it from influencing parameter optimization.

Fig. 2 Workflow for building metabolic models. Dynamic Flux Estimation is applied to the system stoichiometry and available metabolomics data
to infer flux data. The system stoichiometry, metabolomics data, inferred flux data, and system regulatory information are then used to estimate
parameters in each modeling framework (blue arrow), using linear or non-linear regression (green arrows). A secondary optimization step can be
applied after LK-DFBA (LR) to further improve modeling accuracy (red arrows)
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Assessing fitted model performance: metrics and equations
For each fit, we calculated the penalized relative SSE
(prSSE) to allow us to compare each modeling method
based on the conditions used to generate the noisy syn-
thetic data (CoV, nT, missing Xi).
First, for model m and noisy data replicate n, we calcu-

late the resulting simulated time course data as

~y j;k;m;n ¼ f m
�
x*
0
n; θm;n

�
ð6Þ

where ~y j;k;m;n is the simulated value of concentration or
flux j at time k for model m fitted to noisy data replicate
n, and fm is the function integrating model m over the

time course with initial conditions x*
0
n and fitted parame-

ters θm,n. From this, we calculated prSSE as

prSSEm;n ¼ wm;n

X
j
w j

Pnk
k¼1ð~y j;k;m;n−y j;kÞ2

nk
ð7Þ

where yj,k is the value of species j at time k in the ori-
ginal noiseless time course data, nk is the number of
time points in the simulation interval,

wj ¼ w� jð Þ max y* j

� �
− min y* j

� �� �−1
ð8Þ

is the species scaling factor, y* j is the noiseless data time
course for species j, w∗(j) is a binary variable denoting
participation in the prSSE calculation (e.g. for j ϵ pooling
fluxes, we set w∗(j) to 0 to exclude them from the
prSSE),

wm;n ¼ nf mð Þ∙nT nð Þ−np mð Þ
nf mð Þ∙nT nð Þ

� �−1

ð9Þ

is the penalty on parameterization, nf(m) is the number
of species used to fit θm,n, nT(n) is the number of time
points used to fit θm,n, and np(m) is the number of pa-
rameters in θm,n.

Results
Comparing the performance of methods using noisy data
in the branched pathway model
We generated high-resolution noisy time course data for
the modified branched pathway model using the k = 1
parameter set by downsampling the high resolution data
to nT = 15, 20, 30, 40, and 50, and adding multiplicative
Gaussian noise to data points after the initial time point
with CoV = 0.05, 0.15, and 0.25. For each combination of
nT and CoV, 50 replicate datasets were produced, pro-
ducing a total of 750 noisy datasets.
For each noisy dataset replicate and each modeling

method (MM, BST, LK-DFBA (LR), LK-DFBA (LR+))
we employed the corresponding fitting procedures de-
scribed in the Methods. Sensitivity analysis of the LK-

DFBA (LR+) parameters indicates that there are several
key constraints that have stable parameters across the
different combinations of nT and CoV, while other pa-
rameters are more flexible (Fig. S11, Additional file 1).
The fitted parameters were used to simulate the system
time course for each case at high resolution (nT = 200),
and the fitted models were compared against the noise-
less version of the data to calculate model prSSE as de-
scribed in the Methods section. The results of this
analysis are shown in Fig. 3.
In this analysis, we observe a few basic trends. First, as

expected, as the quantity of data in the time courses in-
crease, the methods all consistently achieve lower error
(higher -log10(prSSE)), with some evidence of diminish-
ing returns in a few cases at high nT. In addition, the
quality of fits decreases as the added noise increases.
Across conditions, the LK-DFBA (LR+) method outper-
forms all other methods. We also note that the BST and
MM methods generally perform well in cases when data
quality is very good, such as at low noise (CoV = 0.05),
or when there is a high sampling rate (nT = 40, nT = 50).
When data are more sparse or noisy, the LK-DFBA (LR)
method performs comparably or slightly better than the
BST and MM methods. Surprisingly, the MM method
performs better than the BST method at low noise
(CoV = 0.05), but the two methods are comparable at
higher noise levels. We note that like the improvement
from LK-DFBA (LR) to LK-DFBA (LR+), an additional
parameter optimization step for the BST model can pro-
duce better results for this model as well; however, this
improved performance (in which it outperforms LK-
DFBA (LR+), except in metabolomics data with low
sampling frequency and high noise) is to be expected
given that the BST model has the advantage of contain-
ing the true underlying system structure and kinetic rate
laws, even though that would not be true for a real bio-
logical system. This is further illustrated in Fig. S8, Add-
itional file 1 where the BST model outperforms all other
frameworks on noiseless data. For these reasons, the
BST model was included as a best-case scenario for situ-
ations (discussed below) where a metabolite time course
is missing, while the MM method was omitted. No add-
itional parameter optimization step was tested with the
MM approach because the solver in the original param-
eter estimation is already seeded with 100 random initial
parameters to help avoid getting trapped in local
minima.

The effects of withholding metabolite time courses on
model performance in the branched pathway model
To test the impact of missing metabolite data (which are
to be expected in metabolomics experiments) on fitting
performance, we repeated the analysis from the previous
section, but modified the procedure by withholding
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information about one metabolite from the fitting pipe-
line to model it as “missing” from the data (the value of
the metabolite’s initial condition was retained). This was
accomplished by setting the pooling flux of the missing
metabolite as “static” for the flux estimation step, and
the corresponding regressions were performed with only
the initial value as a placeholder. Each of the five metab-
olites in the branched pathway were modeled as missing
in this way, for each of the 750 noisy datasets from the
previous section. For each case, the BST, LK-DFBA (LR),
and LK-DFBA (LR+) fitting methods were performed. In
the case of the LK-DFBA (LR+) method, the missing
metabolite was also removed from the weights of the fit-
ness function. The results of this analysis are shown in
Fig. 4.
The position of the missing metabolite in the meta-

bolic network leads to trends that can differ substantially
from those in Fig. 3. These trends stem from how well
the dynamic flux estimation step can be performed
(which is common to all of the modeling approaches be-
ing considered); by setting the pooling flux of a missing
metabolite as static, the calculated system fluxes adjacent
to that metabolite are skewed accordingly. This in turn
affects the regression step and the resulting parameters.
While non-linear parameter fitting may be useful for

counteracting this source of inaccuracy, it is not guaran-
teed to do so. An interesting outcome from this analysis

is the performance of the LK-DFBA (LR) and LK-DFBA
(LR+) methods in Fig. 4e-f, in which the LK-DFBA (LR)
method actually outperforms the LK-DFBA (LR+)
method. In those X2-Missing cases, the lack of data de-
scribing X2 dynamics led to poor optimization: the pa-
rameters that best optimized the remaining data pushed
the model to poorly approximating the time course of
the unmeasured metabolite (which was still included in
the calculation of prSSE) (see Fig. S9, Additional file 1).
We also observe that when X4 is withheld from flux esti-
mation and parameter optimization, the LK-DFBA
(LR+) model usually fails to outperform the BST model
(represented in Fig. 4j-k). This suggests that X4 has a lar-
ger impact on the ability of the LK-DFBA (LR+) model
to capture the correct behavior. Given that X4 is the
controller for one of the two regulatory interactions, this
serves to highlight the importance of capturing metabol-
ite dynamics in order to incorporate regulation, and fur-
ther justifies our interest in modeling these sorts of
interactions.

Recapitulating results with the E. coli model
The branched pathway model is useful for exploring
some basic characteristics of our new framework, but it
lacks biologically relevant features. To introduce some of
these complexities and to explore the performance of
our approach with a medium-scale model with biological

Fig. 3 Comparison of fitting performance for MM, BST, LK-DFBA (LR), and LK-DFBA (LR+) methods. The black line for data is a benchmark
comparison reflecting the noise added to the input data: each of the 750 noisy datasets was compared against the noise-free data to establish a
baseline level of inaccuracy dependent on CoV. The penalized relative sum-of-square error (prSSE) calculations terms are all normalized to allow a
consistent comparison against this reference. Solid lines represent the median error for each modeling approach and dotted lines represent the
median absolute deviation. a CoV = 0.05. b CoV = 0.15. c CoV = 0.25. nT is the number of time points used to fit each model. The LK-DFBA
framework with LK-DFBA (LR+) performs particularly well compared to other approaches when input data have significant noise, which is the
type of input to be expected from experimental metabolomics analyses
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relevance, we generated synthetic data using the kinetic
E. coli model of Chassagnole et al. [34]. The topology of
this network is more complicated, with multiple exam-
ples of branch and convergence points that are found
throughout genome-scale models. Implementing this

model in LK-DFBA resulted in several modifications to
our procedure, which are discussed in more detail in the
Methods S1, Additional file 1.
We produced synthetic noisy data from the E. coli model

using the procedure previously described. High-resolution

Fig. 4 Comparison of fitting performance when one metabolite time course is withheld from the fitting procedure. Solid lines represent the
median penalized relative sum-of-square error (prSSE) for each modeling approach and dotted lines represent the median absolute deviation. a,
b, c Performance when X1 is missing (X1-Missing). d, e, f X2-Missing. g, h, i X3-Missing. j, k, l X4-Missing. m, n, o XBM-Missing. nT is the number of
time points used to fit each model. Generally, LK-DFBA (LR+) performs better than the compared methods, with the exception of decreased
performance of LK-DFBA when the metabolite regulator X4 is missing, reflecting the importance of being able to measure regulatory molecules
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noise-free data for the model’s 18 metabolites and 48 fluxes
were generated over the interval of 10s from the ODE
model and nominal parameters. From this, we produced 20
noise-added replicates each for nT = 20, 30, and 40 and
CoV= 0.10 and 0.20 (for a total of 120 noisy datasets). For
these datasets, we encountered significant difficulties in re-
capitulating a qualitatively correct dynamic flux distribution
using impulse smoothing and the procedure of Ishii et al.
[38] for dynamic flux estimation (before any LK-DFBA cal-
culations were performed), as shown in Fig. S10, Additional
file 1. While DFE works well for determined and overdeter-
mined systems, such as the branched pathway model, a
more arduous, systematic approach is necessary for under-
determined systems such as the E. coli model [40]. To cir-
cumvent this issue and thus focus on assessing the
modeling framework itself rather than confounding effects
caused by an upstream data analysis procedure, we opted
to instead use noise-added flux data directly from the
underlying ODE model for regression.
We fit each of these noisy datasets using two different

implementations of LK-DFBA to address some complexity
present in the E. coli model that was not in the branched
pathway model. In the E. coli model (as in most biological
systems), most metabolites can be transformed into mul-
tiple potential products, yielding many “branch points” in
the model (compared to only one branch point in the previ-
ously analyzed model). In the first implementation, a single
constraint was used to limit the total efflux from a given
metabolite (i.e. all fluxes from a metabolite were listed as

targets for that constraint), entailing 18 constraints (36 pa-
rameters) of this type. In the second case, we split the tar-
gets so that each metabolite-flux mapping had only one
target flux, which yielded 49 constraints (98 parameters).
We refer to the two model implementations as the “unsplit”
and “split” constraint implementations, respectively. For
both models, we also included 6 constraints (12 parame-
ters) describing allosteric regulation interactions, resulting
in fitting 24 constraints (48 parameters) in the unsplit im-
plementation, and 55 constraints (110 parameters) in the
split implementation. The remaining 17 constraints (34 pa-
rameters) for the degradation and dilution reactions were
modeled as first order kinetic rate laws by setting b = 0 and
a = 2.78e-05, corresponding to the ODE model growth rate.
We analyzed whether the additional parameters intro-

duced in the split constraints implementation were justified
by an improvement in model accuracy, reflected by penaliz-
ing the relative SSE value commensurate with the add-
itional parameters when calculating prSSE. For each
implementation and noisy dataset, we identified parameters
both with the LK-DFBA (LR) and LK-DFBA (LR+)
methods, modifying the LK-DFBA (LR+) method to split
up and sequentially fit subsets of the parameters (instead of
estimating them all simultaneously) as described in the
Methods S1, Additional file 1. As with the branched path-
way model, we evaluated the quality of the resulting fits by
simulating the system at high resolution (nT = 200) and cal-
culating the prSSE. The results of this analysis are shown in
Fig. 5.

Fig. 5 Results of fitting the Unsplit and Split LK-DFBA models to the E. coli data. Solid lines represent the median penalized relative sum-of-square
error (prSSE) for each modeling approach and dotted lines represent the median absolute deviation. a CoV = 0.10. b CoV = 0.20. nT is the number
of time points used to fit each model. At higher noise and higher data frequency, the split method performs better even when penalized for
having additional fitted parameters
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We note several trends in Fig. 5. First, the unsplit
model behaves with the same general trends we ob-
served in the branched pathway model, in which increas-
ing nT and decreasing CoV consistently lead to
improved prSSE, and the LK-DFBA (LR+) method out-
performs the LK-DFBA (LR) method. Second, the split
model generally outperforms the unsplit model (though
not always statistically significantly), with the exception
of using the LK-DFBA (LR) method on CoV = 0.10 data
and LK-DFBA (LR+) on CoV = 0.10 data with nT = 20.
Third, the split model performs better on the CoV =
0.20 data than on the CoV = 0.10 data, for both the LK-
DFBA (LR) and LK-DFBA (LR+) methods. On average,
for the LK-DFBA (LR+) method the unsplit model (48
parameters) took ~ 30min to fit for each noisy dataset,
while the split model (110 parameters) took ~ 50 min
(for both split and unsplit models, the LK-DFBA (LR)
method took fractions of a second).

Discussion
In this work, we devised and implemented LK-DFBA, a
modification of DFBA that integrates metabolomics data
and allows us to capture metabolite dynamics and
metabolite-dependent kinetics and regulatory interac-
tions while retaining the linearity of regular FBA. Given
the same information necessary for FBA, initial condi-
tions for metabolites, and a suitable description of the
connectivity and parameterization of the kinetics inter-
actions, we showed that LK-DFBA successfully repro-
duces biologically relevant model dynamics in a
simplified model system and in a biologically relevant
system, competitive with existing approaches that do not
have the generalizability to potentially large-scale sys-
tems allowed by the linear modeling approach used here.
Critically, our approach is more robust than other
methods under the most realistic cases (high noise and
low sample frequency), which will be crucial for turning
metabolomics measurements into biological insight.
The lynchpin of the LK-DFBA framework is the

addition of linear kinetics constraints in conjunction
with pooling fluxes. On their own, pooling fluxes are not
sufficient to induce biologically relevant behavior, and
other information (kinetic rate law equality [31] or in-
equality [30] constraints; connected biological process
modules [41]) must be included to drive accumulation
and depletion. While the idea of linearized regulation
has been implemented before in a CBM of intracellular
signal transduction, this approach ignored concentra-
tions and presumed steady-state behavior [42]; the
resulting linear constraints simply specified certain flux
tradeoffs. In LK-DFBA, we combine both elements to
permit and drive metabolite dynamics while preserving
the advantages of FBA.

The inclusion of regulatory control driven by meta-
bolic data may enable identification of metabolic regula-
tory structure in closely related organisms with similar
metabolic network topology that otherwise demonstrate
highly divergent metabolic dynamics. By retaining the
LP structure and the original stoichiometry of the FBA
problem, we have created a problem that can integrate
metabolite dynamics and regulation into the many strain
design tools created around FBA. Knowing how metab-
olite concentrations will change over the course of an
experiment could be crucial for making more informed
decisions when designing strains in metabolic engineer-
ing. Current limitations in metabolomics data acquisi-
tion such as absolute quantification of metabolite
concentrations and sufficient time resolution of samples
make applying this work to existing metabolomics data
still challenging, but as advancements in mass spectrom-
etry and data processing methods occur to tackle these
limitations [25], modeling tools such as LK-DFBA will
be ready to take full advantage of the resulting data.
Taken together, this represents the first-ever linearly-

constrained modeling framework with the ability to
predict metabolite dynamics and directly integrate meta-
bolomics data. Moving beyond steady-state assumptions
to address the biological realities and changing metabolite
levels of systems is a key step in enabling metabolic mod-
eling to have an even greater impact on systems biology.
This unique, scalable approach to the problem of dynamic
modeling, circumventing some important issues of current
modeling modalities, has the potential to enable a new
class of metabolic models with broad applications.
Genome-scale dynamic modeling of metabolic systems is
a critical grand challenge in systems biology, with its solu-
tion potentially enabling broad scientific discovery and
countless engineering applications, such as strain design,
gene essentiality analysis, drug targeting, and understand-
ing disease [43, 44]. LK-DFBA has been designed with an
eye towards future applications in large models, as its lin-
ear programming structure offers it the potential to effi-
ciently solve for metabolite concentrations and fluxes at
the genome-scale.
Before implementing a genome-scale model into LK-

DFBA, though, there are a few points to consider. First,
similar to an ODE model, the parameterization of the lin-
ear kinetics constraints is the most computationally time-
consuming component of LK-DFBA. The linear kinetics
constraints consist of two parameters each, which are
fewer and less time-consuming to solve for than parame-
ters in most ODE models that do not just use simple
Michaelis-Menten kinetics. Nevertheless, as more reac-
tions are added to the system, the time it takes to solve for
an optimal set of parameters increases, and faster
optimization approaches will need to be considered. Once
the parameters are calculated, the time it takes to solve for
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metabolite concentrations and fluxes is on par with FBA.
We note, though, that the LK-DFBA (LR) method without
optimization (which requires very little computational
time to estimate parameters) has been shown to be com-
parable to other ODE-based approaches at realistic condi-
tions (Fig. 3c), supporting the potential for viable scale-up.
Second, one novel aspect of LK-DFBA is that it uses
metabolite-dependent regulation as a means to increase
model accuracy. In the case of genome-scale models,
many of these metabolite-dependent regulations may be
unknown in the literature and must be identified by other
approaches in order to maintain the effectiveness of LK-
DFBA. In the absence of this, optimization of the regula-
tory structure based on metabolomics could be possible,
though we expect that to be a challenge entailing signifi-
cant future effort. Third, because LK-DFBA relies on flux
data to optimize the linear kinetics constraint parameters,
the development of improved analytical tools for measur-
ing fluxomics data or methods for accurately calculating
flux from concentration data in underdetermined systems
will significantly improve the predictions of LK-DFBA. A
systematic approach to DFE for underdetermined systems
by Chou et al. has produced promising results [40].
In the work discussed here, we modeled regulatory kinet-

ics constraints that correspond to regulation of fluxes via
rapid, direct mechanisms such as allostery. However, LK-
DFBA is not inherently restricted to modeling this type of
regulation. By choosing a simulation interval over which
transcriptional changes are relevant, changes in enzyme
levels could easily be modeled as well, though changes in
target fluxes associated with transcriptional regulation may
need to be implemented with a time delay due to the inter-
mediate biochemical steps necessary to produce the rele-
vant changes in enzyme levels. However, in the case of
extremely sparsely sampled time courses, even a time delay
might not be necessary to indirectly represent regulation by
metabolites mediated through transcription.

Conclusion
Currently, metabolic modeling frameworks are restricted
to modeling the dynamics of small-scale systems or only
model genome-scale systems at steady state. However,
the metabolism of an organism is heavily regulated and
its metabolic state is likely to change over time. Without
being able to model metabolite dynamics in the entirety
of an organism, metabolic engineering efforts will inevit-
ably come up short. Development of genome-scale
models with the ability to track metabolite dynamics and
account for regulation will enable more accurate predic-
tion and more effective metabolic engineering that could
have a drastic impact on titers and productivity. Our
work here establishes a basis for working towards this
goal, and merits further investigation to see such appli-
cations to fruition.
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