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Abstract Exposure of carbohydrate-binding agents (CBAs)
(i.e. the mannose-specific plant lectins Hippeastrum hybrid
agglutinin and Galanthus nivalis agglutinin) to HIV-1 progres-
sively select for mutant HIV-1 strains that contain N-glycan
deletions in their envelope gp120. This results in resistance of
the mutant virus strains to the CBAs. Exposure of such mutant
virus strains to the a(1,2)-mannosidase I inhibitor 1-deoxyman-
nojirimycin (DMJ) results in an enhanced suppression of mutant
virus-induced cytopathicity in CEM cell cultures. Moreover,
when combined with CBAs at concentrations that showed poor
if any suppression of mutant virus replication as single drugs, a
synergistic antiviral activity of DMJ was observed. These obser-
vations argue for a combined exposure of CBAs and glycosyla-
tion inhibitors such as DMJ to HIV to afford a more
pronounced suppression of virus replication, prior to, or during,
CBA resistance development.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: HIV; gp120; Carbohydrate-binding agents;
Plant lectins; Deoxymannojirimycin
1. Introduction

The majority of enveloped viruses contains multiple glycans

on their envelope proteins. In some cases (i.e. human immuno-

deficiency virus, HIV) [1], hepatitis C virus (HCV) [2], coro-

naviruses (CoV) [3], influenza virus (INF) [4]), the envelope

is extensively glycosylated. The gp120 envelope of HIV is

among the most heavily glycosylated proteins known [5]. Pro-

tein glycosylation may serve multiple functions, including

proper folding of the nascent peptide, avoiding peptide precip-

itation due to the presence of lipophylic amino acid domains in

the protein, protection against breakdown by proteases,

increasing molecular diversity, and last but not least, in some
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cases, escape of immune surveillance [6]. After the glycan

building block (GlcNAc)2Man9Glc3 has been added to aspar-

agines of the native peptide that are part of a N-glycosylation

motif (NXS/T), the N-glycans are processed by a-glucosidases

to remove the terminal three glucoses in the endoplasmatic

reticulum (ER). Then, ER and Golgi class I a1,2-mannosidases

specifically hydrolyze a1,2-mannose residues, and catalyse the

trimming of the high-mannose chains involving four a1,2-

linked mannose residues, and this process generates Man5Glc-

NAc2. Subsequent action of GlcNAc transferase I initiates

complex chain formation and yields the substrate for Golgi

a-mannosidase II which trims the terminal a1,3- and a1,6-

mannose residues [7]. Further processing events in the Golgi

apparatus eventually lead to glycans that consist of a wide

variety of carbohydrates and combinations thereof [7–10].

Since mammalian viruses use the host cell glycosylation

machinery for glycan synthesis and modification of the glycans

that need to be incorporated in their envelope glycoproteins, it

has been suggested that it is possible to target the viral enve-

lope glycoproteins by inhibiting certain host-cell glucosidases

at low levels that do not affect host-cell viability [5]. The

altered glycan structures on the viral envelope proteins may

then result in decreased viral infectivity (fitness), virus assem-

bly and/or virus particle release [5]. HIV infectivity has indeed

shown to be suppressed in cell culture when the virus was

propagated in the presence of the a-glucosidase inhibitor

NB-DNJ [11]. The latter drug has been evaluated in phase II

clinical trials as an anti-HIV therapeutic [12]. For hepatitis B

virus (HBV), it was demonstrated that NN-DNJ (and also to

a minor extent NB-DNJ) disrupted the proper folding and effi-

cient release of the viral envelope molecules. It was shown that

NB-DNJ could reduce virus levels in a dose-dependent manner

[13]. Since the E1 and E2 transmembrane glycoproteins of

HCV are important for host cell entry [14], and since proper

folding is calnexin-dependent [15], glucosidase inhibitors may

also be expected to affect HCV entry and infectivity.

Recently, we have shown that carbohydrate-binding agents

(CBA) are able to force HIV-1 to delete part of the glycans

on its gp120 envelope in an attempt to escape drug pressure

[16–19]. Such mutant virus strains display different degrees of

phenotypic (in)sensitivity to the CBA’s antiviral activity

depending the number and the nature of the glycans that were

deleted in gp120. In this study, we wanted to investigate

whether the concomitant combination of CBAs and the

glycosylation inhibitor 1-deoxymannojirimycin (DMJ) against
blished by Elsevier B.V. All rights reserved.

mailto:jan.balzarini@rega.kuleuven.be


J. Balzarini / FEBS Letters 581 (2007) 2060–2064 2061
wild-type and mutant (glycan-deleted) gp120-containing HIV-

1 strains could afford a superior antiviral activity than when

added as single drugs. DMJ was used because it selectively

inhibits a1,2-mannosidase I resulting in the accumulation of

high-mannose glycans on the viral envelope glycoprotein. We

found a significantly increased sensitivity of the mutant virus

strains to the inhibition by DMJ, and a marked potentiation

of the antiviral efficacy of CBAs when co-administered with

DMJ, both for wild-type and mutant virus strains.
2. Materials and methods

2.1. Test compounds
The mannose-specific plant lectins from Galanthus nivalis (GNA)

and Hippeastrum hybrid (HHA) were derived and purified from these
plants, as described before [20,21]. DMJ was obtained from Sigma–Al-
drich (St. Louis, MO) and from Calbiochem (VWR International,
Haasrode, Belgium).

2.2. Cells
Human T-lymphocytic CEM cells were obtained from the American

Type Culture Collection (Manassas, VA) and cultivated in RPMI-1640
medium supplemented with 10% fetal bovine serum (FBS) (BioWit-
taker Europe, Verviers, Belgium), 2 mM LL-glutamine and 0.075 M
NaHCO3.

2.3. Viruses
HIV-1(IIIB) was provided by Dr. R.C. Gallo and Dr. M. Popovic (at

that time at the National Cancer Institute (NCI), National Institutes of
Health (NIH), Bethesda, MD). The mutant virus strains were obtained
and characterized as described before [22].
2.4. Antiretrovirus assays
The methodology of the anti-HIV assays has been described previ-

ously [16,17]. Briefly, CEM cells (4.5 · 105 cells per ml) were suspended
in fresh culture medium and infected with HIV-1 at 100 CCID50 per ml
of cell suspension. Then, 100 ll of the infected cell suspension were
transferred to microplate wells, mixed with 100 ll of the appropriate
dilutions of the test compounds, and further incubated at 37 �C. After
4–5 days, giant cell formation was recorded microscopically in the
CEM cell cultures. The 50% effective concentration (EC50) corresponds
to the compound concentrations required to prevent syncytium forma-
tion by 50% in the virus-infected CEM cell cultures. In the drug com-
bination experiments, DMJ was added to the cell cultures prior to the
addition of the CBA and virus infection of the drug-exposed cells. The
proper control experiments in which only one of the drugs or none of
the drugs were present, were carried out under similar experimental
Table 1
Glycan deletions present in the gp120 envelope of mutant HIV-1 strainsa

Position of the N-glycan
amino acid deletion

Nature of the glycanb Mutant viru

HIV-1/GNA

88 C ±
197 C �
230 M +
234 M +
276 C �
289 M ±
295 M �
301 C +
332 M �
339 M +
386 M �
392 M +

aGlycan deletions at the N-glycosylation sites in gp120 (indicated as +) as
(glycan containing) wild-type sequence. The ‘‘±’’ notation refers to the pres
isolate.
bC: complex-type glycan, M: high-mannose type glycan [19].
conditions. Data of representative experiment were shown in the fig-
ures.
3. Results

3.1. Antiviral effect of the glycosylation inhibitor DMJ and the

CBAs HHA and GNA against wild-type and mutant HIV-1

strains

The antiviral activity of the a(1,2)-mannosidase I inhibitor

DMJ and the mannose-specific plant lectins HHA and GNA

was investigated against wild-type HIV-1(IIIB) and three mu-

tant HIV-1(IIIB) strains that contain a variety of 7–8 glycan

deletions in their envelope gp120 (Table 1). DMJ did not sup-

press HIV-1(IIIB)-induced cytopathicity in CEM cell cultures

at a concentration as high as 500 lM. However, when DMJ

was evaluated for its antiviral activity against the mutant virus

strains, it had gained, as such, measurable antiviral efficacy.

DMJ was inhibitory at an EC50 that ranged between 90 and

155 lM against the mutant virus strains. Thus, the cytopathic

activity of the mutant virus strains was invariably suppressed

by DMJ (Table 2). In contrast, the CBAs HHA and GNA that

showed EC50 values as low as 0.28 and 0.16 lg/ml against wild-

type HIV-1(IIIB), respectively, markedly lost their pronounced

suppressive activity against the three mutant virus strains

(EC50: 58–500 lg/ml) (Table 2). Thus, the deleted glycans in

HIV-1 gp120 clearly compromised the antiviral activity of

the CBAs.

3.2. Antiviral effect of CBAs in combination with DMJ against

wild-type HIV-1 in CEM cell cultures

The effect of 250 and 100 lM DMJ on the inhibitory activity

of the CBAs HHA and GNA against wild-type HIV-1 replica-

tion in CEM cell cultures was investigated (Fig. 1). As already

mentioned above, DMJ was not inhibitory against HIV-1-in-

duced cytopathicity at the concentrations used (250 and

100 lM). In contrast, HHA (Fig. 1A) and GNA (Fig. 1B) as

single drugs completely prevented HIV-1-induced CPE in the

CEM cell cultures at concentrations as low as 0.8 lg/ml. At

0.16 lg/ml, HHA and GNA were �25% and 50% inhibitory,

respectively. At 0.032 lg/ml, no residual inhibitory effect of

the CBAs was observed. Interestingly, co-administration of

DMJ to HHA and GNA markedly potentiated the antiviral
s strain

500(CS) HIV-1/HHA500(SN) HIV-1/HHA500(CS)

+ �
+ �
� +
+ +
� ±
+ �
+ +
� +
+ +
+ +
+ �
� +

determined in ref. 22. The ‘‘�’’ notation refers to the presence of the
ence of a mixture of the wild-type and mutated sequence in the virus
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Fig. 1. Effect of 1-deoxymannojirimycin on the antiviral effect of HHA
and GNA against HIV-1-infected CEM cell cultures.

Table 2
Antiviral activity of 1-deoxymannojirimycin (DMJ) and the CBAs HHA and GNA against wild-type and mutant HIV-1 strains

Compound EC50 (lg/ml)a

HIV-1/WT HIV-1/GNA500(CS)b HIV-1/HHA500(CS)b HIV-1/HHA500(SN)b

DMJc >500 90 ± 60 155 ± 141 103 ± 80
HHA 0.31 ± 0.13 67 ± 31 125 ± 35 127 ± 59
GNA 0.45 ± 0.26 103 ± 45 62 ± 36 153 ± 46

a50% Effective concentration or compound concentration required to inhibit virus-induced cytopathicity in CEM cell cultures by 50%.
bMutant HIV-1 strains containing a variety of glycan deletions in gp120 as shown in Table 1.
cData expressed in lM.
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Fig. 2. Effect of 1-deoxymannojirimycin on the antiviral effect of GNA
against mutant drug-resistant HIV-1 strains in CEM cell cultures.
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efficacy of these CBAs. The inhibitory activity of 0.16 lg/ml

HHA against HIV-1 increased from 25% to 90% in the pres-

ence of DMJ, and from 50% to 100% upon co-administration

of DMJ with 0.16 lg/ml GNA. At lower HHA and GNA con-

centrations, no pronounced antiviral activity was noticed for

the CBAs, neither in the absence, nor in the presence of

DMJ (Fig. 1).

3.3. Antiviral effect of CBAs in combination with DMJ against

mutant HIV-1 strains in CEM cell cultures

Three different HIV-1 strains that were shown to contain sev-

eral N-glycan deletions in their gp120 envelope (Table 1) were

exposed to GNA and HHA in the presence of a variety of

DMJ concentrations. When 50, 20 and 8 lM DMJ was com-

bined with GNA (Fig. 2A–C), DMJ acted synergistically in

combination with these CBAs. For example, 4 and 20 lg/ml

GNA that showed poor, if any, antiviral efficacy against HIV-

1/GNA-500(CS) (Fig. 2, panel A) and HIV-1/HHA-500(CS)

(Fig. 2, panel B) became 100% protective against the virus-in-
duced cytopathic effect in the presence of 50 lM DMJ, and

40–100% protective in the presence of 20 lM DMJ. Such a

synergistic effect was also seen for DMJ against HIV-1/HHA-

500(SN) when GNA was administered at the higher concentra-

tion range (20–500 lM) (Fig. 2, panel C). A similar synergistic

activity of DMJ was noted against the mutant virus strains

when combined with HHA (Fig. 3, panels A, B and C).

Surprisingly, when the lower GNA and HHA concentra-

tions (0.032–0.8 lM) were combined with DMJ, rather an

antagonistic activity was observed. This phenomenon was con-

sistently seen for both HHA and GNA, in the presence of the

different DMJ concentrations (Figs. 2 and 3).
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Fig. 3. Effect of 1-deoxymannojirimycin on the antiviral effect of HHA
against mutant drug-resistant HIV-1 strains in CEM cell cultures.
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3.4. Cytostatic and antimetabolic activity of DMJ and CBA

combinations in CEM cell cultures

Neither the CBAs (500 lM) nor DMJ (250 lM) proved

inhibitory against CEM cell proliferation whether adminis-

tered to the cell cultures as single drugs or combined (data

not shown). The drug combinations also had no inhibitory ef-

fect on cell metabolism since radiolabeled thymidine, uridine

and leucine incorporation into CEM cell DNA, RNA or pro-

teins was not measurably affected.
4. Discussion

The glycosylation inhibitor DMJ targets the ER and Golgi

a(1,2)-mannosidase I that trims the a1,2-mannose(s) from the

Man9(GlcNAc)2 glycan after the ER a-glucosidases I and II

have removed the three terminal glucose units from the N-gly-

can Glc3Man9(GlcNAc)2 block [7,8]. As a result, the amount of

high-mannose type glycan structures on the glycoprotein mark-

edly increases in the presence of DMJ since further trimming/

processing of the high-mannose glycans to hybrid- or com-

plex-type glycans has been largely prevented by the DMJ-med-

iated blockade of the a1,2-mannosidases I. Since the CBAs

GNA and HHA are known to specifically bind to a(1,3)-
and/or a(1,6)-mannose oligomer structures [23], it could be rea-

soned that a higher amount of high-mannose type glycans on

gp120 may allow these CBAs to concomittantly bind to a high-

er amount of glycans on the HIV-1 envelope. Consequently,

they may exert a more pronounced antiviral activity in DMJ-

treated virus-infected cells. We observed indeed a potentiation

of the anti-HIV-1 activity of HHA and GNA in the presence of

DMJ concentrations that exerted themselves no antiviral activ-

ity when used as a single drug. Thus, concomittant administra-

tion of glycosylation inhibitors (such as DMJ) and CBAs in

HIV-1-infected cell cultures may further potentiate the antiviral

activity of the mannose-specific CBAs.

Interestingly, whereas wild-type virus infection and replica-

tion efficiently proceed in the presence of high (i.e. 250 and

100 lM) DMJ concentrations (EC50 > 500 lM), the mutant

HIV-1 strains that contain multiple deletions of N-glycans in

gp120 gained sensitivity to the inhibitory activity of the a1,2-

mannosidase I inhibitor DMJ in the CEM cell cultures. Whereas

DMJ was not effective at all at 500 lM against parent wild-type

virus it could indeed inhibit mutant virus infection at an EC50

that ranged between 90 and 150 lM, that is at an at least more

than 5–10-fold lower DMJ concentration. These mutant virus

strains showed 7 or 8 glycan deletions at putative N-glycosyla-

tion sites in gp120 [22], and the deletions preferentially occurred

at high-mannose type glycan sites (Table 1). Such glycan dele-

tions in the mutant HIV-1 strains resulted in a marked pheno-

typic resistance to the HHA and GNA CBAs. It could be

assumed that DMJ converts at least part of the remaining gly-

cans of the mutant gp120 into high-mannose-type glycan struc-

tures, making them more vulnerable to interaction with the

CBAs. Consequently, an increased antiviral activity would then

be expected upon co-administration with DMJ, a phenomenon

that we indeed observed to occur in the HIV-infected cell cul-

tures. Interestingly, a similar phenomenon has been observed

to occur when Pradimicin A, a high mannose-type glycan-bind-

ing antibiotic, was exposed to mammalian U937 cells that had

been pretreated with DMJ [24]. Under these experimental con-

ditions, the cells express high levels of high mannose-type oligo-

saccharides and become sensitive to PRM-A (resulting in

apoptosis induction). No such apoptosis induction was ob-

served in PRM-A-exposed cell cultures that were not pretreated

with DMJ [24,25]. Thus, the combined use of CBAs and the

a1,2-mannosidase-inhibitor DMJ enabled partial restoration

of the phenotypic sensitivity of the mutant HIV-1 strains against

the CBAs. Our results argue for combined administration of

CBAs and DMJ to wild-type virus, because phenotypic resis-

tance development may be expected to slow down when DMJ

is present during CBA treatment of HIV-1. The slight but con-

sistently observed antagonistic activity that has been observed

for DMJ when combined with the lowest CBA concentrations

is rather puzzling and the molecular basis of this phenomenon

is yet unclear.

There is, in general, a concern for the therapeutic application

of inhibitors that target cellular enzymes such as the a1,2-man-

nosidase I inhibitor DMJ. Indeed, inhibition of cellular glyco-

sylation enzymes in virus-infected cells may not only

compromise proper viral glycopeptide formation, but may also

have deleterious effects on glycoproteins of non-infected cells.

However, therapy with drugs, in casu glycosylation inhibitors,

should not necessary aim to ablate enzyme activity but should

rather be used to modulate enzyme activities involved in glyco-

sylation [26]. Since the envelope gp120 glycoprotein of HIV is
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among the highest glycosylated glycoproteins currently known

and has a high (functional) requirement of high-mannose type

glycans, it may be assumed that a moderate attenuation of

a1,2-mannosidase I activity may have a more pronounced

deleterious impact on the synthesis of the viral envelope glyco-

protein than on the cellular glycoproteins, allowing for a cer-

tain degree of selectivity of such inhibitors. Proper in vivo

experiments should reveal the therapeutic efficacy and feasibil-

ity of such drugs.

In conclusion, the a(1,2)-mannosidase I inhibitor DMJ was

found to potentiate the inhibitory activity of CBAs against

wild-type HIV-1. Administration of DMJ to cell cultures

infected with mutant HIV-1 strains that contain N-glycan dele-

tions in the gp120 envelope render the mutant virus susceptible

to the inhibitory activity of DMJ. Moreover, DMJ can par-

tially reverse the phenotypic resistance of CBAs to the mutant

virus strains. These three phenomena may argue for further

investigation of glycosidase inhibitors such as, but not limited

to, DMJ to be used in combination with CBAs with the aim to

further potentiate the antiviral activity of the CBAs and to de-

lay resistance development that may develop under CBA drug

pressure.
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