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DNA replication is required for the checkpoint
response to damaged DNA in Xenopus egg extracts
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(MMS), damage DNA and activate the DNA damage

checkpoint. Although many of the checkpoint proteins
that transduce damage signals have been identified and
characterized, the mechanism that senses the damage and
activates the checkpoint is not yet understood. To address
this issue for alkylation damage, we have reconstituted the
checkpoint response to MMS in Xenopus egg extracts.
Using four different indicators for checkpoint activation
(delay on entrance into mitosis, slowing of DNA replication,

ﬁ Ikylating agents, such as methyl methanesulfonate

phosphorylation of the Chk1 protein, and physical association
of the Rad17 checkpoint protein with damaged DNA),
we report that MMS-induced checkpoint activation is
dependent upon entrance into S phase. Additionally, we
show that the replication of damaged double-stranded DNA,
and not replication of damaged single-stranded DNA, is
the molecular event that activates the checkpoint. There-
fore, these data provide direct evidence that replication forks
are an obligate intermediate in the activation of the DNA
damage checkpoint.

Introduction

Damaged chromosomal DNA activates a signaling path-
way (checkpoint) that serves to protect the cell against the
genotoxic consequences of continuation through the cell
cycle in the presence of damage (Weinert and Hartwell,
1988). When DNA damage is encountered during the S
phase of the cell cycle, two of the major checkpoint-controlled
responses are the active prevention of entrance into mitosis
and suppression of further DNA replication (for reviews
see O’Connell et al., 2000; Zhou and Elledge, 2000). Ge-
netic experiments in both budding and fission yeast have
provided insight into how the damage checkpoint con-
trols cell cycle progression. In fission yeast, DNA damage
activates the Rad3 protein, which is a large, phosphatidyl-
inositol-like protein kinase (for review see O’Connell et
al., 2000). Activation of Rad3 leads to phosphorylation
and activation of the effector kinases Chkl and Cdsl.
Both Chkl and Cdsl directly phosphorylate and inacti-
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vate the Cdc25 protein phosphatase, thus preventing en-
trance into mitosis.

Vertebrates contain two Rad3-like kinases, ataxia telangi-
ectasia-mutated (ATM)* and the ATM- and Rad3-related
protein kinase (ATR; for review see Abraham, 2001).
ATM is activated by double-stranded DNA breaks (DSB),
and promotes cell cycle arrest through phosphorylation of
vertebrate Cds1 (also known as Chk2; for reviews see Zhou
and Elledge, 2000; Abraham, 2001). ATR is activated by a
wide range of DNA structural aberrations, including UV
light—induced damage and DNA replication blocks. Upon
activation, ATR directly phosphorylates vertebrate Chk1
(Abraham, 2001). Thus, unlike fission yeast, where the
single Rad3 kinase phosphorylates both Chk1 and Cds1, in
vertebrate cells ATM and ATR appear to specifically act
upon Cdsl and Chkl, respectively. After activation by
ATM/ATR, both Chkl and Cds1 phosphorylate and inac-
tivate the vertebrate Cdc25 orthologue Cdc25C (Zhou and
Elledge, 2000).

In addition to ATM/ATR, another group of checkpoint
proteins (Rad17, Rad9, Husl, and Radl) is required to
transmit the presence of damage to Chk1/Cdsl. Rad17 is
homologous to the large subunit of the replication factor C
(RFC) complex (Griffiths et al., 1995). RFC is a five-subunit
complex (comprised of the RFC1-5 proteins) required
during DNA replication to recognize primer ends and to
load the PCNA clamp protein onto the primed templates.
Rad17 has been shown to assemble into complexes with the
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RFC2-5 subunits, to form what might be a damaged DNA-
specific clamp-loading protein (Shimomura et al., 1998;
Shimada et al., 1999; Green et al., 2000; Lindsey-Boltz et
al., 2001). Consistent with this idea, the Rad9, Husl, and
Radl proteins display homology to PCNA, and interact
with one another to form a complex (the 9-1-1 complex; for
review see Melo and Toczyski, 2002). Both Rad17 and 9-1-1
associate with damaged chromatin (Burtelow et al., 2000;
Kai et al., 2001; Kondo et al., 2001; Melo et al., 2001; Zou
et al., 2002), and chromatin association of 9-1-1 has been
shown to be dependent on Rad17 (Kondo et al., 2001; Melo
etal., 2001; Zou et al., 2002).

A major question in the cell cycle field is how checkpoint
proteins sense damaged DNA to activate the checkpoint re-
sponse. This problem is especially vexing for recognition of
damage induced by either alkylating agents or UV light, as
the lesions created by these particular genotoxic agents are
not as overt as DSBs, and often exhibit modest chemical dif-
ferences relative to undamaged DNA. One possibility is that
the lesions themselves are not recognized by the checkpoint,
rather the checkpoint senses a consequence of the presence of
the lesion. For example, both alkylation and UV lightinduced
lesions are known to block replication fork progression in
prokaryotic systems (Friedberg et al., 1995). Therefore, in eu-
karyotes, it is possible that the checkpoint actually senses the
stalled replication fork, and is otherwise incapable of sensing
the damage. Although this model is appealing, direct experi-
mental evidence that the replication of double-stranded
DNA (dsDNA) is essential for checkpoint activation in re-
sponse to alkylation or UV light—induced damage has not yet
been provided. Additionally, any model that assumes that
replication forks are essential components of the damage
sensing activity that activates the checkpoint must account
for how, or if, these lesions are detected outside of S phase.

Most of what is known about the cell cycle phase depen-
dence of damage checkpoint activation has come from ge-
netic analysis in budding yeast. For UV light-induced dam-
age, checkpoint activation occurs in all phases of the cell
cycle (Siede et al., 1993, Vialard et al., 1998) when repair is
proficient, but is restricted to S phase when repair is defi-
cient (Neecke et al., 1999). One interpretation of these find-
ings is that the act of repairing the damage is sufficient to ac-
tivate the checkpoint, perhaps through generation of nucleic
acid intermediates such as single-stranded DNA (ssDNA),
but when repair is prevented, the checkpoint is then depen-
dent on stalled replication forks for activation. Thus, in this
scenario, repair and replication serve redundant functions in
checkpoint activation.

In the case of alkylation damage, the work in budding
yeast has yielded less conclusive results. Paulovich and
Hartwell showed that when budding yeast cells are synchro-
nized in G1 with o factor mating pheromone, and then re-
leased back into the cell cycle in the presence of methyl
methanesulfonate (MMS), the cell cycle is not significantly
slowed until cells enter S phase (Paulovich and Hartwell,
1995; Paulovich et al., 1997). This suggests that budding
yeast cells do not mount a rigorous G1 response to MMS.
Consistent with this, it has been shown that MMS-induced
attenuation of the utilization of origins of replication in
budding yeast is restricted to late-firing origins, even if dam-

age is induced during G1 (Shirahige et al., 1998). The fact
that only late-firing origins are negatively regulated by MMS
suggests that cells must enter S phase in order to generate the
signal that blocks origin firing, which is consistent with the
lack of a G1 response to alkylation damage. In contrast to
these findings, however, are studies that used a different cri-
terion for checkpoint activation, that being phosphorylation
of the Rad53 checkpoint protein (a substrate of the budding
yeast ATR homologue Mecl). In these experiments, it was
shown that when cells harboring temperature-sensitive mu-
tations in any number of genes that are required for S phase
entry were incubated at the restrictive temperature, then
Rad53 was still phosphorylated in response to MMS (Pellici-
oli et al., 1999). Similarly, in another study, when cells were
blocked in G1 with « factor, they still induced Rad53 phos-
phorylation in response to MMS (Vialard et al., 1998).
Thus, cells arrested in G1 have been shown to be capable of
detecting the alkylation damage, and activating Rad53.
Therefore, these data are difficult to reconcile with the stud-
ies on the regulation of origin firing in response to MMS,
which is known to require Rad53 (Shirahige et al., 1998). If
Rad53 activation can occur in G1 in response to MMS, why
aren’t early firing origins prevented from firing when MMS
is added before S phase entry?

To address the question of whether detection of alkylation
damage by the checkpoint is restricted to S phase, and to ex-
plore the mechanism for checkpoint activation during S
phase, we have taken a biochemical approach using Xenopus
egg extracts. We report here that the mechanism that senses
alkylation damage operates exclusively during S phase, and is
dependent on the replication of dsDNA molecules. These
results indicate that replication forks represent the major
damage-sensing activity for activation of the DNA damage
checkpoint in response to alkylation damage.

Results

Alkylation damage of DNA activates the DNA damage
checkpoint in Xenopus egg extracts

To address how alkylation damage of DNA generates a
checkpoint signal in Xenopus egg extracts, we first sought to
establish that the egg extract system induces a bona fide
checkpoint response to MMS-induced damage. Therefore,
demembranated sperm chromatin was treated with MMS to
alkylate the DNA, and the MMS was then removed from the
chromatin by multiple washings. To determine if the alkyl-
ated sperm chromatin triggers the DNA damage checkpoint
in vitro, we used cycling egg extracts (Murray, 1991). These
extracts are produced by low speed centrifugation of freshly
laid eggs. Upon supplementation with an energy regenerat-
ing system and sperm chromatin, the extracts assemble a nu-
cleus around the chromatin, the DNA is replicated, and, af-
ter replication, the extracts activate the cdc2-cyclin B kinase
and enter mitosis. It has been shown that damaged DNA in
the form of DSBs or UV light-induced lesions, generates a
signal that prevents mitosis in cycling egg extracts (Kumagai
etal., 1998; Michael and Newport, 1998; Guo and Dunphy,
2000). To ask if alkylation damage generates such a signal,
either control or alkylated chromatin was mixed with cycling
extracts and entrance into mitosis was determined micro-
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Figure 1. Alkylation damage of DNA activates the DNA damage
checkpoint in Xenopus egg extracts. (A) Cycling extracts were
prepared and supplemented with sperm chromatin (control),
MMS-treated sperm chromatin (MMS), or sperm chromatin and
linearized plasmid DNA at 25 ng/ul (DSB). Additionally, where
indicated, 5 mM caffeine was also included. Extracts were incubated
at RT and examined for entrance into mitosis by DAPI staining of
nuclei to visualize nuclear envelope breakdown. An extract was
scored as mitotic when >50% of the nuclei had undergone nuclear
envelope breakdown. The data are plotted as mitotic delay, which
is the difference in time between entrance into mitosis for the control
extract and entrance into mitosis for the experimental extracts.
Control extracts typically required 55-70 min to enter mitosis.

All samples contained 2,000 sperm nuclei/wl. (B) 35S-labeled
Chk1 AKD protein (Michael et al., 2000) was added to cycling
egg extracts along with the following: sperm chromatin and no
further additions (-), or sperm chromatin and aphidicolin (100 pg/ml;
aphid.), MMS-treated chromatin (MMS), or sperm chromatin and
plasmid DNA that had been linearized by restriction enzyme
digestion (25 ng/pl; DSB). After a 60-min incubation, samples were
recovered and analyzed by SDS-PAGE for mobility shifts of the
labeled proteins. The input lane shows the Chk1 AKD protein
before incubation with Xenopus egg extract.

scopically through visualization of nuclear envelope break-
down (Murray, 1991). We found that the alkylated chroma-
tin induced a substantial delay on entrance into mitosis (Fig.
1 A), as extracts containing MMS-treated chromatin entered
mitosis an average of 75 min after a control reaction contain-
ing undamaged DNA entered mitosis. As expected, DSBs
also generated a signal that delayed mitosis in these extracts.
To determine if the lag on entrance into mitosis was due to
activation of the DNA damage checkpoint, we also per-
formed the experiments in the presence of 5 mM caffeine.
Caffeine is an inhibitor of both the ATM and ATR check-
point kinases (Sarkaria et al., 1999), and inclusion of caffeine
completely reversed the mitotic delay imposed by MMS-
treated chromatin and DSBs (Fig. 1 A).

In budding yeast, MMS-induced damage activates the
Mecl protein kinase. The metazoan Mecl homologue is
ATR, and it was therefore of interest to determine if ATR
activation occurs in response to alkylation damage in Xeno-
pus. To do so, we used a previously published Chkl phos-
phorylation assay (Michael et al., 2000). Chkl is an ATR

substrate, and removal of ATR from egg extract by immu-
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nodepletion prevents Chkl phosphorylation in response to
stalled replication forks or UV light—induced damage (Guo
et al., 2000). Therefore, Chk1 phosphorylation is a reliable
indicator of activation of ATR kinase in Xenopus extracts. To
assay for ATR activation, cycling extracts were prepared and
supplemented with a radio-labeled fragment of Xenopus
Chk1 (Chkl AKD; for review see Michael et al., 2000). Af-
ter a 60-min incubation period, a sample of the extract was
removed and analyzed by SDS-PAGE for slower migrating
forms of Chkl AKD, which we have previously shown to re-
sult from checkpoint-mediated phosphorylation (Michael et
al., 2000). As shown in Fig. 1 B, the DNA replication inhib-
itor (aphidicolin) induced phosphorylation of Chkl AKD,
as expected (Michael et al., 2000), as did MMS treatment of
the chromatin sample. Chkl AKD phosphorylation was not
observed in an extract containing control, undamaged sperm
chromatin, nor in an extract containing DSBs, as expected
from published data showing that DSBs do not induce
Chkl phosphorylation (Guo and Dunphy, 2000). Taken
together, the data in Fig. 1 show that MMS treatment of
sperm chromatin activates the ATR checkpoint kinase and
delays entrance into mitosis in frog egg extracts.

MMS treatment has been shown to slow progression
through S phase in human (Painter, 1977) and yeast (Pau-
lovich and Hartwell, 1995) cells. Therefore, we asked if
DNA replication in frog egg extracts is affected by alkyla-
tion. To study replication, we turned to a soluble system for
DNA replication analysis that makes use of concentrated
nucleoplasmic extracts (NPEs; Walter and Newport, 1999).
To prepare NPE, nuclei are formed in the conventional ex-
tract system. The nuclei are then purified, and the soluble,
nucleoplasmic fraction from the purified nuclei is extracted.
Although it is devoid of membranes, this soluble fraction
contains all of the components required for rapid, complete,
and cell cycle-regulated chromosomal replication. To mea-
sure DNA replication in this system, DNA templates are
first incubated in the high speed supernatant (HSS) of
egg extract. This incubation allows prereplicative complex
(preRC) formation to occur before the addition of NPE,
and is necessary because NPE contains activities that are in-
hibitory toward preRC assembly. Upon NPE addition,
DNA replication initiates synchronously from all active ori-
gins, and rapidly goes to completion (Walter et al., 1998).

To compare the replication of MMS-treated chromatin
with undamaged chromatin in NPE, we incubated both types
of chromatin first in HSS, to assemble the preRCs, and then
NPE, along with radio-labeled dATP, was added to initiate
replication. Aliquots of the reaction were taken every 30 min
for 90 min, and the amount of replication was determined by
agarose gel electrophoresis of the radio-labeled replication
products. As shown in Fig. 2 A, MMS treatment of the chro-
matin induced a substantial delay in the kinetics of DNA rep-
lication. After 30 min, the alkylated sample had replicated to
just 26% of the control; after 60 min, the control sample had
completed replication, whereas the MMS-treated sample had
replicated to 38% of the level of the control sample. Even after
90 min, the MMS-treated sample had not finished replication,
and was just 57% of the final value for the control. From this
experiment, we conclude that MMS treatment slows DNA
replication in Xenopus, just as it does in yeast and human cells.
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Figure 2.  MMS-induced trans-inhibition of the replication of undamaged DNA.
(A) Replication of control and MMS-treated chromatin in NPE. The HSS of egg extract
was supplemented with sperm chromatin (control) or MMS-treated sperm chromatin
(MMS). After a 30-min RT incubation to assemble chromatin and form preRCs, 2 vol
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and exposure of the dried gel to a Phosphorimager screen. The graph shows the
quantification of the radioactivity present in a given sample. These values are
expressed as arbitrary units, where the value for the control sample at 90 min was set
to 100, with all other samples adjusted accordingly. The data shown are from a
single experiment, and are representative of four independent experiments. (B) Exper-
imental strategy. When control (undamaged) or MMS-treated chromatin are incubated
I+[ separately in NPE containing fluorescent nucleotides, the control sample will appear
0 SEAG) MAER (GRUGLBINE: Ok brighter due to its enhanced ability to undergo DNA replication. To ask if the MMS-
+ MMS :ontrol treaFed sample inhibits DNA replication in trans, cgn_trol and MMS—treated chromatin
+ MMS/gem are incubated together in the same NPE. If the inhibition works in cis only, then two
’ populations of fluorescent chromatin will result: a bright population (corresponding
to the control template) and a dim population (corresponding to the MMS-treated
sample). However, if inhibition can also work in trans, then all chromatin templates in the coincubation are expected to exhibit reduced
fluorescence, relative to the control sample alone. (C) Either control, undamaged sperm chromatin (control), or MMS-treated sperm chromatin
(MMS), or a 50:50 mixture of both (control + MMS) were incubated for 30 min in HSS. After the 30-min incubation, NPE containing bio-dUTP
was added to the reactions. Incubation was performed for an additional 30 min before processing of the samples for detection of bio-dUTP
incorporation with fluorescent streptavidin. In the panel labeled control + MMS/gem., MMS-treated chromatin was incubated in HSS with
recombinant geminin for 30 min, then combined with control, undamaged chromatin that had been incubated separately in HSS-lacking geminin,
also for 30 min. NPE-containing bio-dUTP was then added to the combined sample. Panels labeled Bio-dUTP display signal obtained from
staining of the samples with Texas red—conjugated streptavidin, to detect the bio-dUTP, and panels labeled DAPI correspond to DAPI staining
of the samples to visualize the DNA. (D) Quantification of the data presented in C. The fluorescent intensity of a minimum of 50 nuclei for each
sample from each of two independent experiments was determined using the Scion Image software package from images obtained from a
fluorescence microscope (BX51; Olympus) attached to a Spot camera (Diagnostic Instruments, Inc.). The control + MMS/gem. sample is
represented by two bars (labeled dim and bright) to provide individual quantification for the two classes of nuclei present in this particular sample.
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In budding yeast, MMS treatment causes a checkpoint-
dependent inhibition of further DNA replication through
generation of a diffusible signal that inhibits late origin fir-
ing (Shirahige et al., 1998), and a checkpoint-independent
inhibition of chain elongation (Tercero and Diffley, 2001).
To ask if alkylation damage generates a diffusible signal that
blocks further DNA replication in the frog egg extract sys-

tem, we next asked if the MMS-induced replication delay
was limited to the alkylated DNA, or if it also extended to
undamaged DNA. To do so, replication of individual sperm
chromatin templates within mixed populations of damaged
and undamaged DNA was assessed by fluorescence micros-
copy in NPE. Because NPE does not contain membranes,
nuclear envelopes do not form around sperm chromatin



templates when they are incubated in NPE (Walter et al.,
1998). Thus, there are no physical barriers separating dam-
aged and undamaged DNA if they are coincubated in the
same NPE. Given this, we reasoned that if replication of un-
damaged DNA was affected by the presence of alkylated
DNA, then this could be uncovered through the visualiza-
tion of the replication of individual sperm chromatin tem-
plates in NPEs containing a mixture of damaged and un-
damaged samples (see Fig. 2 B). To visualize replication of
individual nuclei within a population, biotinylated dUTP
(bio-dUTP) was added to NPE during the replication reac-
tion, and, after incubation, the samples were fixed and
stained with fluorescent streptavidin to monitor uptake of
the bio-dUTP within individual nuclei.

As shown in Fig. 2 C (control), when undamaged sperm
chromatin alone was used in the experiment, the templates
were highly fluorescent, indicating that the bio-dUTP was
efficiently being incorporated into the replication templates.
In contrast, when the MMS-treated sperm chromatin was
used in the reaction, the fixed samples were not nearly as
bright (Fig. 2 C, MMS). Quantification of the fluorescence
intensity of 100 representative nuclei demonstrates that rep-
lication in the MMS-treated sample was 41% that of the
control sample, which is consistent with the reduced level of
DNA synthesis in NPE containing alkylated templates, as
measured by uptake of radio-labeled nucleotides (see Fig. 2
A). To ask if the presence of alkylated chromatin affected
replication of undamaged chromatin, we analyzed a sample
containing 50% control and 50% MMS-treated chromatin
(Fig. 2 C, control + MMS). We found the level of fluores-
cence in this mixed sample was uniform, indicating thar all
templates had replicated to the same relative level, but that
this level was less than that observed in the sample contain-
ing undamaged sperm chromatin alone. Indeed, quantifica-
tion showed that the level of replication in the mixed sample
was very similar to that observed in the sample containing
MMS-treated chromatin alone (see Fig. 2 D). From this ex-
periment, we conclude that alkylation damage of DNA gen-
erates a diffusible inhibitor that negatively regulates the rep-
lication of undamaged DNA when coincubated in NPE.
Taken together with the data in Fig. 1, these experiments
also show that the canonical features of the DNA damage re-
sponse (delay on entrance into mitosis, slowing of DNA rep-
lication, and activation of ATR) are recapitulated in the cell-
free egg extract system.

DNA replication is required to generate

the MMS-induced DNA damage signal

Having established that MMS treatment of sperm chroma-
tin activates a bona fide checkpoint response in this egg ex-
tract system, we next turned to the question of the S phase
dependence of activation of this checkpoint. To do so, we
first examined the ability of MMS-treated chromatin to in-
hibit mitosis in cycling extracts containing the DNA replica-
tion inhibitor, geminin (McGarry and Kirschner, 1998).
Geminin targets Cdtl, an essential replication factor that is a
component of the preRCs that form on origins of replica-
tion before S phase entry (Wohlschlegel et al., 2000; Tada et
al., 2001). Therefore, chromatin that is formed in geminin-
containing extracts does not contain preRCs, and cannot
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Figure 3. The initiation of DNA replication is required to generate
the MMS damage signal. (A) Cycling extracts were prepared and
supplemented with either PBS (buffer) or recombinant geminin
(gem.). The samples were then further supplemented with either
sperm chromatin (control DNA), MMS-treated sperm chromatin
(MMS DNA) or sperm chromatin and plasmid DNA that had been
linearized by restriction enzyme digestion (25 ng/wl; DSB DNA).
Entrance into mitosis was determined as in Fig. 1 A, and the data are
plotted as in Fig. 1 A. (B) Cycling egg extracts were prepared and
supplemented with cyclohexamide and either PBS (buffer), recom-
binant geminin (250 nM; gem.), or recombinant p27*? (500 nM).
Extracts were further supplemented with MMS-treated chromatin
and 35S-labeled Chk1 AKD protein. After a 60-min incubation,
samples were recovered for SDS-PAGE. The input lane shows the
Chk1 AKD protein before incubation with Xenopus egg extract. (C)
Cycling extracts were prepared and supplemented with cyclohexamide
and either control, undamaged sperm chromatin, or MMS-treated
sperm chromatin. Chromatin was isolated from these extracts at the
indicated times (in minutes), and probed for the presence of Rad17
using anti—Xenopus Rad17 antibodies. Where indicated, the samples
also included caffeine (caf., at 5 mM) or recombinant geminin
(gem., at 250 nM). The sample labeled no DNA refers to a sample
that was processed in the absence of any sperm chromatin addition,
showing that Rad17 recovery is dependent on the addition of chro-
matin. Sperm chromatin was added to 2,000/pl in all samples.

initiate DNA replication. As shown in Fig. 3 A, and as ex-
pected (for review see Michael et al., 2000), geminin had no
influence on the kinetics of entrance into mitosis of the con-
trol sample. In contrast, in extracts containing MMS-treated
chromatin, the addition of geminin completely abrogated
the mitotic delay normally seen in the alkylated DNA—con-
taining samples (Fig. 3 A). Geminin itself is not a global
checkpoint inhibitor, as it had no effect at all on the ability
of DSBs to induce a mitotic delay in cycling extracts (Fig. 3
A), and its ability to block the alkylation damage checkpoint
was lost if geminin were added to the reaction after preRCs
had assembled on the chromatin (unpublished data). Con-
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sistent with the loss of mitotic delay in extracts containing
alkylated chromatin and geminin, we also found that gemi-
nin prevented the ability of alkylated chromatin to induce
phosphorylation of Chkl AKD (Fig. 3 B). It was important
to ensure that damage checkpoint activation in response to
MMS was dependent on DNA replication, and was not
blocked due to an unknown activity of geminin. Therefore,
we used p27"® (Toyoshima and Hunter, 1994), an inhibitor
of the cdk2-cyclin E kinase that is required to initiate DNA
replication. Treatment of extracts with p27Kip allows preRC
assembly, but prevents replication forks from assembling at
origins of replication (Michael et al., 2000). As shown in
Fig. 3 B, treatment of extracts with p27Kip also prevented
Chkl AKD phosphorylation in response to the MMS-
treated chromatin. Thus, two independently acting inhibi-
tors of entrance into S phase, geminin and p27"*, both
block Chk1 phosphorylation in response to alkylation dam-
age. From the data in Fig. 3, we conclude that Xenopus egg
extracts must enter S phase in order to generate the DNA
damage checkpoint signal that activates ATR, and delays en-
trance into mitosis.

Next, we asked if DNA replication was required for the
MMS-treated sperm chromatin to inhibit, in trans, the rep-
lication of undamaged DNA (Fig. 2). To do so, we estab-
lished conditions where preRC assembly was selectively in-
hibited on alkylated chromatin, and then coincubated this
chromatin, in NPE, with undamaged chromatin that con-
tained intact preRCs. To block preRC assembly, alkylated
chromatin was incubated in HSS containing geminin. Con-
trol, undamaged chromatin was incubated in HSS lacking
geminin, and consequently contained intact preRCs. Once
preRCs are formed, geminin can no longer inhibit DNA
replication (McGarry and Kirschner, 1998). After separate
incubations in HSS, the two samples were combined in the
same NPE, and replication was measured by uptake of bio-
dUTP. Unlike the experiment shown in Fig. 2 C (control +
MMS), where the fluorescence intensity was low and uni-
form from sample to sample, the experiment containing un-
damaged chromatin with geminin-treated damaged chroma-
tin (Fig. 2 C, control + MMS/gem.) showed two distinct
classes of chromatin samples, one very bright (105% of the
control sample after quantification of the fluorescence inten-
sity) and the other exhibiting low levels of fluorescence
(13% after quantification of the fluorescence intensity).
Thus, the geminin-treated damaged chromatin, unlike the
damaged chromatin lacking geminin, could not reduce the
fluorescence intensity of the undamaged sample. From this
data, we conclude that the alkylated chromatin must initiate
replication in order to generate the trans-acting signal that
blocks replication on undamaged replicons.

The Rad17 checkpoint protein associates

specifically with damaged DNA in a

DNA replication—dependent manner

Rad17 is thought to be part of a complex that loads the 9-1-1
complex onto damaged DNA (for review see Melo and
Toczyski, 2002). Consistent with this, Rad17 itself has been
shown to physically associate with chromatin in both human
(Zou et al., 2002) and fission (Kai et al., 2001) yeast cells.
Because Rad17 is required for checkpoint activation in all

systems tested, we determined its chromatin binding proper-
ties in Xenopus egg extracts. Egg extracts were prepared and
supplemented with either control, undamaged sperm chro-
matin, or with sperm chromatin that had been treated with
MMS. Chromatin was isolated after 30, 45, 60, 75, and 90
min of incubation by sucrose density centrifugation, and
probed by immunoblotting for the presence of Xenopus
Rad17. As shown in Fig. 3 C, litde if any Rad17 could be
detected in any of the undamaged chromatin samples except
for the 45-min time point. This time point corresponds to
maximal DNA replication activity in these extracts, and it is
therefore tempting to speculate that this low level associa-
tion of Rad17 with actively replicating chromatin is func-
tionally significant. In contrast to the undamaged chroma-
tin, when MMS-treated chromatin was added to the extract,
we found a robust and time-dependent association of Rad17
with the chromatin. This association peaked by 60 min, and
showed a modest decrease at 90 min. Interestingly, Rad17
chromatin association was markedly enhanced when the
ATR inhibitor caffeine was included in the extract. To ask if
DNA replication was required for Rad17 chromatin associa-
tion with MMS-treated DNA, the experiment was per-
formed in the presence of geminin. As shown in Fig. 3 C, no
Rad17 could be detected in the MMS-treated chromatin
fraction purified from extract containing geminin. Taken to-
gether, the data in Fig. 3 C show that Rad17 specifically in-
teracts with damaged DNA, and that this interaction re-
quires ongoing DNA replication. If Rad17 association with
damaged chromatin were a prerequisite for checkpoint acti-
vation, as seems likely (for review see Kai et al., 2001), then
this would explain the requirement for DNA replication in
activation of the DNA damage checkpoint.

DNA synthesis, per se, is not sufficient for damage
checkpoint activation

The data in Figs. 2 and 3 show a clear S phase dependence
for multiple aspects of checkpoint signaling, including the
blocks to mitosis and further DNA replication, activation of
ATR kinase, and physical association of Rad17 with chroma-
tin. There are many possible reasons for this requirement for
S phase entry. For example, unwinding of the DNA duplex
before replication may be the critical event, as unwinding
generates ssDNA and/or exposes lesions to the checkpoint
sensors. Indeed, during DSB repair, it is has been shown that
the amount of ssDNA that is produced during the repair re-
action influences the intensity of the checkpoint response
(Lee et al., 1998). Therefore, it is possible that alkylated
ssDNA is sufficient to activate the checkpoint. Alternatively,
physical contact between DNA polymerase and the lesion
may be the event that triggers checkpoint activation. If this
were so, then primer extension on alkylated ssDNA tem-
plates could, in principle, activate the checkpoint. It is also
possible that some aspect of dsDNA replication, such as
physical contact between the replicative helicase and lesions,
is the signal that activates the checkpoint. To begin to ad-
dress which aspect of DNA replication is required to gener-
ate the MMS damage signal, we compared the ability of
alkylated M13 circular ssDNA templates to alkylated plas-
mid dsDNA templates to activate the checkpoint in the NPE

system. We chose NPE because this system, unlike conven-
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Figure 4. Replication structures specific for dsDNA replication
are required to generate the MMS damage signal. (A) M13 ssDNA
was annealed to an oligonucleotide primer, or not, and then incubated
in NPE containing [*’PIdATP (final concentration of M13 ssDNA
was 5 ng/pl). Additionally, M13 ssDNA was alkylated, annealed

to a primer, and incubated in NPE at 5 wg/ml. After either 30 or 60
min, aliquots were removed from the reaction and processed for
DNA replication analysis on agarose gels. The top portion of the
figure shows the gel, and beneath it is a bar graph showing the
values obtained after analysis of the scanned gel on a Phosphorimager.
After quantification of the data by Phosphorimager analysis, the
value for the 60-min time point for M13 ssDNA plus primer was set
to 100, and all other data were normalized accordingly. (B) NPE was
supplemented with recombinant, bacterially expressed Chk1AKD at
5 ng/ul. The reactions were further supplemented with either alkylated
M13 ssDNA (ssDNA), alkylated M13 ssDNA containing a preannealed
oligonucleotide primer (primed ssDNA), or plasmid DNA that had
been incubated previously in 0.5 vol of HSS either in the absence
(dsDNA) or presence (dsDNA + gem.) of recombinant geminin

(at 250 nM). After 60 min of incubation, samples were withdrawn
and analyzed by SDS-PAGE, and immunoblotting for the phosphor-
ylation status of Chk1AKD was performed. Chk1AKD was detected
using a T7 mAb that recognizes the epitope tag supplied by the
expression vector used to produce the recombinant Chk1AKD.
Plasmid DNA was present at 25 ng/ul final concentration, whereas
M13 DNA was present at 75 ng/ul final concentration. The
input lane shows the Chkl1 AKD protein before incubation with
Xenopus egg extract.

tional egg extracts, is capable of efficient and cell cycle-regu-
lated replication of simple DNA substrates such as plasmid
DNAs (Walter et al., 1998). To prepare for this analysis, rep-
lication of undamaged M13 ssDNA was first assessed in
NPE. We found that M13 ssDNA replication in NPE re-
quires a preannealed primer, as samples that lack a primer are
not replicated (Fig. 4 A). This was surprising, as it is well es-
tablished that M13 ssDNA replication in conventional egg
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extracts is not dependent on a primer. At present, we do not
understand why M13 ssDNA replication is primer-depen-
dent in NPE. If the M13 ssDNA was treated with MMS be-
fore incubation in NPE, then replication was blocked despite
the presence of a preannealed primer (Fig. 4 A). This shows
that alkylation blocks even simple primer extension reac-
tions, and supports the idea that MMS-induced lesions form
a physical blockade to polymerase movement in eukaryotes,
as has been shown in prokaryotes (Friedberg et al., 1995).
Having shown that alkylation blocks the primer-depen-
dent replication of M13 ssDNA in NPE, we next assessed
the ability of the M13 templates to activate the damage
checkpoint in NPE. As a positive control, we determined
that alkylation of closed circular dsDNA induced phosphor-
ylation of Chkl in NPE (Fig. 4 B). Furthermore, we found
that checkpoint activation by the dsDNA molecules re-
quired DNA replication, as the Chkl phosphorylation did
not occur in extracts containing geminin. In contrast to the
dsDNA, we found that neither the primed nor unprimed
alkylated M13 ssDNA templates were capable of activating
the checkpoint (Fig. 4 B). The inability of the ssDNA to
trigger a checkpoint response was not due to alkylation, as
unalkylated M13 ssDNA also failed to trigger the check-
point (unpublished data). From these data, we conclude that
large amounts of ssDNA are not sufficient to activate the
checkpoint. Therefore, the involvement of DNA replication
in activation of the checkpoint is likely to extend beyond
simple unwinding of the template strands. The experiment
also shows that the attempt at DNA synthesis, per se, is also
not sufficient to activate the checkpoint. If so, then the in-
clusion of the primer on the MMS-treated M13 ssDNA
templates would be expected to activate the checkpoint.
Based on these results, we conclude that replication of dam-
aged dsDNA molecules is the S phase activity that generates

the alkylation damage signal for checkpoint activation.

Discussion

In this article, we have used Xenopus egg extracts to address
an important area in cell cycle checkpoint research, how
damaged DNA is sensed to trigger the checkpoint response.
In particular, we examined the checkpoint response to al-
kylation damage, as induced by the commonly used geno-
toxic agent MMS. The findings reported here make three
important points with regard to how alkylation damage is
sensed by the checkpoint in Xenopus. First, MMS-induced
checkpoint activation can be recapitulated in the in vitro egg
extract system. Second, the ability to activate the checkpoint
in response to alkylation damage requires entrance into S
phase. Third, DNA synthesis, per se, is not sufficient for
checkpoint activation, and neither is the accumulation of
ssDNA. Rather, a structure that forms when replication is
attempted on damaged dsDNA constitutes the signal for ac-
tivation of the checkpoint in response to alkylation damage.

Recapitulation of the alkylation damage checkpoint
in Xenopus egg extracts

To apply biochemical approaches to the question of damage
checkpoint activation, it was first necessary to establish that
key features of the checkpoint response to alkylation damage
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could be reconstituted in the cell-free egg extract system. For
this, we demonstrated that MMS treatment of sperm chro-
matin templates resulted in the induction of a delay on en-
trance into mitosis in cycling extracts, and that the alkylated
chromatin induced phosphorylation of the ATR substrate
Chkl. Additionally, we found that the ATM substrate
Cds1/Chk2 was not phosphorylated in response to MMS
treatment (unpublished data). These data strongly suggest
that alkylation damage activates the ATR, and not the
ATM, checkpoint kinase in Xenopus.

To explore other aspects of damage checkpoint activa-
tion, we examined binding of the Rad17 protein to dam-
aged and undamaged DNA, and found that Rad17 specifi-
cally binds to damaged chromatin in Xenopus. Thus,
Rad17 association with DNA is induced by the presence
of damage in this system, and this association likely repre-
sents a very early event in activation of the checkpoint.
This finding is consistent with work from fission yeast
(Kai et al., 2001), but unlike the findings in a recent re-
port in which human Rad17 was found to constitutively
associate with chromatin (Zou et al., 2002). This discrep-
ancy may be due to species differences or to differences in
the chromatin isolation protocols used in frog egg extracts
relative to intact human tissue culture cells. Additionally,
we note that inhibition of ATR kinase activity, by caffeine,
seems to induce an enhanced association of Rad17 with
damaged DNA. The enhancement of Radl7 association
chromatin in response to caffeine in our experiment might
reflect a requirement for ATR in release of Rad17 from
damaged chromatin. Although this is an attractive hypoth-
esis, especially in light of recent reports showing that
Rad17 is a direct substrate of the ATM/ATR kinase family
(Bao et al., 2001; Post et al., 2001), further work will be
required to verify this.

When DNA replication of MMS-treated chromatin was
assessed, we found that replication was significantly delayed,
as has been shown in vivo in both yeast and human cells.
Furthermore, this replication slow down was not restricted
to the damaged DNA, as we found that replication of un-
damaged DNA was also negatively affected when coincu-
bated with damaged DNA. This is consistent with genera-
tion of a diffusible inhibitor that can negatively regulate
DNA replication in trans. In budding yeast, a diffusible in-
hibitor in the form of Rad53-mediated attenuation of Cdc7
activity has been shown to negatively regulate late origin fir-
ing in response to MMS treatment (for review see Jares et
al., 2000). At present, we do not know if the block to repli-
cation of undamaged DNA in our experiments acts at the
level of origin utilization, chain elongation, or both.

Detection of alkylation damage requires S phase entry
As detailed in the Introduction, genetic experiments in bud-
ding yeast have produced conflicting results as to whether
alkylation damage can activate a checkpoint response out-
side of S phase. In this work, we use four indicators of dam-
age checkpoint activation to determine whether S phase en-
try is required for checkpoint activation in response to
MMS-induced DNA damage. These indicators include mi-
totic delay, the block to replication of undamaged DNA,
and the molecular markers Chk1 phosphorylation and phys-

ical association of the Rad17 checkpoint protein with dam-
aged DNA. In all four cases, we find that checkpoint activa-
tion requires entrance into S phase. If entrance into S phase
in extracts containing alkylated chromatin is blocked by pre-
venting preRC formation with the Cdtl inhibitor geminin,
then the extracts will enter mitosis, they will fail to phos-
phorylate the Chkl protein, and Rad17 does not associate
with the damaged DNA. Additionally, the diffusible signal
that damaged DNA generates to prevent replication of
undamaged DNA requires that replication be initiated on
the damaged DNA. Thus, in Xenopus egg extracts, alkylation
damage can only be sensed by the checkpoint after entrance
into S phase has occurred.

Replication of dsDNA is required to generate

the DNA damage signal

To define the S phase event that is critical for checkpoint ac-
tivation, we used simplified DNA templates and found that
replication on dsDNA, and not ssDNA, is required to gen-
erate the damage signal. This implies that, at least for alkyla-
tion damage detection in Xenopus, ssDNA alone is not the
signal that activates the checkpoint. The finding that repli-
cation on primed ssDNA templates also fails to activate the
checkpoint suggests that stalled DNA polymerases are insuf-
ficient to generate the signal, and indicates that the replica-
tion structures that do generate the signal are specific for the
replication of dsDNA.

What might these structures correspond to? In Esche-
richia coli, replication forks that are stalled by base lesions
are processed in a manner that allows lesion bypass and
replication restart, and the biochemistry of these compli-
cated reactions is becoming understood (for review see Cox
et al.,, 2000; Michel, 2000). Many of the processes that
promote lesion bypass involve formation of Holliday junc-
tions. Holliday junctions are four-stranded, cross-shaped
DNA structures that are produced after replication fork re-
gression and subsequent unwinding of the newly synthe-
sized strands, which allows the nascent strands to anneal to
one another. Holliday junction formation allows the na-
scent chain that was blocked by the lesion to be extended
using the nascent strand on its sister chromatid as a tem-
plate. If such DNA rearrangements also occur in eukary-
otes, as seems likely, then one possibility is that the check-
point is activated by a nucleic acid structure that is present
during either formation, or resolution, of the Holliday
junctions. This is consistent with our finding that check-
point activation requires replication of dsDNA, and not
ssDNA. A top priority for future work on the problem of
damage checkpoint activation will involve testing this hy-
pothesis by asking if synthetic nucleic acid structures that
mimic Holliday junctions are capable of activating the

DNA damage checkpoint in Xenopus egg extracts.

Materials and methods

Xenopus egg extract preparation

Cycling extracts were prepared exactly as described by Murray (1991), ex-
cept that calcium ionophore, at 0.5 pg/ml, was used to activate the eggs.
100 pg/ml cycloheximide was added to the extracts to prevent protein syn-
thesis, when noted. HSS and NPE were prepared exactly as described pre-
viously (Walter et al., 1998).



Sperm chromatin preparation and alkylation

Sperm chromatin was purified from the testes of male frogs as described pre-
viously (Walter and Newport, 1999). To prepare MMS-treated sperm chro-
matin, purified sperm chromatin was soaked in buffer X (10 mM Hepes, pH
7.4, 80 mM KCl, 5 mM MgCl,, 1 mM EDTA, 200 mM sucrose, 3% BSA, 1
mM DTT, 10 pg/ml aprotinin, 10 pg/ml leupeptin) containing 100 mM
MMS (Sigma-Aldrich) for 30 min at RT with mild agitation. After incubation,
the MMS was removed by three rounds of washing with buffer X, and the
sperm chromatin preparations were flash frozen and stored at —80 C.

Replication assays

To measure DNA replication in NPE, sperm chromatin templates were in-
cubated in HSS for 30 min to assemble chromatin and to allow preRCs to
form on the DNA (Walter et al., 1998). After this incubation, 2 vol NPE
were added to initiate DNA synthesis. To analyze bulk DNA synthesis, the
reaction products were electrophoresed on agarose gels exactly as de-
scribed previously (Walter and Newport, 1999). Quantification was per-
formed through exposure of the dried gels to Phosphorimager screens, and
subsequent analysis of the scanned images using the Molecular Dynamics
software package.

Chk1 phosphorylation assays

Chk1 phosphorylation assays, using the Chk1 AKD construct, were per-
formed exactly as described previously (Michael et al., 2000). The assay
performed in Fig. 1 B and Fig. 3 B used 35S-labeled Chk1 AKD produced
in rabbit reticulocyte lysate. The assay presented in Fig. 4 B used recombi-
nant Chk1 AKD produced in bacteria as described previously (Michael et
al., 2000).

Chromatin isolation

Chromatin isolations were performed as follows: 50 ul of cycling extract
containing cycloheximide and sperm chromatin was incubated for 60 min,
diluted with 200 pl of extract buffer (XB) (Murray, 1991), and layered over
800 pl of a sucrose cushion consisting of XB plus 870 mM sucrose in 1.5-
ml Eppendorf tubes. The samples were centrifuged in a Super T21 centri-
fuge equipped with an ST-H50 rotor (Sorval) for 10 min at 6,000 rpm. After
centrifugation, the supernatants were removed, and the chromatin pellet
was resuspended in XB plus 0.6% Triton and recentrifuged through an
identical sucrose cushion. The supernatant was again removed and the
pellet was resuspended in SDS-PAGE sample buffer.

Fluorescence-based DNA replication assays

NPE replication assays were assembled as described above except that
bio-dUTP (Boehringer) was added, to 10 uM, along with the NPE, and
[*’PIdATP was omitted. After 30 min of incubation, the samples were
fixed, and spun through a sucrose cushion onto poly-L-lysine-coated glass
coverslips as described previously (Walter and Newport, 1999). The sam-
ples were stained with Texas red—conjugated streptavidin (Pierce Biotech-
nology, Inc.) as described previously (Walter and Newport, 1999).

Recombinant proteins and antibodies

Recombinant geminin and p27"P were produced as described previously
(Michael et al., 2000). To produce antibodies against Xenopus Rad17, a
1 kb-COOH-terminal fragment of Xenopus Rad17 was generated by PCR
and cloned into pET16b (Novagen). The protein was expressed in E. coli
and purified on nickel-NTA agarose (QIAGEN) under denaturing condi-
tions according to the manufacturer’s instructions. Purified protein was
sent to Eurogentec for injection into rabbits. Serum was affinity-purified us-
ing the antigen peptide coupled to AminoLink Plus Resin (Pierce Biotech-
nology, Inc.). Eluted antibodies were diluted into storage buffer (20 mM
Hepes, pH 7.6, 100 mM KCl, 5 mM EDTA) and concentrated to a protein
concentration of ~2 mg/ml in a Vivaspin 6 centrifugal concentrator (30K
MWCO; Vivascience).
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