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ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic
units (OTUs) allows microbial ecologists to overcome the inconsistencies and biases
within bacterial taxonomy and provides a strategy for clustering similar sequences
that do not have representatives in a reference database. I have applied the Mat-
thews correlation coefficient to assess the ability of 15 reference-independent and
-dependent clustering algorithms to assign sequences to OTUs. This metric quanti-
fies the ability of an algorithm to reflect the relationships between sequences with-
out the use of a reference and can be applied to any data set or method. The most
consistently robust method was the average neighbor algorithm; however, for some
data sets, other algorithms matched its performance.
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Numerous algorithms have been developed for solving the seemingly simple prob-
lem of assigning 16S rRNA gene sequences to operational taxonomic units (OTUs).

These algorithms were recently the subject of benchmarking studies performed by
Westcott and myself (1, 2), He et al. (3), and Kopylova et al. (4). These studies provide
a thorough review of the sequencing clustering landscape, which can be divided into
three general approaches: (i) de novo clustering, where sequences are clustered without
first mapping sequences to a reference database; (ii) closed-reference clustering, where
sequences are clustered based on the references that the sequences map to; and (iii)
open-reference clustering, where sequences that do not map adequately to the reference
are then clustered using a de novo approach. Assessment of the quality of the clustering
assignments has been a persistent problem in the development of clustering algorithms.

The recent analysis by Kopylova et al. (4) repeated many of the benchmarking
strategies employed by previous researchers. Many algorithm developers have clus-
tered sequences from simulated communities or sequencing data from synthetic
communities of cultured organisms and quantified how well the OTU assignments
matched the organisms’ taxonomy (5–16). Although an OTU definition would ideally
match bacterial taxonomy, bacterial taxonomy has proven itself to be fluid and to
reflect the biases of various research interests. Furthermore, it is unclear how the
methods scale to sequences from the novel organisms we are likely to encounter in
deep sequencing surveys. In a second approach, developers have compared the time
and memory required to cluster sequences in a data set (6, 13, 17, 18). These are valid
parameters to assess when judging a clustering method but indicate little regarding the
quality of the OTU assignments. For example, reference-based methods are very
efficient but do a poor job of reflecting the genetic diversity within the community
when novel sequences are encountered (2). In a third approach, developers have
compared the number of OTUs generated by various methods for a common data set
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(4, 5). Although methods need to guard against excessive splitting of sequences across
OTUs, by focusing on minimizing the number of OTUs in a community, developers risk
excessively lumping sequences together that are not similar. In a fourth approach, a
metric of OTU stability has been proposed as a way to assess algorithms (3). Although
it is important that the methods generate reproducible OTU assignments when the
initial order of the sequences is randomized, this metric ignores the possibility that the
variation in assignments may be equally robust or that the assignments by a highly
reproducible algorithm may be quite poor. In a final approach, some developers have
assessed the quality of clustering based on the method’s ability to generate the same
OTUs generated by other methods (18, 19). Unfortunately, without the ability to ground
truth by any method, such comparisons are tenuous. There is a need for an objective
metric to assess the quality of OTU assignments.

Westcott and I have proposed an unbiased and objective method for assessment of
the quality of OTU assignments that can be applied to any collection of sequences (1,
2). Our approach uses the observed dissimilarity between pairs of sequences and
information about whether sequences were clustered together to quantify how well
similar sequences are clustered together and dissimilar sequences are clustered apart.
To quantify the correlation between the observed and expected OTU assignments, we
synthesize the relationship between OTU assignments and the distances between
sequences using the Matthews correlation coefficient (MCC) (20). I have expanded our
previous analysis to evaluate three hierarchical and seven “greedy” de novo algorithms,
one open-reference clustering algorithm, and four closed-reference algorithms (Fig. 1).
To test these approaches, I applied each of them to data sets from soil (21) and mouse
feces (22), as well as two simulated data sets. The simulated communities were
generated by randomly selecting 10,000 16S rRNA sequences that were unique within
the V4 region from the SILVA nonredundant database (4, 23). Next, an even community
was generated by specifying that each sequence had a frequency of 100 reads, and a
staggered community was generated by specifying that the abundance of each se-
quence was a randomly drawn uniform distribution between 1 and 200.

I replicated the benchmarking approach that I have used previously to assess the
ability of an algorithm to correctly group sequences that are similar to each other and
split sequences that are dissimilar to each other using the MCC (1, 2). When I compared
the MCC values calculated using the 10 de novo algorithms with the four data sets, the

FIG 1 Comparison of OTU quality generated by multiple algorithms applied to four data sets. The
nearest, average, and furthest neighbor clustering algorithms were used as implemented in mothur
(v.1.37) (25). Abundance-based greedy clustering (AGC) and distance-based greedy clustering (DGC)
were implemented using USEARCH (v.6.1) and VSEARCH (v.1.5.0) (3, 5, 26). Other de novo clustering
algorithms included Swarm (v.2.1.1) (6, 7), OTUCLUST (v.0.1) (27), and Sumaclust (v.1.0.20). The MCC
values for swarm were determined by selecting the distance threshold that generated the maximum
MCC value for each data set. The USEARCH and SortMeRNA (v.2.0) closed-reference clusterings were
performed using QIIME (v.1.9.1) (28, 29). Closed-reference clustering was also performed using
VSEARCH (v.1.5.0) and NINJA-OPS (v.1.5.0) (16). The order of the sequences in each data set was
randomized 30 times, and the intramethod range in MCC values was smaller than the plotting symbol.
MCC values were calculated using mothur.
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average neighbor algorithm reliably performed as well or better than the other
methods (Fig. 1). For the murine data set, the MCC values for the VSEARCH (abundance-
based greedy clustering [AGC], 0.76; distance-based greedy clustering [DGC], 0.78) and
USEARCH-based (AGC, 0.76; DGC; 0.77) algorithms, Sumaclust (0.76), and average
neighbor (0.76) were similarly high. For each of the other data sets, the MCC value for
the average neighbor algorithm was at least 5% higher than the next best method.
Swarm does not use a traditional distance-based criterion to cluster sequences into
OTUs and instead looks for natural subnetworks in the data. When I used the distance
threshold that gave the best MCC value for the Swarm data, the MCC values were
generally not as high as they were using the average neighbor algorithm. The one
exception was for the soil data set. Among the reference-based methods, all of the MCC
values suffer because when sequences that are at least 97% similar to a reference are
pooled, the sequences within an OTU could be as much as 6% different from each
other. The effect of this is observed in the MCC values that were calculated for the OTUs
assigned by these methods generally being lower than those observed using the de
novo approaches (Fig. 1). It is also important to note that the MCC values for the
closed-reference OTUs are inflated because sequences were removed from the analysis
if there was not a reference sequence that was more than 97% similar to the sequence.
By choosing to focus on the ability to regenerate taxonomic clusterings, minimizing the
number of OTUs, and computational performance, Kopylova et al. (4) concluded that
Swarm and Sumaclust had the most consistent performance among the de novo
methods. My objective MCC-based approach found that Sumaclust performed well but
was matched or outperformed by the average neighbor algorithm; using a 3% thresh-
old, Swarm was actually one of the worst methods. Given the consistent quality of the
clusterings formed by the average neighbor algorithm, these results confirm the
conclusion from the previous analysis that researchers should use the average neighbor
algorithm or calculate MCC values for several methods and use the clustering that gives
the best MCC value (2).

Next, I investigated the ability of the reference-based methods to properly assign
sequences to OTUs. The full-length 16S rRNA gene sequences in the default reference
taxonomy that accompanies QIIME are less than 97% similar to each other. Within the
V4 region, however, many of the sequences were more similar to each other and even
identical to each other. As a result, we previously found that there was dependence
between the ordering of sequences in the reference database and the OTU assign-
ments with USEARCH and VSEARCH (2). To explore this further, we analyzed the 32,106
unique sequences from the murine data set with randomized databases. VSEARCH
always found matches for 27,737 murine sequences; the reference matched to those
sequences differed between randomizations. For USEARCH, there were between 28,007
and 28,111 matches, depending on the order of the reference. In the updated analysis,
we found that SortMeRNA resulted in between 23,912 and 28,464 matches. Using
NINJA-OPS with different orderings of the reference sequences generated the same
28,499 matches. These results point to an additional problem with closed-reference
clustering, which is the inability of the method to assign sequences to OTUs when a
similar reference sequence does not exist in the database. For the well-characterized
murine microbiota, NINJA-OPS did the best by finding relatives for 88.8% of the unique
murine sequences. As indicated by the variation in the number of sequences that
matched a reference sequence, these methods varied in their sensitivity and specificity
to find the best reference sequence. Of the closed-reference methods, NINJA-OPS had
the best sensitivity (99.7%) and specificity (79.7%), while SortMeRNA had the worst
sensitivity (95.7%), and VSEARCH had the worst specificity (60.3%). Reference-based
clustering algorithms are much faster than de novo approaches, but they do not
generate OTUs that are as robust.

Although the goal of Kopylova et al. (4) was to compare various clustering algo-
rithms, they also studied these algorithms in the broader context of raw sequence
processing, screening for chimeras, and removal of singletons. Each of these is a critical
decision in a comprehensive pipeline. By including these steps, they confounded their
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analysis of how best to cluster sequences into OTUs. The effect of differences in MCC
values on one’s ability to draw inferences is unclear and admittedly may be relatively
minor for some data sets. Because of this uncertainty, researchers should use the most
reliable methods available in case the differences in clustering do affect the conclusions
that can be drawn from a particular data set. Through the use of objective criteria that
measure the quality of the clusterings, independent of taxonomy or database, research-
ers will be able to evaluate which clustering algorithm is the best fit for their data.

(A reproducible version of this article and analysis has been submitted to an online
repository [24].)
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