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Abstract
Livestock-associated bacteria with resistance to two or more antibiotic drug classes have

heightened our awareness for the consequences of antibiotic consumption and spread of

resistant bacterial strains in the veterinary field. In this study we assessed the prevalence of

concomitant colonization with livestock-associated methicillin-resistant Staphylococcus
aureus (LA-MRSA) and enterobacteriaceae expressing extended-spectrum betalacta-

mases (ESBL-E) in farms at the German-Dutch border region. Nasal colonization of pigs

with MRSA (113/547 (20.7%)) was less frequent than rectal colonization with ESBL-E (163/

540 (30.2%)). On the individual farm level MRSA correlated with ESBL-E recovery. The

data further provide information on prevalence at different stages of pig production, includ-

ing abattoirs, as well as in air samples and humans living and working on the farms. Notably,

MRSA was detected in stable air samples of 34 out of 35 pig farms, highlighting air as an

important MRSA transmission reservoir. The majority of MRSA isolates, including those

from humans, displayed tetracycline resistance and spa types t011 and t034 characteristic

for LA-MRSA, demonstrating transmission from pigs to humans. ESBL-E positive air sam-

ples were detected on 6 out of 35 farms but no pig-to-human transmission was found.

Detection of ESBL-E, e.g. mostly Escherichia coli with CTX-M-type ESBL, was limited to

these six farms. Molecular typing revealed transmission of ESBL-E within the pig compart-

ments; however, related strains were also found on unrelated farms. Although our data sug-

gest that acquisition of MRSA and ESBL-E might occur among pigs in the abattoirs, MRSA

and ESBL-E were not detected on the carcasses. Altogether, our data define stable air

(MRSA), pig compartments (ESBL-E) and abattoir waiting areas (MRSA and ESBL-E) as

major hot spots for transmission of MRSA and/or ESBL-E along the pig production chain.
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Introduction
The use of antibiotics for therapy and growth promotion (not allowed in E.U. [1]) has led to
the selection of antibiotic resistant bacteria and spread of antibiotic resistance genes [2–5].
Antibiotic resistant bacteria and their resistance determinants in livestock are not restricted to
animals: Firstly, with glycopeptide resistance as a prominent example, we have observed that
resistance genes can make their way into bacterial species that are more virulent for humans
than those where the resistance was first observed [6–8]. Secondly, with the increasing preva-
lence of livestock-associated methicillin resistant Staphylococcus aureus strains (LA-MRSA) we
are experiencing the spread of livestock associated resistant pathogens to humans [9–14].

Despite all achievements in hygiene and technology one of the major challenges in health
care in developed countries is the prevention and treatment of nosocomial infections. The
major threat is the silent spread of colonizing multidrug resistant pathogens among patients
with overt risk for acquisition of resistant bacteria and—even worse—into those with no his-
tory of hospitalization or travel [15, 16]. These colonizers represent the major source for
endogenous infections that occur after surgery, chemotherapy or other medical treatments
associated with transient or prolonged immune suppression. Although multidrug resistance is
presently defined as resistance to three or more classes of antibiotics [17], it should be noted
that any lack of therapeutic effectiveness due to resistance to the administered substance can be
devastating. The main dangers associated with these infections are aggravation of disease due
to unexpected ineffectiveness of antibiotic therapy in a severely ill patient and the uncontrolled
spread of these organisms in the hospital environment.

In views of these consequences the landscape within the research field dealing with bacterial
resistance has changed. It has become evident that apart from describing the genetically based
resistance mechanisms it is additionally necessary to study the origins and habitats of resistant
bacteria. This is especially important because multidrug resistance does not only imply the
acquisition of genes mediating resistance against different classes of antibiotics but is also asso-
ciated with resistance to bacteriotoxic environmental conditions such as exposition towards
heavy metals or disinfectants [18–20]. This trend has also fostered research in the agricultural
field, which addresses the consequences of antibiotic consumption in the veterinary field,
including the assessment of the potential role of livestock as a reservoir for transmission of
multidrug resistant bacteria to the human host [3, 4, 21].

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most widely studied resis-
tant bacterial species in this context. Epidemiologically discernable livestock-associated (LA-)
MRSA strains have evolved next to the community acquired (CA-) and hospital acquired (HA-
) MRSA lineages. The LA-MRSA strains have particularly adapted to pigs as hosts [22] and
have been detected at all different levels of the pig production chain [23–25]. Notably,
LA-MRSA strains have been isolated from persons who are in close contact with pigs and they
are more frequently detected in hospitals within rural areas [26–28].

More recent work has described the emergence of enterobacteriaceae resistant to betalactam
antibiotics expressing extended beta lactamases (ESBL-E) in pigs [29]. ESBL-E frequencies
among patients have increased worldwide. This has propagated the broad use of betalactamase
inhibitors and further selection of highly resistant strains [30, 31]. When combined with quin-
olone resistance, ESBL expression poses a serious clinical problem due to limited options for
oral antibiotic therapy, which make intravenous administration and hospitalization of the
patient necessary. Evidently, the limited number of orally absorbed antibiotics available will
also have important impact on antibiotic usage in pig farming. Furthermore, new hygiene mea-
sures are needed to prevent that colonized pigs or their meat turn into a new reservoir for
transmission of ESBL-E to humans [32–36].
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In the present study we assessed the prevalence of simultaneous MRSA and ESBL-E coloni-
zation throughout the pig production chain (from piglets to carcasses). These findings were
related to concomitantly assessed MRSA and ESBL-E recovery in air samples and from humans
living and working on farms.

Material and Methods

Study design and sampling approach
The primary aim of the study was to assess the prevalence of simultaneous colonization of pigs
with MRSA and ESBL-E at different stages of pig production. The secondary goal was to corre-
late the prevalence with the presence of MRSA and ESBL-E samples from air and humans in
the farm environment. The cross sectional study followed the pig production chain and was
divided into two major parts: 1.) pig production and 2.) slaughtering process. Representative
air samples and swabs from humans from the farm environment were collected in parallel.
Details are provided in the specific sections below.

Farms
Thirty-five pig farms (33 in North Rhine-Westphalia, Germany and 2 situated in the Nether-
lands) collaborating with two participating abattoirs (A+B) were enrolled in the study. Farms
from all pig production steps were included and defined by categories [37]: farrowing (FR),
nursery (NF) and finishing (FF). Farrowing farms belong to the breeding production stage.
The farrowing sub-stage also includes the lactation of the young suckling piglets. The farrowing
farms keep piglets up to 1–4 weeks (1.5–8 kg). The farrowing piglets are supplied to nursery
farms for rearing the young piglet after weaning (newly weaned pig). Nursery farms raise pig-
lets within the age of 4–12 weeks (8–30 kg) and provide nursery pigs to finishing farms. The
finishing period is divided into an early (12–20 weeks, 30–50 kg) and a final finishing period
(21–30 weeks, 50–120 kg). The finishing period marks the last step before slaughter. We cov-
ered the pig production chain from young farrowing piglet (with no investigation of sows) to
the carcasses including the following stages: young farrowing piglet, farrowing piglet, newly
weaned pig, nursery pig, early finishing pig, finishing pig, carcass. The transfer of bacteria from
sows to piglets was not determined. Based on voluntary participation we were able to include
10 FR, 2 NF and 23 FF.

Participation of farms
The participating farms were recruited for participation in the hygiene monitoring program by
their pig producer association. The hygiene monitoring program was an initiative of the pig
producer association in collaboration with the agricultural faculty of the University of Bonn.
Farms with� 2 pig suppliers were selected for participation. The samples were collected on the
farms but the individual pigs were not tracked to the next pig production level, with exception
of the pigs transported and slaughtered at the abattoirs.

The farmers (owners) agreed with the collection of air samples and the sampling of the pigs
on the farms. These samples were taken during routine sampling for monitoring and the sam-
pling itself is non-invasive. According to the German animal welfare legislation this study was
not an animal experiment. An approval by the regulatory body or an animal welfare committee
was not necessary. Nevertheless, all measures taken strictly followed the terms set by the animal
welfare committee of the University of Bonn. The data summarized in this study were part of a
routine hygiene management monitoring program that was started to provide data on multi-
drug resistant bacterial colonization in pigs and farm employees and to control measures taken
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to reduce spread of resistant bacteria. No previous sampling on the colonization status with
MRSA and/or ESBL-E had been performed. Therefore, no distinction could be made based on
the MRSA and/or ESBL-E prevalence. No personal data were used or stored for the present
study. Therefore, consent from the ethics committee was not required. The owners of the
farms and the farm personnel were informed about the program and participated on a volun-
tary basis. In accordance with the declaration of Helsinki/Seoul written informed consent is
available from all human subjects involved. The participating farmers provided the informa-
tion on the antibiotic classes applied to the pigs that were sampled beginning from entry into
the farm. This information was verified in their livestock protocols. The results of this study
were communicated to the farmers.

Sample collection in pigs
Sample collection was performed from June 2012 to September 2012. From all pigs included in
the study we obtained a nasal swab (inserted into both anterior nares) for MRSA screening and
an intrarectal swab for ESBL-E detection. Swabs with Amies medium and charcoal were pur-
chased fromMAST Diagnostica GmbH, Reinfeld, Germany. Five hundred fifty pigs were sam-
pled; a total of 547 nasal swabs and 540 rectal swabs were analyzed; 3 nasal swabs and 10 rectal
swabs did not reach the laboratory.

In the first part of the study, samples were obtained from two age groups housed in two dif-
ferent compartments per farm, i.e. the youngest and oldest age group per farm type: farrowing
(young farrowing piglets: 1–2 weeks and farrowing piglets: 2–4 weeks)), nursery (newly weaned
pigs: 4–6 weeks and nursery pigs: 9–12 weeks), finishing (early finishing pigs: 12–20 weeks, 30–
50 kg and finishing pigs: 21–30 weeks, 50–120kg). Either 10 (farm B1-22) or 5 (farm B23-35)
pigs per compartment were screened for MRSA and ESBL-E carriage. Farms were categorized
by MRSA/ESBL-E frequencies as follows: Category A: MRSA / ESBL-E free; Category B:> 0
and� 20%; Category C:> 20 and� 50%; Category D:> 50%MRSA/ESBL-E.

In the second part of the study the slaughtering process was subdivided into three sampling
periods per pig, e.g. before transport to the abattoir (phase 1), immediately after slaughter
(phase 2) and on carcasses in cold storage (phase 3). Transport time from farm to abattoir lay
between 1–3 hours. After arrival pigs were separated into an own waiting area in abattoir A or
the kept in the common waiting area (in abattoir B) before slaughtering. Thirteen farms selected
from the first study period participated. To estimate the risk for contamination with MRSA
and/or ESBL-E during the slaughtering process we collected samples from pigs from 7 finishing
farms with absent to low (�10%) MRSA and/or ESBL-E in the first sampling period and from 6
farms with higher frequencies (S6 Table). Samples were collected from three pigs per farm at
three different time points: i.) on the farm, ii.) during slaughter (at 2 different abattoirs (A+B)
and iii.) on the carcasses deposited in the cool room of abattoir A. At the abattoirs the specimen
were taken as described for the farms. All areas defined for swab sampling of swine carcass sur-
faces according to ISO 17604:2003/Amd.1:2009 were sampled with one swab per carcass. Dis-
cordant samples (positive on farm and negative in abattoir) were omitted (2 MRSA, 4 ESBL-E).

Human specimen
Written informed consent was obtained from all participating human volunteers who live or
work on the farms. All individuals were categorized as “contact” or “no contact” to pigs and
tested for nasal carriage of MRSA and rectal carriage of ESBL-E. Nasal swabs for MRSA were
taken from the vestibule of both nares by the responsible physician in the monitoring program;
ESBL-E screening was performed from fecal samples in fecal tubes (MAST Diagnostica
GmbH), which were delivered by the individuals participating in the monitoring program.

MRSA and ESBL-E on Pig Farms
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Air samples
The air collection was conducted using an MAS-100 NT1 air sampler (Merck KGaA, Darm-
stadt, Germany). The air was suctioned through a perforated lid (300-x-0.6 mm openings) onto
the surface of selective agar plates, e.g. CHROMagarMRSATM for MRSA (n = 70) or CHROMa-
garESBLTM (MAST Diagnostica GmbH) and ESBL (n = 67), 30 sec or 10 minutes, respectively.
The system used a mass air flow sensor for measuring the air inflow and to maintain the contin-
uous regulation of the air intake volume during sampling. For the detection of ESBL-E, two
measurements were performed with an air flow rate of 500 liters/min for five minutes per
group. For detection of MRSA, we used an air flow rate of 100 liters/min for one minute (farm
B1-22) or thirty seconds (farm B23-35 and abattoirs). The filter system was disinfected with
alcohol pads after each measurement (B. BraunMelsungen AG, Melsungen, Germany).

On the farms, air samples were obtained from the center of the compartments 1.20 m above
ground level with stable doors closed. At the abattoirs, air samples were collected in the waiting
pen (abattoir A+B) and in the cold storage area (only abattoir A).

Bacterial culture
All samples were stored at 4°C during transport to the laboratory. All specimen were inocu-
lated within 48 hours. All swabs were streaked on Columbia / 5% sheep red blood agar plates
(Becton Dickinson, Heidelberg, Germany) and selective agar plates, i.e. CHROMagarMRSA
(MAST Diagnostica GmbH) for nasal swabs and CHROMagarESBL (MAST Diagnostica
GmbH) for intrarectal swabs and feces. Plates were incubated at 37 ± 1°C for 24 h. Incubation
of air sample plates was started on-site. Sealed plates were incubated for 48 h at 37 ± 1°C. The
colonies were counted as total number of CFU/m3 and reported after statistical correction with
the species-specific correction factor (Pr / r) according to Feller [38].

Confirmation of MRSA and spa typing
After subculturing on Columbia sheep red blood agar, all presumptive S. aureus colonies were
checked for hemolysis and confirmed by coagulase testing and MALDI-TOF MS (mass spec-
trometry) (VITEK MS, bioMérieux SA, Marcy l'Etoile, France). Antibiotic resistance was deter-
mined by agar diffusion tests (EUCAST criteria [39]) and MRSA confirmed by PBP2a Culture
Colony Test (Alere Ltd, Stockport, UK). For each farm, one MRSA isolate per compartment
(two per farm: young/old), two air and all human MRSA isolates were typed using spa-typing
as described in [40] (148 MRSA isolates from farms and 48 MRSA isolates from abattoirs).
Antibiotic resistance was tested by agar diffusion. For isolates with a zone diameter� 16 mm,
tetracycline resistance was confirmed by PCR detection of tetM and tetK [41].

Identification, antimicrobial susceptibility testing and molecular typing of
ESBL-E
All enterobactericeae detected on CHROMagarESBL were identified by MALDI-TOF MS.
Antibiotic susceptibility was determined on VITEK-2 (bioMérieux SA) for all non-E. coli iso-
lates, two E. coli ESBL-E per farm (one per compartment) and all E. coli ESBL-E isolates from
air, humans and abattoirs. Results were interpreted by EUCAST criteria [39]. Presence of ESBL
genes was confirmed by PCR. DNA was isolated using UltraClean Microbial DNA Isolation
Kit (MO BIO Laboratories, Carlsbad, California, USA) and ESBL genes detected by the ESBL
Assay from AID GmbH (Straßberg, Germany) using recombinant Taq DNA Polymerase (5U/
μl, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA, #EP0401). AmpC and ESBL
positive strains were further confirmed by AmpC&ESBL Detection Discs and Cefpodoxim
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ESBL ID Disc Set (both fromMAST Diagnostica GmbH, Reinfeld, Germany) and ESBL E-Test
(bioMérieux SA, Nuertingen, Germany). Molecular typing of E. coli strains was performed by
repPCR using the Diversilab system (bioMérieux SA) [42]. One ESBL-E isolate per farm com-
partment (2 isolates per farm) and all ESBL-E isolated from air and abattoirs and humans were
subjected to DiversiLab analysis. Pulsed field gel electrophoresis (PFGE) was carried out as pre-
viously described in [43]. In brief, SpeI (New England Biolabs, Marnes-La-Coquette, Frank-
reich) was used for enzymatic digestion of E. coli DNA in agar blocks and electrophoresis was
performed on a Rotaphor1VI (Biometra GmbH, Göttingen, Germany) for 40 hours (50s log
5s,190 V,130 mA). Analysis was performed using the BioDocAnalyze (BDA) Gel Analysis
BDA Software Version 2.66.3.44 9-990-015/English) Version 02/12.

Statistical analysis
The Odds-ratio given for the simultaneous occurrence of ESBL-E and MRSA was replaced by
Cochran-Mantel-Haenszel based relative risks estimates stratifying for farms. No regression
models were used to estimate prevalences and their ratios. Acquisition of MRSA and ESBL-E
in the abattoirs was calculated by McNemar test and the differences between abattoirs analyzed
by Fisher´s exact test.

Results
We analyzed the frequency of MRSA and ESBL-E in samples obtained from pigs from 35 farms
located in the German-Dutch border region as well as two associated abattoirs, the respective
farm environment (e.g. air) and persons living and working on these farms (see Fig 1 for overview).

Prevalence of MRSA and ESBL-E in pigs
MRSA was detectable in 20.7% (113/547) of pigs and ESBL-E in 30.2% (163/547) of pigs (Fig
2A). Thus, total ESBL-E frequency was 32% higher than MRSA colonization. The majority of
recovered ESBL-E were Escherichia coli isolates (155/163, 95.1%). Next to E. coli we detected
seven Citrobacter spp. and one Serratia fonticola ESBL-E as well as two Enterobacter cloacae
isolates, which were disregarded in the subsequent analyses. Double colonization with MRSA
and ESBL-E was detected in (48/540) 8.9% pigs on 17 farms. This corresponds to (48/113)
42.5% of MRSA positive pigs and (48/163) 29.5% of ESBL-E colonized pigs. Overall, MRSA
colonization correlated with ESBL-E recovery (p<0.001, RR (relative risk) = 2.37 CI (confi-
dence interval) [1.70–3.55] to detect MRSA for ESBL-E positive pigs and RR = 1.69 [1.36–1.94]
to detect ESBL-E for MRSA positive pigs).

Frequency of MRSA and ESBL-E colonized farms
Analysis of MRSA and ESBL-E positivity on the farm level revealed that there were more farms
with MRSA detection (80% (28/35) of farms) than farms with ESBL-E recovery (74.3% (26/
35)) (Fig 1A and 1B). Two farms were free of MRSA and ESBL-E and 60.0% (21/35) had pigs
colonized with both.

MRSA colonization ranged from 0–80% of tested pigs on a farm (median: 20%) (Fig 2B; S1
Table). As shown in Fig 2C, 20.0% (7/35) of farms were MRSA-free, e.g. Category A, 40% (14/
35) Category B, 37.1% (13/35) Category C, 2.9% (1/35) Category D. By contrast, analysis of
ESBL-E detection revealed that a higher percentage of farms was ESBL-E-free (25.7% (9/35); Cat-
egory A) (Fig 2C). However, ESBL-E detection ranged from 0–100% (Median: 35%) (Fig 2B; S2
Table) and positivity within an affected farm was higher than with MRSA, e.g. 31.4% (11/35) of
farms belonged to Category D, 22.9% (8/35) to Category C and only 20% (7/35) Category B.

MRSA and ESBL-E on Pig Farms
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MRSA and ESBL-E colonization varies depending on the pig production
level
In each farm we collected samples from two compartments, e.g. youngest and oldest pigs. In
the farrowing and nursery step we defined the young pigs as “young farrowing/newly weaned”
and the older pigs as “farrowing/nursery pigs”. In the finishing step we defined the young pigs
as “early finishing” and the older ones as “finishing” pigs. Notably, MRSA and ESBL-E coloni-
zation frequency varied depending on the pig production level (Fig 2D, S3 and S4 Tables).

Fig 1. Comparative overview of MRSA and ESBL-E colonization in pigs, humans and air on farms.
Samples from pig, human and air were collected on 35 pig farms (B#). Farm types (farrowing (FR), nursery
(NF) and finishing (FF)) are provided in the diagram. All samples were analyzed for MRSA (A) and ESBL-E
(B). The figure depicts the results obtained on the individual farms sorted by prevalence of MRSA (A) or
ESBL-E (B), respectively. Bars depict the percentage of positive (black) and negative (gray) samples.

doi:10.1371/journal.pone.0138173.g001
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Fig 2. MRSA and ESBL-E recovery in pig samples. A: Summary of results obtained in all tested pigs. The
graph depicts the absolute numbers of pigs tested positive (black bars) or negative (gray bars) for MRSA and
ESBL-E.B: The graph depicts the range (boxplots) of colonization (in %) for MRSA (left) and ESBL-E (right)
on farms. The median is indicated as a black line. C: Farms were categorized based on their MRSA (black
bars) and ESBL-E (gray bars) colonization. Four categories (A to D) were defined as indicated in the diagram.
D:Number of MRSA (left) and ESBL-E (right) positive pigs in different pig production steps and farm types
(farrowing (FR) and nursery (NF) farms compared to finishing (FF) farms). Production steps within these farm
types are categorized as young farrowing/newly weaned piglets (gray hatched bars) and farrowing/nursery
pigs (gray bars) in FR/NF and early finishing (black hatched bars) and finishing pigs (black bars) in FF.

doi:10.1371/journal.pone.0138173.g002
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Piglets with MRSA and ESBL-E colonization were found on both nursery farms (100%); on far-
rowing farms MRSA was present on 9/10 (90.0%) and ESBL-E on 8/10 (80.0%) farms. The
overall prevalence of MRSA and ESBL-E isolated from pigs was lower on finishing farms, i.e.
73.9% (17/23) and 69.6% (16/23), respectively.

Further analyses revealed age-dependent differences in MRSA colonization frequencies (Fig
2D; S3 Table): in farrowing and nursery farms the MRSA positivity was 21.3% (32/150); 62.5%
(20/32) of these MRSA were isolated from farrowing/nursery pigs and only 37.5% (12/32) were
detected in young farrowing/newly weaned piglets. This was also reflected on a farm level, e.g.
in 10/12 (83.3%) farms MRSA detection in farrowing/nursery pigs was�10% and only 2/12
(16.7%) were below 10%. Global MRSA frequencies in finishing farms were comparable to
those in farrowing farms, e.g. 19.8% (81/410). On a farm level 16/23 (69.6%) of finishing farms
had MRSA frequencies of�10% and only 7/23 (30.4%) were<10%. However, further analyses
revealed a statistically significant difference between MRSA frequencies in early finishing pigs
(79% (64/81)) compared to finishing pigs (20.9% (17/81)) (p< 0.001).

The overall ESBL-E frequency in farrowing and nursery farms was 36.0% (54/150). A
higher prevalence was found in young farrowing/newly weaned piglets (55.6% (30/54)) com-
pared to farrowing/nursery pigs (44.4%) (Fig 2D; S4 Table). On the farm level, ESBL positiv-
ity �10% was found in 10/12 (83.3%) “young farrowing/newly weaned” compartments and
in 8/12 (66.7%) “farrowing/nursery” compartments. In finishing farms the ESBL-E positivity
was lower, e.g. 26.6%. Early finishing pigs accounted for 65.1% (71/109) of positive ESBL-E
and only 34.9% (38/109) were detected in finishing pigs. This difference was statistically sig-
nificant (p < 0.0001). Analysis on a farm level showed that the ESBL-E detection in “early
finishing” compartments was�10% on 14/23 finishing farms (60.9%). In “finishing” com-
partments 43.5% (10/23) farms displayed ESBL frequencies �10% and 56.5% (13/23) farms
lay below 10%.

MRSA and ESBL-E detection in humans working and living in the farm
environment
48.8% (42/86) of samples from farmers, staff and family were tested positive for MRSA (S5
Table). On 21 farms MRSA was recovered on both pigs and humans. Of those tested positive
only one person had no contact to pigs; in those individuals with no direct contact to pigs all
but one person were MRSA negative (85.7%; 6/7). Persons who regularly came in contact
with pigs were more frequently colonized with MRSA (53.2%; 42/79) when compared to
those with no contact (14.3%; 1/7).

Fecal swabs from all individuals tested were positive for ESBL-E in 2.5% (1/40). The person
with ESBL-E colonization was negative for MRSA but colonized with an MSSA (t005). This
person had no contact to pigs but regular contact to the healthcare system. Altogether, coloni-
zation with ESBL-E was less frequent than that with MRSA.

MRSA and ESBL-E transmission in the slaughtering process
We screened for MRSA and ESBL-E carriage in pigs before and after delivery to the abattoir
and on the carcasses. Statistically significant acquisition of MRSA or ESBL-E in pigs tested neg-
ative before arrival at the abattoirs was observed in 29.7% (11/37) (p = 0.001) and 29.4% (10/
34) (p� 0.05), respectively (S6 Table). Nevertheless, neither MRSA nor ESBL-E were detected
on the carcasses of the tested pigs. It is noteworthy that we observed differences in acquisition
of MRSA and ESBL-E in pigs between abattoirs. The increases in MRSA and ESBL-E detection
were as follows: abattoir A: MRSA 18.8% (3/16; not significant), ESBL-E 8.3% (1/12; not signifi-
cant); abattoir B: MRSA 38.1% (8/21; p� 0.001); ESBL-E 40.9% (9/22; p = 0.02). The difference
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between abattoirs was statistically significant for MRSA (p = 0.04). The handling of pigs before
slaughter was different, i. e. there was a separated and dry waiting area in abattoir A, while pigs
were randomly mixed and irrigated in abattoir B.

Evaluation of air as transmission medium
To correlate MRSA and ESBL-E content in the stable air with pig and human colonization we
analyzed air samples collected by impaction (S7 Table). Samples were obtained in all stable
compartments where pigs were sampled. MRSA were detected in the stable air of 34 out of 35
(97.1%) pig farms tested (i. e.�1 out of 2 samples positive). On 74.3% (26/35) of farms MRSA
were detected in air samples from both compartments and in 22.9% (8/35) of farms only one
compartment (young/old) was contaminated. There was no difference between farrowing/
nursery and finishing farms.

Notably, air samples from one farm were completely free of MRSA (B27). This farm was
also classified as Category A in pig sampling. On three farms MRSA was detected in the air but
was absent in the samples obtained from pigs and humans.

ESBL-E positive air samples were found on 17.1% (6/35) of investigated pig farms. All of
these farms were affected by both ESBL-E and MRSA colonization in pigs (ESBL-E Categories:
C (1 farm), D (5 farms) and MRSA Categories A (1 farm), B (1 farm), C (4 farms)). Compara-
tive analysis of farrowing/nursery versus finishing farms displayed no relevant difference in air
positivity related to the pig production level, e.g. 16.7% (2/12) and 17.4% (4/23), respectively.

Air sampling in the abattoirs delivered the following results: the MRSA frequency was com-
parable to that in the air samples obtained on farms, e.g. 13/14 (92.9%). However, the ESBL-E
frequency was higher than on farms, e.g. 6/12 (50.0%). Due to the low sample numbers
obtained in the abattoirs a statistical comparison of farms and abattoirs was statistically not
appropriate; the trend, however, was clear. Notably, no relevant differences were found in the
comparison of abattoirs (S8 Table). Collectively these data indicate that MRSA contamination
of air is more wide-spread than for ESBL-E. However, there was no correlation of ESBL-E
detection in air with that in humans.

Antimicrobial susceptibility testing of MRSA isolates
LA-MRSA strains belong to the ST398 lineage and are characterized by tetracycline resistance
[9, 44, 45]. All 196 strains tested were resistant to penicillin and cefoxitin. By agar diffusion
testing 191/196 (97.4%) of isolates were further resistant to doxycycline, a characteristic of
LA-MRSA. Tetracycline resistance in isolates with zone diameters�16mm was confirmed by
detection of tetM (2 isolates) or tetK (1 isolate) resistance genes by PCR.

Molecular typing of MRSA
To confirm the LA-MRSA lineage of the isolates we performed spa typing (Fig 3A). The spa
types most frequently isolated from snouts and air were t011 (n = 130) and t034 (n = 35) (Fig
3B; S9 Table). All MRSA spa types belonged to the ST398 lineage. Only two MSSA isolates
recovered from human nasal swabs corresponded to spa types t005 and t491 that do not belong
to this lineage.

Notably, all MRSA isolates found in humans, pigs and air were confirmed to be LA-MRSA
by spa typing. The spa type t011 was found in 32/35 participating farms (91.4%); t034 was
detected on 20/35 farms (57.1%) and t108 on 6/35 farms (17.1%). In 12 out of 35 farms
(34.3%) t011 was found in pigs, humans and air (Fig 3C). This was also observed with t034
(B04, B09) and t1255 (B30) (S9 Table). In additional 6 out of 35 farms (17.1%) t011 was
detected in humans and air but not in pigs. No relevant differences in spa type distribution
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were found between abattoir and farm and between air, pigs and humans. However, spa types
t2346 and t1197 were only recovered from abattoir B.

Analysis of ESBL enzymes reveals predominance of CTX-M
The presence of ESBL genes was confirmed by PCR analysis. We detected ESBL enzymes in 69
of 72 third generation cephalosporin resistant E. coli strains, thus proving the high specificity
of the medium used for ESBL-E selection [46]; two isolates were AmpC positive. The majority
of E.coli ESBL-E isolates, i.e. 95.7%, were CTX-M positive as reported previously in [33, 47–
52]. One isolate harbored CTX-M and TEM AS 238 S, another contained SHV AS 238/240 and
a third isolate harbored TEM AS 238 S and TEM AS 104 K.

Fig 3. spa typing of MRSA isolates. A: spa types of MRSA isolates obtained from pigs, human and air. B:
Prevalence of spa types detected on farms and on abattoirs. C: Analysis of spa types in regard to their
simultaneous presence in different media (pig, human, air).

doi:10.1371/journal.pone.0138173.g003
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Rep-PCR-typing of ESBL-E isolates reveals heterogeneity of ESBL-E
To assess whether the E. coli ESBL-E strains isolated arose from a common strain we per-
formed a repetitive element PCR (rep-PCR) analysis of the purified DNA samples using the
DiversiLab system. This method offers a rapid and automated method for genotyping with
high reproducibility and the important advantage of an electronic database. Cut-off values
were set at 98% similarity to increase the discriminatory power of the method [43, 53, 54].

The results obtained revealed genetic heterogeneity of strains among the different farms
(Fig 4A). However, a few clusters with high similarity (�98%) composed of isolates from dif-
ferent farms were also detected (Fig 4B). The isolates within these clusters were subjected to
PFGE analysis, which confirmed strain relatedness in some but not all cases. The results are
shown in Fig 4C.

Notably, strain relatedness was found in simultaneously collected isolates from air and pigs
(Fig 4A) but isolates obtained at the abattoirs did not necessarily match with those collected on
the farms (Fig 4A and 4B).

Among the clusters with�98% similarity there were also groups of isolates originating from
the same farm (Fig 4A and 4B), which were confirmed by PFGE (Fig 4C). To better define the
strain-relatedness within a single farm and/or a farm compartment (young versus old pigs) we
chose three farms with a high number of ESBL-E isolates (B09, B10, B18) for a more detailed
analysis (Fig 4D). If more than one morphologically distinct ESBL-E was found on a pig we
included both isolates. The findings obtained revealed that despite individual clusters with high
(� 98%) similarity we mostly detected unrelated E. coli isolates within one farm (< 95% simi-
larity) (Fig 4D). Furthermore, similarity between isolates from the young and old pigs in B10
and B18 was<95% (Fig 4D). Clusters with�95% similarity were usually derived from the
same compartment but even within the individual compartment many isolates were unrelated
(<95% similarity) (Fig 4D).

Usage of antibiotics on farms
The colonization with drug resistant bacteria was compared to the therapeutic usage of antibi-
otics on the farms. Our analysis showed that betalactam antibiotics and tetracyclines were
most frequently administered (24 of 35 (68.6%) and 25 of 35 (71.4%) farms, respectively), thus
providing the selective pressure that allows the emergence of MRSA and ESBL-E (Fig 5A).
While MRSA and ESBL-E are always resistant to betalactams nearly 100% of MRSA isolates
displayed resistance to tetracyclines (Fig 5B) and ESBL-E were resistant to tetracycline in
59.2% (42/71) and to doxycycline in 58.7% (41/71) (Fig 5C). Further analysis showed that on
farms that with discontinuation of betalactams (farms B03, B05, B08, B09, B22, B24, B25, B28,
B29, B34, B35) the MRSA prevalence was categorized as A or B in 63.6% (7/11) farms while
category A or B was found in 58.3% (14/24) of farms that used betalactams. The ESBL-E preva-
lence lay in category A or B in 36.4% (4/11) of farms that did not administer betalactams and
in 50% (12/24 farms that used betalactams. Notably, in 8/10 (80%) farms that suspended tetra-
cycline usage (farms B02, B04, B05, B08, B09, B10, B17, B18, B25, B27) MRSA prevalence was
classified as category A or B while in farms administering tetracyclines MRSA category A or B
was found on only 13/25 (52%) of farms (see S10 Table).

By contrast, the use of other classes of antibiotics was restricted to a smaller number of
farms, e.g. macrolides (5 farms), lincosamides (1 farm), quinolones (3 farms) and sulfonamides
(10 farms) (Fig 5A). Nevertheless, antimicrobial susceptibility testing of MRSA revealed resis-
tance to all substances, i.e. erythromycin in 57.7% (113/196) isolates, clindamycin in 76.0%
(149/196) isolates, ciprofloxacin in 30.6% (60/196) isolates and to combined trimethoprim/sul-
fomethoxazole in 5.1% (10/196) isolates (Fig 5B). All MRSA isolates tested were susceptible to
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Fig 4. Molecular typing of E. coli ESBL-E isolates. Representative ESBL-E isolates from pigs, air and human were analyzed by repPCR (Diversilab,
Biomerieux, Nürtingen, Germany) (A, B andD) or pulsed field gel electrophoresis (PFGE) (C). A, B and D: Diversilab typing results. Clusters of isolates
obtained from different farms are marked by gray rectangles and clusters of isolates from pigs derived from the same farm are marked by black hatched lines.
A:Overview of Diversilab typing results of representative ESBL-E isolates. The cut-off value was set at 95% similarity. B and C: To confirm strain
relatedness all ESBL-E isolates from clusters with a similarity of� 98% (summarized in (B)) were reanalyzed by pulsed field gel electrophoresis (PFGE) (C).
D:On three exemplary farms with high ESBL-E prevalence (B09, B10, B18) all ESBL-E isolates from the same farm were subjected to Diversilab analysis to
test for strain relatedness within the farm and/or a single compartment. Isolates from early finishing compartments are marked by black lines and those from
finishing compartments by double black lines. Isolates from air are indicated by a “§”.

doi:10.1371/journal.pone.0138173.g004
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vancomycin. Notably, strains resistant to macrolides, lincosamides and quinolones were found
independently of the use of these antibiotics on the individual farm.

In ESBL-E we detected resistance to quinolones (ciprofloxacin 28.2% (20/71), moxifloxacin
33% (24/71)) while resistance to carbapenems or combined trimethoprim/sulfomethoxazole
was not observed (Fig 5C). Again, quinolone resistance did not correlate with use of these anti-
biotics on the farms.

Fig 5. Comparison of antibiotic usage and antibiotic resistance patterns on farms. A: Antibiotic
substances administered on investigated farms. (*) Betalactams comprise ampicillin, amoxicillin, other
penicillins and cephalosporins. Carbapenems, aminoglycosides and tigecycline were not applied (n.a.). B:
Susceptibility of spa typed MRSA isolates obtained on farms given as % resistant.C: Susceptibility of tested
ESBL-E isolates is provided as % resistant.

doi:10.1371/journal.pone.0138173.g005
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Discussion
Livestock serves as an important reservoir for transferable resistance genes [36, 55, 56]. To our
knowledge this study is the first to demonstrate co-colonization with MRSA and ESBL-E on
the individual animals (Fig 1). Notably, if on a farm pigs were found to be colonized with
MRSA it was likely that ESBL-E were also present on this farm and vice versa, thus, indicating
that farm-dependent factors including the amount and class of antibiotics in use foster the
selection of drug-resistant pathogens. In support of this hypothesis we further recovered strains
resistant to all other antibiotic classes presently in use on the participating pig farms (Fig 5A).

This was further supported by the finding that both MRSA and ESBL-E colonization fre-
quencies varied depending on the pig production level (Fig 2D, S3 and S4 Tables) [57–61].
Higher MRSA colonization in the finishing compartments (Fig 2D, S3 Table) is probably due
to previous exposure to antibiotics, which is usually highest at the early stages of breeding (pig-
lets) [62] and transient LA-MRSA colonization. Of note, persistence of colonization in pigs
and humans was recently shown to depend on the continuous usage of antibiotics [63–65]. As
described in earlier studies both ESBL-E and MRSA detection declined at the ready-to-slaugh-
ter stage (Fig 2D, S3 and S4 Tables) [66, 67] which might reflect restricted antibiotic usage at
this production level [68, 69].

It seems that antibiotic consumption in the veterinary field is responsible for the spread of
drug-resistant bacteria among farm animals [4, 5, 55, 70–73]. In the present study frequent
usage of betalactam antibiotics on the participating farms (Fig 5A) was well in line with the
presence of bacterial strains resistant to betalactams, i.e. MRSA and ESBL-E, in the pigs. The
high usage of tetracyclines might further account for selection of tetracycline-resistant strains
(Fig 5A). In our study, the documentation of antibiotic usage on the individual farms revealed
that use of tetracyclines rather than that of betalactams might support colonization of
LA-MRSA (S10 Table). However, resistance profiles on individual farms did not correlate with
other classes of antibiotics in use on the respective farms. Notably, pigs are frequently sold
before they enter the next production stage and colonization probably also reflects antibiotic
usage on the supplying farm. Furthermore, similarly to humans, colonization with ESBL-E
most likely persists for 6 months and longer, even in the absence of antibiotic pressure [74].

The present study confirms earlier results that suggest transmission of MRSA from pigs to
humans and vice versa [9, 10, 13, 62, 75, 76]. Moreover, a recent study observed transmission
of IncN plasmids harbouring blaCTX-M-1 between commensal E. coli of pigs and commensal E.
coli in humans in Denmark [77]. However, there is no evidence for ESBL-E colonization of
humans in our farm collective as also reported in [78]. While this could be due to differences in
the hygiene regimes employed by farms from different countries, our data further indicate that
MRSA transmission might be facilitated by its almost ubiquitous presence in air (Fig 1A, S7
and S8 Tables). Earlier studies support our observations and highlighted stable air as an ideal
transmission medium for MRSA [57, 79, 80]. Collectively these data indicate that MRSA con-
tamination of air is more wide-spread than for ESBL-E. Nevertheless, MRSA recovery from
impaction samples did not predict MRSA colonization of pigs (Fig 3C). However, we observed
MRSA transmission in the abattoirs, which supports earlier findings suggesting that transmis-
sion can occur within a short time frame, i.e. in less than two hours [22, 59, 81–83].

In contrast to MRSA, ESBL-E was only rarely detected in air samples (S7 and S8 Tables).
However, ESBL-E detection in impaction samples was always associated with ESBL-E coloni-

zation of pigs in the respective farm (Fig 1B). Since humidity is required for persistence of entero-
bacteriaceae on inanimate surfaces, we further reasoned that the lower presence of ESBL-E in air
samples could be due to low humidity in stable air. Well in line with this hypothesis, ESBL-E was
detected in 6 of 12 (50%) of air samples in the abattoirs that are kept at higher air humidity
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(S8 Table) compared to only 6 of 67 (9%) of air samples on farms that have normal environmen-
tal humidity (S7 Table). From a technical point of view, future work will have to verify whether
impaction is, indeed, superior to impingement in regards to recovery of ESBL-E under normal
environmental humidity conditions as suggested for Salmonella spp. in [84–86].

Furthermore, ESBL-E transmission was detected in the abattoirs and was higher in abattoir
B where pigs were held in a humid environment until slaughtering (S6 and S8 Tables).
Although we need to take into consideration that the screening methods used might have failed
to detect ESBL-E (and MRSA) in the pigs before delivery to the abattoir, it should be denoted
that recent studies have postulated that transmission of Salmonella spp. in pigs is fostered by
humidity in the abattoir waiting area [84, 85]. Thus, the risk for ESBL-E transmission is proba-
bly higher in the abattoirs than on the farms and during transport. Our future studies will,
therefore, clarify whether employees working in abattoirs face a higher risk of ESBL-E trans-
mission through pig contact than those working on farms [66].

Altogether, our data allow the conclusion that transmission of MRSA and ESBL-E among
pigs during transport and the waiting period at the abattoir might occur with nearly 30% prob-
ability. Waiting conditions such as irrigation might influence the likelihood of transmission.

Colonization of livestock with drug resistant bacteria is often considered a risk factor for
meat contamination with resistant bacteria [83]. As proposed by earlier studies, colonization of
pigs did not result in contamination of carcasses kept in the cool room of the abattoir after
slaughter with MRSA and ESBL-E (S6 Table) [25, 87]. This was not surprising because the
muscle itself is sterile and the meat production involves strict hygiene measures including
mechanical cleansing of the carcass and a series of heat exposures that destroys the microflora.
In the present cases, the multi-step procedure included a 60°C hot water treatment and
repeated exposures to 2000°C in ovens optimized to reach 100°C within the carcass, i.e. steriliz-
ing conditions. We, therefore, postulate that the risk for contamination of meat is much higher
than during processing of the carcasses.

Several studies have identified MRSA lineages that are prototypically found in pigs [22, 44,
57, 59, 83, 88, 89]. Not surprisingly, as seen in our study, these strains are usually resistant to
tetracyclines (Fig 5B), another class of antibiotics frequently employed in livestock (Fig 5A)
[68]. They further identified the molecular changes that occur in LA-MRSA upon adaptation
to the human host [88–91]. Our study highlights the predominance of LA-MRSA associated
spa types in pigs and humans with direct contacts to pigs and their family members (Fig 3C; S5
Table). Contact to pigs was further associated with increased MRSA colonization. Notably, the
MRSA frequency in individuals who had no contact was higher than in the general German
population [92, 93] despite the inaccuracy due to the low sample numbers. Altogether, the
findings indicated that selective pressure by antibiotics might favour the spread of defined
(LA-)MRSA strains among pigs and from pigs to humans or vice versa.

Similarly, specific ESBL resistance genes such as certain CTX-M subgroups have been found
with high homogenity within pig herds [49, 50, 66]. It has further been proposed that defined
E. coli strains acquired ESBL resistance genes and then spread among pigs [94]. In the present
study molecular typing was performed using a rep-PCR method. The results obtained revealed
high diversity of E. coli ESBL-E isolates (< 95% similarity by DiversiLab typing) when compar-
ing isolates from different farms (Fig 4A). Only small clusters of strains with� 98% similarity
revealed a potential spread of strains beyond the individual farm (Fig 4B). What is more,
genetic heterogeneity of E. coli isolates was high, even among strains collected from pigs within
the same compartment. This lead to the hypothesis, that ESBL resistance is not transmitted by
individual strains, i.e. counterparts of LA-MRSA. It must rather be assumed that selective pres-
sure exerted by antibiotics fosters spread of defined molecular resistance genes and their hori-
zontal transfer within the pre-existing E. coli population present in the intestinal microflora.
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Indeed, spread of ESBL-E within a compartment was more complete than that of MRSA, e.g.
once ESBL-E was detected on a farm it normally affected nearly all pigs present within the
compartment tested (S3 and S4 Tables). By contrast, MRSA colonization rarely affected all pigs
within one compartment (S3 Table) although total MRSA colonization was higher than the
ESBL-E detection (S4 Table). This suggested that within the compartment ESBL-E is either
more rapidly transmitted, ESBL-E colonization is more stable or culture methods used for
enrichment were more sensitive for ESBL-E than for LA-MRSA.

Our study results further suggested that, on the contrary to the results obtained on the
farms, acquisition of MRSA by the individual pig in the abattoir was more frequent than that
of ESBL-E (S6 Table). While antibiotic selection of ESBL-E in the intestine may account for
ESBL carriage on the farms, close animal contact in the waiting bay of the abattoir may favour
the rapid spread of MRSA. This demonstrates that transmission of resistant bacteria as well as
resistance determinants in the pig production chain may vary depending on the environment,
antibiotic exposure and bacterial species.
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