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ABSTRACT
Despite the various existing studies about nonsynonymous single nucleotide polymorphisms
(nsSNPs), genome-wide studies based on nsSNPs are rare. NsSNPs alter amino acid sequences,
affect protein structure and function, and have deleterious effects. By predicting the deleterious
effect of nsSNPs, we determined the total risk score per individual. Additionally, the machine
learning technique was utilized to find an optimal nsSNP subset that best explains the complete
nsSNP effect. A total of 16,100 nsSNPs were selected as the best representatives among 89,519
regressed nsSNPs. In the gene ontology analysis encompassing the 16,100 nsSNPs, DNA
metabolic process, chemokine- and immune-related, and reproduction were the most enriched
terms. We expect that our risk score prediction and nsSNP marker selection will contribute to
future development of extant genome-wide association studies and breeding science more
broadly.
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Introduction

Genetic variants can be classified into several categories,
including single nucleotide polymorphisms (SNPs), small
insertions and deletions, and structural variants (Cooper
and Shendure 2011). Among these variants, the majority
are SNPs that occur in single bases of DNA sequences.
Nonsynonymous SNPs (nsSNP) are an important type
of SNP that alter the amino acid sequence as well as
potentially affect the protein structure and function
(Krawczak et al. 2000; Wu and Jiang 2013).

A number of methods have been proposed for the
prediction of deleterious nsSNPs, including the Sorting
Intolerant From Tolerant (SIFT) program (Ng and
Henikoff 2001), PolyPhen (Galehdari et al. 2013), Poly-
Phen-2 (Galehdari et al. 2013), variant effect predictor
(VEP; (McLaren et al. 2016)), and SnpEff (Cingolani et al.
2012). Deleterious nsSNP prediction is formulated as a
binary classification model using diverse genomic data
as features to extract deleterious nsSNPs. The classifi-
cation result can be determined by the aforementioned
tools (Wu and Jiang 2013).

We used SIFT scores to estimate the individual risk by
nsSNPs and select significant nsSNP markers. SIFT incor-
porates position-specific information using sequence
alignment and is intended for predicting whether an
amino acid substitution affects protein function. SIFT
converts the alignment into a position-specific scoring
matrix and calculates the probability of an amino acid
appearing at a specified position. Using this position-
specific probability estimation, SIFT assigns a decision
rule to make the classification (Ng and Henikoff 2001).

Machine learning (ML) is defined as ‘a field of compu-
ter science that evolved from studying pattern recog-
nition and computational learning theory in artificial
intelligence and can make predictions on datasets
(Taranov; Simon et al. 2016). ML is classified by learning
style using the supervised, unsupervised, and semi-
supervised learning categories. In supervised data, the
input data is referred to as training data. The pre-
labeled or categorized data can be applied to the pro-
blems of classification or regression algorithms (Taranov).
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ML methods consist of computational algorithms to
relate all or some of a set of predictors to an outcome.
The algorithms attempt to balance two competing
interests: bias and variance. In ML contexts, bias is the
extent to which the predictions correspond to the true
values. Variance represents the sensitivity of the predic-
tions to perturbations in the input data. Even though it is
impossible to quantify a model’s bias and variance sep-
arately, the two values can be summarized by loss func-
tions. The aim is to reduce both bias and variance
simultaneously (Goldstein et al. 2017).

Regression analysis is a statistical tool that models the
relationship between quantitative variables using
measurements of error from the model (Taranov).
There are various studies using regression. The multi-
variate linear regression model were used for under-
standing cow evaluations (Mrode and Coffey 2008).
The machine learning algorithm using multiple
regression were applied to the carcass traits and saleable
meat cuts prediction in commercial lambs (Alves et al.
2019).

In this study, we used next-generation sequencing
data from a number of pig breeds. One of our goals
was to predict individual risk score using the deleterious
effect of nsSNPs. Each individual’s risk score was pre-
dicted by the nsSNP set and its associated effects.
However, the respective nsSNP contributions to the indi-
vidual risk score were not equivalent. Thus, extraction of
the minimal subset of nsSNPs that best explains the
entire nsSNP effect, referred to as ‘nsSNP marker selec-
tion,’ was critical.

Materials and methods

Whole genome sequencing data

The whole genome sequencing data consisted of 106
pigs (Berkshire (BKS) pigs, Duroc (DUR) pigs, Jeju
Native pigs (JNP), Jeju Native Black pigs (JNB), Korea
Native pigs (KNP), Korea wild boars (KWP), Landrace
pigs (LDR), Yorkshire (YKS) pigs, and Yucatan miniature
pigs (YMP)). The procedure for producing the sequen-
cing data was as follows: FastQC software was used to
perform a quality check on the sequencing data
(Brown et al. 2017). The Trimmomatic-0.32 tool was
used to remove the potential adapter sequence before
aligning the sequence (Bolger et al. 2014). Paired-end
sequence reads were mapped to the reference
genome (Sscrofa 11.1) from the Ensembl database
using the Bowtie2 default setting (Langdon 2015). The
following open-source software packages were used
for downstream processing and variant calling: Picard
tools, SAMtools, and the Genome Analysis Toolkit

(GATK) (Li et al. 2009; do Valle et al. 2016). The Picard
tools ‘CreateSequenceDictionary’ and ‘MarkDuplicates’
were used to read the reference sequence to write a
bam file containing a sequence dictionary and filter
potential PCR duplicates, respectively. Index files were
created for the reference and bam files using SAMtools.
We used the local alignment of sequence reads to
correct misalignments using the GATK ‘Realigner-Target-
Creator’ and ‘IndelRealigner’ arguments. Base quality
score recalibration was utilized to obtain accurate
quality scores. The GATK ‘UnifiedGenotyper’ and ‘Select-
Variants’ arguments were used with several criteria for
calling variants. All variants with 1) a Phread-scaled
quality score of < 30, 2) a read depth < 5, 3) an MQ0
(total count across all samples of mapping quality zero
reads) > 4, or 4) a Phred-scaled p-value > 200 using
Fisher’s exact test were filtered to reduce false positive
calls due to strand bias. The total number of SNP after
SNP calling quality control was 37,410,105. The vcf-
merge tool in VCFtools was used to merge all variant
calling formats. The number of extracted SNPs was
36,586,008.

Examination of population structures

To survey the genetic relatedness of the pig samples, we
performed principal component analysis (PCA). PCA is a
technique for reducing the dimensionality of datasets,
increasing interpretability but simultaneously minimiz-
ing information loss (Jolliffe et al. 2016). For this
purpose, we utilized the Genome-wide Complex Trait
Analysis program (Yang et al. 2011). The eigenvector
and eigenvalues were computed, and major principal
components 1 and 2 (PC1 and PC2) were used to
check the separateness of each pig subspecies.
Through PC1 and PC2, we examined the genetic related-
ness between individuals in the highly-dimensional
genomic dataset.

Extraction and risk score prediction of nsSNPs

To predict whether SNPs were nonsynonymous, we used
the SnpEff program with the reference genome version
Sscrofa 11.1. SnpEff is a variant annotation and effect
prediction tool that can be used to identify differences
like amino acid changes (Cingolani et al. 2012). We sur-
veyed the missense variants (nsSNPs) using SnpEff.
Additionally, the Ensembl VEP program was used to
predict the SIFT scores of the nsSNPs (McLaren et al.
2016). SIFT is a homology-based sequencing tool that
does not permit non-resistant amino acid substitutions
and predicts whether amino acid substitutions of pro-
teins have phenotypic effects. SIFT is based on the
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premise that protein evolution correlates with protein
function (www.incodom.kr/Interpretation_DB-_sift).

SIFT scores range from 0 to 1. Amino acid substi-
tutions at a given coding sequence with normalized
probabilities of < 0.05 are predicted to be damaging,
whereas those with normalized probabilities of >
0.05 are predicted to be tolerated. A lower tolerance
index indicates a higher functional impact on the
translated amino acid residues (Raghav and Sharma
2013).

Total risk score and linear regression for
preprocessing of nsSNP data

Each individual’s total risk score by nsSNPs can be
defined by the following equation:

Total risk scorei =
∑

j

Gij(1− SIFTj) (1)

Where i represents the individual, Gij represents the
allele-coded matrix, and (1- SIFT score) is the
nsSNP’s predicted deleterious effect. We chose the
linear additive model for allele coding, and alternative
alleles with amino acid substitutions were coded
additively.

For machine learning (ML), nsSNP features should be
ordered and selected using some statistical criteria. Here,
we set the criteria to be the p-values of linear regression.
The linear regression model that we used for the prepro-
cessing of nsSNP data and acquisition of regression p-
values was as follows:

Total risk scorei = gib+ ei (2)

Where gi is the i-individual’s coded alleles, b is the coeffi-
cient of the regression model, and ei is the residual error.

ML for nsSNP feature selection

NsSNPs represent the deleterious effects of translated
proteins. These deleterious effects can influence individ-
ual survival or risk. Our goal was to select the nsSNPs
that significantly affect an individual’s risk among the
hundreds of thousands of variants. Thus, we attempted
to select nsSNP features through ML (scikit-learn
package) (Pedregosa et al. 2011). The root mean
squared error (RMSE) statistic was used to identify
optimal nsSNPs.

Quantitative trait loci (QTLs) of the selected
nsSNPs

Investigating the traits related to each nsSNP and its
deleterious effect can be interesting. To survey the

characteristics of the selected nsSNPs related to pig
traits, the QTL regions encompassing the selected
nsSNPs were inspected. The QTL data were retrieved
from the pig QTL database (www.animalgenome.org).
The QTL regions in which the ratio of the selected
nsSNPs/total nsSNPs was greater than 200-fold were
depicted.

Results

NsSNP descriptions

The number of SNPs per chromosome ranged from
1,055,604–3,492,574. The maximum distance between
SNP markers varied from 15,859–107,761, and
the average distance (± standard deviation [SD])
spanned 51 (± 124) to 79 (± 111) (Supplementary
Table 1). The number of nsSNPs per chromosome
ranged from 2,238 to 11,507. The maximum distance
varied from 1,281,567–4,015,421, and the average dis-
tance (± SD) spanned 9423 (± 53,167) to 35,704 (±
149,954) (Supplementary Table 2). The number of SNP
markers and nsSNPs per chromosome tends to co-vary
across the board. In this study, the correlation between
SNP markers and nsSNPs per chromosome was 0.997
(Figure 1(a)).

PCA of pig species

PCA was performed to examine the population similarity
among 106 pigs. The pig subspecies were BKS, DUR, JNB,
JNP, KNP, KWB, LDR, YKS, and YMP. Aside from proximal
aggregates between the Landrace and Yorkshire pigs as
well as the Duroc and Yucatan miniature pigs, the overall
distinctions between breeds were confirmed. PC1 and
PC2 explained 18% and 11% of the total variance,
respectively (Figure 1(b)).

VEP: SIFT score prediction

We filtered nsSNPs from the SNP marker data using the
SnpEff program. SnpEff predicts variant effects, which
are indicated as annotation impacts. These annotation
impacts, such as frameshift, stop-gain, and missense var-
iants, are presented in the ANN field of the vcf file (http://
snpeff.sourceforge.net). In the VEP program, the nsSNP
effects are predicted to be ‘deleterious,’ ‘deleterious
with low confidence,’ ‘tolerated,’ or ‘tolerated with low
confidence’ based on SIFT score. The number of
nsSNPs that were predicted to be ‘deleterious’ was
21,559, and the number that were predicted to be ‘dele-
terious with low confidence’ was 10,010 (Supplementary
Table 3).
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Preprocessing before ML using simple linear
regression

The deleterious effect of each nsSNP was represented by
a SIFT score. The risk score of each nsSNP was calculated
by 1-SIFT score. The total risk score per individual was
defined as Eq. 1. The linear regression served as prepro-
cessing for the nsSNP set because the p-value in the
simple linear regression was utilized as the criteria for
sorting the nsSNPs by importance.

Supplementary Table 4 displays the p-value table for
preprocessing using simple linear regression. The
number of nsSNPs with a p-value < 10−12, between
10−10 and 10−12, and between 10−4 and 10−6 was
1,583, 1430, and 7,456, respectively, among the
89,519 total regressed nsSNPs. Figure 2(a and b) illus-
trate the nsSNP regression plot with the lowest and

highest p-values. The discrepancy between the two
cases was evident.

ML and multiple linear regression

We performed multiple linear regressions after prepro-
cessing. The scikit-learn package was utilized for ML
(Pedregosa et al. 2011), and the RMSE statistic was
used for feature selection. The plot of the RMSE
against the number of nsSNPs resembled the ML theor-
etic curve (Anderson et al. 2018). The RMSE across the
number of nsSNPs showed a minimum value at 16,100
nsSNPs (Figure 2(c)). We determined that 16,100
nsSNPs comprised the optimal subset of markers that
best explains the total risk. The risk score predicted
against the total risk score displayed linearity (Figure 3

Figure 1. (a) Number of single nucleotide polymorphisms (SNPs) and nonsynonymous SNPs (nsSNPs) across chromosomes. The trends
between SNPs and nsSNPs were similar. (b) Principal component analysis (PCA) of pig samples (BKS: Berkshire pigs, DUR: Duroc pigs,
JNB: Jeju Native Black pigs, JNP: Jeju Native pigs, KNP: Korea Native pigs, KWB: Korea Wild boar, LDR: Landrace pigs, YKS: Yorkshire
pigs, YMP: Yucatan Miniature pigs). Principal component 1 and 2 (PC1 and PC2) explain 18% and 11% of the total variance,
respectively.

Figure 2. (a, b) Linear regression line of nsSNPs with the lowest p-value (a) and highest p-value (b). The discrepancy between the two
regressions is clear. The response variable was total risk score (see Equation 1), and the deleterious allele was coded additively. (c) Root
mean squared error (RMSE) statistic along with the number of ordered nsSNPs. Among all regressed nsSNPs, 16,100 nsSNPs comprised
the best subset for explaining the total risk score. These 16,100 nsSNPs can be used as markers for future genomic analyses.
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(a)). The nine breeds are clustered into each breed as
seen in PCA analysis. The total risk score was clustered
with respect to each breed. Figure 3(b) demonstrates
the number of nsSNPs in each QTL. The 16,100 signifi-
cant nsSNPs were abundant in the fat-related and
body weight QTLs. The supplementary provides the fat
and body weight QTLs encompassing nsSNPs.

Gene ontology (GO) analysis of selected nsSNP
markers

GO analysis was performed using the selected 16,100
nsSNP markers (Table 1). The most enriched GO terms
were DNA metabolic process (GO:0006259), chemokine-
and immune-related (GO:0002682 and GO:0032602),
and reproduction (GO:0000003). Among these GOs, the
notable genes were as follows: N-myc and STAT interac-
tor (NMI; GO:0002682∼regulation of immune system
process; lowest p-value: 2−16), toll-like receptor (TLR3;
GO:0002682∼regulation of immune system process;
4−15), calcium- and integrin-binding 1 (CIB1;
GO:0030307∼positive regulation of cell growth; 1−18),
erythropoietin-producing hepatoma receptor A2
(EPHA2; GO:0032602∼chemokine production; 1−14), and
colony stimulating factor 2 (CSF2; GO:0006259∼DNA
metabolic process; 1−15).

NMI encodes a protein that interacts with N-MYC and
C-MYC. These proteins are two members of the onco-
gene MYC family. NMI also interacts with all STATs,
except STAT2, and augments STAT-mediated transcrip-
tion in response to the cytokines interleukin-2 (IL-2)
and interferon-gamma (IFN-γ). NMI is linked to the JAK-
STAT cascade and negative regulation of type I IFN pro-
duction GO terms. TLR3 encodes a member of the toll-
like receptor family, which plays a key role in pathogen

recognition and activation of innate immunity. They
recognize pathogen-associated molecular patterns and
mediate the production of cytokines that are necessary
for immunity development. CIB1 encodes a member of
the EF-hand domain-containing calcium-binding super-
family, which interacts with many other proteins. These
include platelet integrin alpha-IIb-beta-3, DNA-depen-
dent protein kinase, presenilin-2, focal adhesion kinase,
protein kinase D, and p21-activated kinase. CIB1 is
linked to the type II diabetes mellitus and leukocyte
count GO terms. EPHA2 belongs to the ephrin receptor
superfamily of the protein tyrosine kinase family, which
has been implicated in mediating developmental
events, particularly in the nervous system. EPHA2 is
linked to the protein kinase activity and protein tyrosine
kinase activity GO terms. CSF2 encodes a cytokine that
controls the production, differentiation, and function of
granulocytes and macrophages and is associated with
eosinophil count and inflammatory bowel disease. CSF2
is linked to the cytokine activity and growth factor
activity GO terms (www.genecards.org).

Discussion

Characteristics of the method

Our method was based on the ‘from genome to
genome’ concept rather than ‘from phenotype to
genome’ like classic genome-wide association studies
(GWASs) (Catchpole et al. 2008). All of the information
in our approach originates from the genome because
each nsSNP as well as its effect (SIFT score), total risk
score, regression coefficient, linear regression p-value,
and ML stemmed from a self-genome basis. In particular,
the total risk score of an individual (the regression

Figure 3. (a) Plot of predicted risk scores (from the 16,100 nsSNP markers) against total risk scores. (b) Quantitative trait loci (QTLs)
across the number of nsSNPs. The QTL regions in which the ratio of the selected nsSNPs (16,100 nsSNPs)/total nsSNPs was greater than
200-fold were chosen and depicted. Many of the nsSNPs belonged to the body weight and fat QTLs.
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response variable) was based on the SIFT score of each
nsSNP. Thus, the accuracy of our analysis was primarily
dependent on SIFT score estimation.

Individual risk score and marker selection

The total risk score per individual reflects the risks due to
nsSNP deleterious effects. It can serve as the parameter of

each individual’s genetic risk as a result of translated
protein structures and functions. In breeding science, pre-
diction of the genomic estimated breeding value is the
main goal (Pryce et al. 2011). However, with consideration
of the infinitesimal deleterious SNP effects and nsSNP
accumulation in breeding lineages, organismal high risk
can be generally be avoided in the long-term. Thus,
nsSNP marker selection using risk score prediction

Table 1. Gene ontology (GO) analysis encompassing the 16,100 selected nonsynonymous single nucleotide polymorphism (nsSNP)
markers. The most notable GO terms were DNA metabolic process (GO:0006259), chemokine and immune-related (GO:0002682 and
GO:0032602), and reproduction (GO:0000003).

Term Count
P-

Value Genes

GO:0006302∼double-strand break repair 10 0.005 DCLRE1C, SLX4, XRCC2, FIGNL1, DTX3L, EME2, SLF1, PRKDC, BRCA1, SETX
GO:0007010∼cytoskeleton organization 30 0.006 ABLIM1, GFAP, XRCC2, CCDC88A, CEP120, PLEK, FIGNL1, NF1, ERMN, HAUS1, KIF18A, LRGUK,

CXADR, CEP152, PCLO, SIGLEC15, BRCA1, WEE1, DSTN, TMEM67, CORO1A, LARP4, SLK, DNAAF2,
SVIL, STRIP2, WIPF3, ANTXR1, EMP2, CIB1

GO:0000002∼mitochondrial genome
maintenance

4 0.008 OPA1, PIF1, MRPL39, DNAJA3

GO:0006259∼DNA metabolic process 25 0.008 ESCO1, CSF2, XRCC2, REV1, CCDC88A, FIGNL1, EME2, DTX3L, PIF1, SLF1, PRKDC, MEIOB, CCT2,
MBD1, BRCA1, SETX, DCLRE1C, SLX4, FANCI, TDP1, POLD2, PDGFC, PMS1, DNAJA3, ASTE1

GO:0002682∼regulation of immune
system process

29 0.010 NMI, C6, MRPS10, TLR3, CACNB4, APOD, DNAAF2, LEO1, ANO6, DNAJA3, CYP19A1, CIB1, HAVCR2,
SELP, IKZF3, SOX13, KLF13, IL1RL1, CD3E, NF1, ZNF189, C4BPA, NLRP3, REEP2, SIGLEC15, ECM1,
GPR33, CORO1A, PLA2G7

GO:0006281∼DNA repair 16 0.011 XRCC2, REV1, FIGNL1, PIF1, EME2, DTX3L, SLF1, PRKDC, BRCA1, SETX, DCLRE1C, SLX4, FANCI, TDP1,
ASTE1, PMS1

GO:0032606∼type I interferon production 5 0.012 HAVCR2, CSF2, NMI, ZC3HAV1, TLR3
GO:0022607∼cellular component
assembly

51 0.013 XRCC2, CCT2, SETX, BDNF, SLK, APOD, NUBP2, PDGFC, ANO6, VWA2, SH3PXD2B, CEP295,
CCDC88A, OPA1, MPP7, PADI4, NLRP3, CEP152, PCLO, TIMM21, TRPM1, WEE2, TMEM67, ADSL,
USH1C, EMP2, EIF2AK3, IFT74, ABLIM1, CSF2, CEP120, MRPS11, HAUS1, SLF1, NPRL3, HJURP,
DNAAF2, WIPF3, GEMIN7, GEMIN5, IFT140, SELP, RPSA, PLEK, SPTBN5, LRGUK, EPHA2, CORO1A,
PKP4, ANTXR1, ATG16L2

GO:0044085∼cellular component
biogenesis

56 0.014 XRCC2, CCT2, SETX, BDNF, SLK, APOD, NUBP2, PDGFC, ANO6, VWA2, SH3PXD2B, CEP295,
CCDC88A, OPA1, NECTIN1, MPP7, PADI4, NLRP3, CEP152, PCLO, TIMM21, TRPM1, WEE2,
TMEM67, ADSL, USH1C, EIF2AK3, EMP2, IFT74, ABLIM1, CSF2, CEP120, MRPS11, HAUS1, SLF1,
NPRL3, DNAAF2, HJURP, WIPF3, WDR12, GEMIN7, GEMIN5, IFT140, SELP, RPSA, PLEK, NOC4L,
SPTBN5, LRGUK, HEATR1, EPHA2, CORO1A, PKP4, NOP58, ANTXR1, ATG16L2

GO:0032602∼chemokine production 5 0.014 HAVCR2, APOD, IL1RL1, TLR3, EPHA2
GO:0007229∼integrin-mediated signaling
pathway

6 0.016 ADAM10, PLEK, FUT8, ADAMTS20, ITGAE, EMP2

GO:0032642∼regulation of chemokine
production

5 0.016 HAVCR2, APOD, IL1RL1, TLR3, EPHA2

GO:0045765∼regulation of angiogenesis 9 0.017 SASH1, C6, NF1, SULF1, EMP2, ECM1, EPHA2, BRCA1, CIB1
GO:0022414∼reproductive process 28 0.018 CSF2, XRCC2, PRKDC, CCT2, PRDX3, CXADR, DPY19L2, SLX4, PKD1, EIF2B2, CYP19A1, CIB1, HAVCR2,

EME2, KIF18A, MEIOB, NPR2, LRGUK, WEE2, PSP-II, SPAI-2, UMODL1, SGO2, SERPINB5, DLD,
SULF1, ANTXR1, EMP2

GO:0000003∼reproduction 28 0.019 CSF2, XRCC2, PRKDC, CCT2, PRDX3, CXADR, DPY19L2, SLX4, PKD1, EIF2B2, CYP19A1, CIB1, HAVCR2,
EME2, KIF18A, MEIOB, NPR2, LRGUK, WEE2, PSP-II, SPAI-2, UMODL1, SGO2, SERPINB5, DLD,
SULF1, ANTXR1, EMP2

GO:0050900∼leukocyte migration 11 0.023 GPR33, SELP, HRH1, CORO1A, APOD, PLA2G7, JAML, CXADR, ANO6, ECM1, CYP19A1
GO:0044702∼single organism
reproductive process

26 0.024 HAVCR2, CSF2, XRCC2, EME2, KIF18A, PRKDC, MEIOB, LRGUK, NPR2, CCT2, PRDX3, CXADR,
DPY19L2, WEE2, PSP-II, SLX4, UMODL1, SGO2, SERPINB5, SULF1, DLD, PKD1, EIF2B2, EMP2, CIB1,
CYP19A1

GO:0050790∼regulation of catalytic
activity

35 0.025 PPP1R14D, APH1B, CNPPD1, CCT2, PPP6R3, PRDX3, IQGAP1, ARHGAP21, ITIH1, SERPINA6, PKD1,
SCG5, ITIH2, PDGFC, TBC1D9B, CIB1, SASH1, CCDC88A, PLEK, PIF1, NF1, NLRP3, ECM1, EPHA2,
RUBCN, WEE2, SPAI-2, PSME1, PKP4, CYFIP2, LRRC66, SEMA4D, ANTXR1, EMP2, NEK5

GO:0030307∼positive regulation of cell
growth

6 0.025 BDNF, ADNP2, MACF1, NEDD4L, SEMA4D, CIB1

GO:0007166∼cell surface receptor
signaling pathway

48 0.026 ADGRF3, CSF2, NMI, ADGRF1, FUT8, ADGRF4, ITGAE, IL19, APH1B, MKNK2, TLR3, CACNB4, IQGAP1,
SETX, FAM83B, BDNF, TSPAN33, MACF1, APOD, WDR12, ZNF106, PDGFC, DEPDC1B, FRS2, ANO6,
CIB1, SASH1, ADAM10, PLEK, ADAMTS20, CD3E, NF1, CILP, ADGRG5, NPR2, ECM1, BRCA1,
TRPM1, GPR33, DKK3, CORO1A, KCP, SULF1, LRRC66, SEMA4D, EMP2, AKAP3, IFT74

GO:0001816∼cytokine production 16 0.027 HAVCR2, CSF2, LIPA, NMI, ZC3HAV1, CD3E, IL1RL1, IL19, TLR3, NLRP3, ARFGEF2, EPHA2, BRCA1,
APOD, SULF1, EIF2AK3

GO:0031122∼cytoplasmic microtubule
organization

4 0.027 CEP120, SLK, FIGNL1, CIB1

GO:1901342∼regulation of vasculature
development

9 0.028 SASH1, C6, NF1, SULF1, EMP2, ECM1, EPHA2, BRCA1, CIB1
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should be utilized on its own. Furthermore, nsSNPmarkers
can be used in future GWASs as an important marker set.

ML and multiple linear regression

In the scikit-learn package, multiple linear regression can
be accompanied by nsSNP marker selection. Before per-
forming multiple linear regression, we attempted to pre-
process nsSNP sorting by p-value from the simple linear
regression. This process ensured that the nsSNPs were
arranged according to the lowest p-value order rather
than deleterious effect. Thus, the nsSNP disposition was
identified using a significant order for the regression
rather than by adverse effects. After ML, the number of
markers that best reflected the data in the nsSNP set was
16,100, which included not only the deleterious effect
markers but also a large number of tolerated effect
nsSNPs (only 4,466 deleterious nsSNPs out of 16,100).

Conclusion

NsSNPs have deleterious effects and are represented by
SIFT scores. Given this knowledge, we predicted the
total risk score using the SIFT scores of nsSNPs in various
pig breeds. Furthermore, nsSNP markers that best
explained the total risk score were selected using ML. In
addition to the utility of the total risk score, the selected
nsSNPs can serve as SNP markers for future GWASs and
breeding research.
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