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We review four current computational models that simulate the response of
mechanoreceptors in the glabrous skin to tactile stimulation. The aim is to inform
researchers in psychology, sensorimotor science and robotics who may want to
implement this type of quantitative model in their research. This approach proves
relevant to understanding of the interaction between skin response and neural activity
as it avoids some of the limitations of traditional measurement methods of tribology, for
the skin, and neurophysiology, for tactile neurons. The main advantage is to afford new
ways of looking at the combined effects of skin properties on the activity of a population
of tactile neurons, and to examine different forms of coding by tactile neurons. Here, we
provide an overview of selected models from stimulus application to neuronal spiking
response, including their evaluation in terms of existing data, and their applicability in
relation to human tactile perception.

Keywords: simulation models, tactile neuron, mechanoreceptor, glabrous skin, tactile perception,
neurophysiology, advancements and challenges

INTRODUCTION

The sense of touch is fundamental to our everyday life. It enables us to discriminate material
properties, to identify objects, and to act on and interact with the external world, including
affective and social exchange. It is the first sense to develop in the womb, at 8 weeks embryos
respond to tactile stimulation (Bradley and Mistretta, 1975), and works via the largest organ of
the body, the skin. The lack of tactile perception undermines safe and successful interaction with
the environment and to some extent impacts independent living as is the case with people affected
by peripheral neuropathy (Cole, 2016).

Understanding how touch sensory signals arise at the periphery and are processed at the
central level is important for research and applications in many fields, such as neuroprosthetics
and neurorehabilitation, service robots to assist the elderly or robotics applied to industry, and
haptic devices to assist surgery or visually impaired people. For example, implementing biomimetic
sensory feedback based on the known properties of mechanoreceptors and the way in which tactile
features are extracted (e.g., spike timing versus mean firing rate) has helped to improve the quality
of neural prostheses in delivering tactile sensations (George et al., 2019).

There are several issues concerning research on the sense of touch ranging from the peripheral
acquisition of sensory information to the transformation of this signal into a meaningful percept.
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Here, we consider two main questions related to the early
stages of sensory processing. The first is how do the mechanical
properties of the skin affect the activation of the receptive
organs? The second is what are the relevant features of the
signal sent to the central nervous system by the large number
of mechanoreceptors that work together to create the sense
of touch? The skin is composed of different layers that have
complex, non-linear mechanical properties. As a consequence,
it is difficult to characterise and predict how skin stretches and
deforms under different stimulations. Tactile signals are also
complex and highly variable as they are generated by a large
number of mechanoreceptors, hundreds in the finger pad alone,
which respond to mechanical deformation in a variety of ways.

Skin behaviour and mechanoreceptors response are
intertwined and should be concurrently addressed when
investigating the sensory mechanisms of tactile perception. Yet,
because of their complexity, it can be especially challenging to
study them together, and various simplifying assumptions have
been adopted to allow this.

A common approach to investigate the mechanics of the
skin is to use video recordings, displacement sensors such as
vibrometers, accelerometers, ultrasound scanners, or suction and
indentation devices (Diridollou et al., 2001; Delhaye et al., 2016;
Greenspon et al., 2020), to measure the stresses and strains
at the level of the skin. However, in practice, it is difficult to
use these methods while recording the activity of a population
of tactile neurons with microneurography, which allows direct
observation of peripheral nerve activity in vivo with a high
temporal resolution. These recordings are even more challenging
when combined with the constraints of psychophysical testing.

Microneurography recordings are performed by inserting a
very fine needle electrode through the skin and into an underlying
nerve fibre to register the potential across the afferent fibre
membrane. The experimenter has to place the electrodes by
hand through a process of trial and error (typically listening
to the electrical discharge pattern signifying the needle tip has
penetrated a nerve fibre) which makes the task difficult and
requires fine manual dexterity and takes a lot of time and
patience. In addition, only a single fibre or a small number of
fibres can be recorded at a time. Thus, recording the response
of a high number of fibres would require multiple sessions
on the same task.

Notwithstanding these limitations, animal and human studies
have provided enough knowledge for the development of
computational models to predict skin behaviour under specific
circumstances (e.g., Pawluk and Howe, 1999) as well as to
simulate the activity of tactile neurons in response to a variety of
stimuli (e.g., Sripati et al., 2006). Having functional quantitative
models that can reproduce the behaviour of the skin and the
response of tactile neurons is helping to overcome the limitations
of classical recording techniques and address the two questions
mentioned above. In particular, models allow the running of
computer simulations that can be a viable way to study the
relation between skin properties and neuron population response
and to assess differences in tactile neural coding. However, it
is important to keep in mind that this approach comes with
limitations and still requires validation with real data, especially

when the simulations are performed on stimuli that differ from
the ones used to build the original model.

The aim of this paper is to inform researchers in psychology,
sensorimotor science and robotics who seek to implement
quantitative models in their research. The focus is: (i) to provide
an overview of the available models of the transduction process
from stimulus application to neuronal spiking response; (ii)
to evaluate the models in relation to existing data; and (iii)
to determine their applicability in relation to human tactile
perception. In the first section, we outline the most important
properties of the glabrous skin of the finger and the skin
behaviour that make modelling touch difficult (i.e., complex
structure and viscoelastic properties). In the second section, we
summarise how the mechanoreceptors work. Then, we provide a
summary of what is currently understood about the link between
peripheral activity (i.e., skin and mechanoreceptors) and human
tactile perception, to highlight why it is important to study
the population activity of tactile fibres. Finally, we present a
selection of models that simulate the activity of tactile fibres and
describe the advantages, limitations, and applications of each
model. We do not consider models that address the processing
of tactile information at the cerebral cortex or decision-making
processes but rather the characteristics of the information that is
sent to the brain.

OVERVIEW OF THE
BIOMECHANICS-RELATED PROPERTIES
OF GLABROUS SKIN

The glabrous skin exhibits complex mechanical behaviours which
increase the difficulty in the development of realistic models.
Rather than making an exhaustive description of the biological
origins of the mechanical properties of the skin, here we intend
to provide a summary of the most prominent requirements
that a biomechanical model should consider. Our goal is to
highlight that the theoretical and computational requirements
need to be carefully considered before undertaking a quantitative
modelling effort.

Skin Composition and Properties
There are important differences in skin properties, sensory
abilities, and perceptual significance across the body. The major
one is between hairy skin (e.g., on the back of the hand and
forearm) and non-hairy, glabrous skin (e.g., on the finger pads,
palm and soles of the feet). Hairy skin, amongst other functions,
is important for affective touch which is mediated by slow-
conductive, unmyelinated C-tactile afferents (McGlone et al.,
2007). Glabrous skin, instead, is considerably more sensitive
in discriminative judgement thanks to its morphology and the
presence of very large numbers of mechanoreceptors innervating
fast-conductive, myelinated A-tactile fibres.

In classifying objects on a range of different properties, such
as texture, hardness or shape, we employ specific exploratory
movements with the digits that are optimal for extracting cues
relevant to those properties (Lederman and Klatzky, 1987). The
contact (e.g. sliding vs pressing) between the glabrous skin
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FIGURE 1 | Schematic view of exploratory movements. Surface texture (e.g., periodicity of a spatial grating, or roughness of sandpaper) may be felt by static
pressing or sliding contact of the index finger with the normal and tangential force components as shown. Sliding is critical in discriminating very fine texture as it
generate skin vibrations which reflect the sensed surface.

and the properties of the touched object (e.g., fine or coarse
texture and compliance, Figure 1) and the physical details of the
interaction (e.g., normal and tangential force and displacement)
determine how the skin deforms and the mechanoreceptors are
activated, and in turn how the stimulus features are coded by
the activity of sensory neurons (Bensmaia and Hollins, 2003;
Muniak et al., 2007; Weber et al., 2013; Greenspon et al.,
2020). However, the relationship between specific stimuli and
the resulting spatiotemporal deformation of the skin is not
straightforward but, in fact, is quite non-linear. This is because
the skin is a highly complex medium composed of multiple layers
having different load- and time-dependent properties (Daly,
1982; Wang and Hayward, 2007). These comprise epidermis,
dermis, and subcutaneous tissue (hypodermis), which is not part
of the dermis but is important for providing attachment of the
skin to the bones and muscle.

The epidermis is the outer skin layer and is further subdivided
into multiple layers, of which the stratum corneum is the
outermost one contacting the external world. The thickness
of the stratum corneum is highly variable across individuals
ranging between 0.1 and 0.7 mm on the finger pad (Fruhstorfer
et al., 2000). This property is relevant as it might indirectly
contribute to skin friction by affecting the distensibility of the
skin when sliding (Liu et al., 2015). The composition and higher
thickness of the dermis (1 to 4 mm) make it functionally more
important than the stratum corneum. The dermis hosts most of
the mechanoreceptors and nerve endings involved in conveying
information about touch and temperature (Figure 2). It contains
sweat glands and sebaceous glands which contribute to the
hydration of the skin which affect its frictional properties, the
contact dynamics, and in turn the way we interact with objects
(André et al., 2010; Adams et al., 2013).

The dermis can be histologically divided into two regions:
the papillary region and the reticular region. The papillary
region consists of loose connective tissue with fingerprint-like
projections called papillae which extend to the epidermis and
form the papillary ridges of the fingerprint. These irregularities
contribute to how the skin responds to mechanical stimuli,
mainly by affecting the contact area, and so the friction between
the finger and the object (Duvefelt et al., 2016; Arvidsson
et al., 2017), as well as the distribution of stress fields (Gerling
and Thomas, 2005). On the other hand, the reticular region
constitutes the bulk of the dermis and acts as the support
structure. As such, it constrains the deformation that the dermis
can undergo. The connective tissue of which the reticular region
is made, is very dense and incorporates both collagen fibres,
which have high tensile strength and form the main supporting
structure, and elastomeric fibres, which are elastic and thus enable
the skin to return to its original shape following deformation.
Together the two sets of fibres generate directionally specific
mechanical properties as well as viscoelastic qualities (Daly,
1982). In fact, the skin behaves differently when subject to stresses
and strains along or across the finger. Such anisotropy is reflected
by the higher tension of the skin across the Langer’s lines (Langer,
1861). Langer discovered these lines when he observed that a
circular incision on a corpse changed into an oval shape. These
tension lines may be due to the orientation of the collagen fibres
which are parallel to them (Gibson et al., 1969).

Viscoelastic materials exhibit stress/strain characteristics that
lead to time-dependent non-linear behaviours. These behaviours
include stress relaxation, hysteresis, and creep which can last
several seconds. Stress relaxation is measured by stretching and
holding the skin and measuring the force required to hold the
skin at a given distance. At low strains, the skin responds as an

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 862344

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-862344 May 28, 2022 Time: 16:6 # 4

Deflorio et al. Simulating Tactile Neuron Population Response

FIGURE 2 | Schematic representation of a cross section of the glabrous skin showing different layers, mechanoreceptors and other components. Republished with
permission of McGraw Hill LLC, from Kandel et al. (2013) 5/E, permission conveyed through Copyright Clearance Center, Inc.

elastic body so that the force required is the same over a long
time-interval. At high strains, it behaves as a viscoelastic body
requiring a force decreasing logarithmically with time (Daly,
1982; Pan et al., 1997). In addition, the stress-strain relationship
is further characterised by a non-linear response. Under low
uni-axial loading the skin is relatively soft but it gets stiffer for
high loads for both normal (Maurel et al., 1998) and tangential
displacement (Nakazawa et al., 2000). Hysteresis is defined as the
strain energy loss between loading and unloading phases due to
internal friction, that is the skin deformation decreases during
unloading more slowly than it increases during loading. The
energy loss is high, repeatable, and invariant for long loading-
unloading cycles (e.g., 20–80 s), but it diminishes for faster cycles
(e.g., 5 or 10 s) (Wang and Hayward, 2007). Mechanical creep
is the continuous extension of the skin under a constant force.
It has been shown that skin creep can be divided in three parts:
an initial purely elastic deformation, a viscoelastic phase, and a
constant creep phase (Agache, 2000). This phenomenon begins
with the realignment of the collagen fibres that are rearranged
in parallel to one another when stretched (inherent extensibility).
During stretching, water in the collagen network is displaced, and
elastic fibres are micro-fragmented resulting in mechanical creep
and a more viscous skin (Wilhelmi et al., 1998).

Skin properties can be highly variable across different
individuals. For example, changes in skin elasticity correlate
with age, gender (Yang et al., 2018), occupation, and history of
exposure to environmental factors such as the sun (Langton et al.,
2017). In particular, with ageing, the elastomeric proteins become

sparser and their orientation changes resulting in less elastic skin
(Yang et al., 2018). In a modelling study it has been shown that
the lower elastic modulus observed in the elderly affects the
distribution of stresses and strains during static indentation and
lateral sliding. As a result, skin vibrations that are generated by
sliding the finger across a surface are higher in amplitude and
frequency range which may negatively influence the response of
the mechanoreceptors (Amaied et al., 2015).

Skin properties are also affected by factors in the testing
environment. Although skin hydration is regulated by the glands
located in the dermis, it is highly susceptible to environmental
conditions such as temperature and humidity, the application of
water, or other formulations. For example, Sandford et al. (2013)
measured the skin stiffness of the arm when exposed to different
levels of relative humidity at constant temperature. They found
that skin hydration increases with relative humidity and that skin
stiffness has a positive relation with the hydration level. This is
relevant because skin hydration is also positively correlated with
friction (André et al., 2010) which affects vibration in sliding and
contributes to how the tactile receptors are activated.

Modelling the Skin
The complexity and variability of skin biomechanics poses a
challenge to the development of realistic and computationally
efficient models. One way to capture the deformation and
reproduce the behaviour of the skin is to employ continuum
mechanics and finite element techniques. Continuum mechanical
modelling involves a simplified characterisation of the skin
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to predict its deformation and simulate the mechanoreceptors
response properties accurately. The skin is often assumed to
be homogenous, isotropic and linearly elastic. On the other
hand, finite element modelling aims to provide a more realistic
description of the different layers of the skin having different
thickness and mechanical properties (i.e., viscoelasticity) as well
as being influenced by adjacent bones and nails. Typically, finite
element modelling is focused more on quantifying the exact
relationship between specific loads applied to the skin and the
resulting deformation, and less on the neural response. However,
finite element modelling can be demanding as it requires the
construction of a 2D or 3D mesh of interacting elements
each with a set of parameters based on actual measurements
of the finger. Thus, choosing one approach or the other will
depend on the scope of the model. For example, applications
in neuroprosthetics and robotics require fast computations to
be carried out in real-time. As such, a simplification of the skin
mechanics may be advantageous in this kind of scenario.

A further issue is related to the transformation of the skin
response into neural activity. A common approach is to derive
the stresses and strains resulting from contact with a specific
stimulus at the level of the receptor of interest and to transform
them into spike trains and/or firing rates. The question is then
which of the several measures of stress and strain that have
been successfully tested is preferable, including strain energy
density, maximum compressive stress and strain, von Mises
stress, change in the receptor area, and combinations of these
measures (Phillips and Johnson, 1981b; Connor and Johnson,
1992; Dandekar et al., 2003; Sripati et al., 2006: Gerling et al.,
2013). In addition, there are other mechanical cues that can
be exploited by the peripheral nervous system. For example,
the strain fluctuation variation, defined as the mean absolute
difference of the maximum compressive strain between pairs of
sample points in the skin, has been recently used to successfully
predict the perceptual roughness of 3D printed objects (Tymms
et al., 2018). Similarly, the variations in tangential force generated
when sliding the finger on a regular texture reflects the interaction
between the skin and the geometry of the surface and has
been used to predict the subjective estimation of the surface
roughness (Smith et al., 2002), or the performance in a roughness
discrimination task (Roberts et al., 2020).

TACTILE RECEPTORS OF THE HAND

Regardless of the specific skin deformation that is at the origin
of the simulated spiking activity, it is important that the model
can reproduce the properties of each afferent type and take
into account the neural response at the population level. In
this and the following section, we outline the most relevant
response properties and provide evidence for the need to study
the response of multiple afferents.

Tactile perception is mediated by mechanoreceptors located
in the dermis that are sensitive to skin mechanical deformation.
They are connected to type II A fibres which transmit the
information to synapses in the dorsal spinal cord, through
the thalamus and then to somatosensory cortex for central

processing. There are four types of mechanoreceptors that differ
from one another in terms of their morphology, distribution,
and response properties (Figure 3). These properties include: (i)
adaptation or the rate at which the neural response subsides to
a constant static stimulus (slow and rapidly adapting receptors);
(ii) the receptive field characteristics; (iii) frequency sensitivity
profile to vibratory stimuli (e.g., sinusoid) which may be defined
in terms of absolute threshold (the minimum amplitude that
elicits a spike for a specific frequency) and tuning threshold (the
minimum amplitude that elicits at least one spike per cycle); (iv)
the spike timing, or the precise and repeatable occurrence of
individual spikes.

Adaptation rate and receptive field properties are commonly
used to categorise the type of receptors. Meissner corpuscles are
referred to as rapidly adapting type 1 receptors (RA1). Located
close to the skin surface at the base of the epidermis (0.5–1 mm
below skin surface), they respond preferentially to changes in
applied load in a frequency range from 1 to 300 Hz (most sensitive
between 5 and 50 Hz) (Bolanowski et al., 1988; Kandel et al.,
2013). Their response subsides quickly to static deformation of
the skin. Pacinian corpuscles are rapidly adapting type 2 receptors
(RA2 or PC). This type of receptor can be found at a deeper
layer of the skin, in the dermis (2–3 mm), and they respond to
changes in applied pressure for a wide range of frequencies from
5 to 800 Hz (most sensitive between 30 and 500 Hz) (Bolanowski
et al., 1988; Kandel et al., 2013). Similar to RA1, their response
fades out rapidly to sustained indentation.

Merkel cells constitute slowly adapting type 1 units (SA1).
Located close to the skin surface at the tip of the epidermal
sweat ridges (0.5–1 mm below the skin surface). They respond to
the dynamic onset and the subsequent sustained static pressure
with slow adaptation to frequencies up to 100 Hz (most sensitive
between 0.3 and 5 Hz) (Bolanowski et al., 1988; Kandel et al.,
2013). Finally, Ruffini endings are mainly located around the
nail bed and rarely found in the deeper layer of the dermis
(2–3 mm). Ruffini endings respond to stretching during both
the dynamic and static phase of skin indentations. They were
classically thought to be connected to SA2 fibres, but more recent
evidence suggests that only a very few SA2 fibres are likely to
innervate Ruffini endings (Parè et al., 2003).

It has been estimated that human adult skin has around
200.000 and 270.000 neural fibres linked to mechanoreceptors
(Corniani and Saal, 2020), but their density varies across the
body with a higher concentration in the hand, feet, and face. The
glabrous skin of the young adult hand alone has 17,000, which
are more prevalent on the finger pad (Johansson and Vallbo,
1979). The number of Meissner and Merkel’s cells decrease
with ageing, with the age group 60–90 years old having four to
six times fewer receptors than younger adults between 20 and
49 years of age (García-Piqueras et al., 2019). The morphology
of mechanoreceptors also changes with ageing. For example,
Meissner’s corpuscles become smaller and denervated. These
receptor changes may contribute to the deterioration of tactile
spatial sensitivity observed with ageing.

The area of the skin to which each fibre can respond to is
termed the receptive field. Type 1 fibre (i.e., SA1 and RA1) refers
to small receptive fields while type 2 fibre (i.e., SA2 and RA2
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FIGURE 3 | Top image shows a schematic view of the distribution, size, and sensitivity map of the receptive field of the four afferent types. Bottom image show the
typical adaptation of the four afferent types in response to a ramp-and-hold indentation. Republished with permission of McGraw Hill LLC, from Kandel et al. (2013)
5/E; permission conveyed through Copyright Clearance Center, Inc.

or PC) refers to large receptive fields. This property depends
in part on the depth of the mechanoreceptors with superficial
receptors (i.e., SA1 and RA1) having small receptive fields and
deeper receptors (i.e., SA2 and RA2 or PC) large receptive fields.

The size of receptive fields is also correlated with the density
of receptors and the sensitivity of a specific body part. Thus,
the higher density of receptors at the finger pad and the smaller
receptive fields lead to higher sensitivity than, for example, the
palm of the hand where receptors are more sparsely distributed
(Figure 3). In the finger pad there are about 100 SA1 units
and 150 RA1 units per cm2 corresponding to an average centre

to centre spacing of their receptive fields of 1 and 0.82 mm,
respectively. Importantly, the receptive field is a functional
concept which depends on the stimulus parameters, as first
noted by Johansson (1978). In fact, it has been shown that the
receptive field area of SA1 and RA1 fibres increase linearly as
the indentation depth increases with estimated minimum area
of 5 mm2 for both and median areas of 11 mm2 for SA1
and 12.6 mm2 for RA1 (Vega-Bermudez and Johnson, 1999).
Although the afferent spacing and receptive field size is related
to and might limit the tactile spatial sensitivity of a specific body
area, these are not the only factors involved. In particular, RA1
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and SA1 fibres innervate multiple receptor organs and, at the
same time, each receptor is linked to multiple fibres. An RA1
fibre innervates 10 to 30 Meissner corpuscles on average and
each Meissner corpuscle is innervated by 2 to 5 RA1 fibres. This
innervation branching allows the combination of information
from several adjacent regions of the skin and contributes to
the receptive field properties of type 1 units. Having multiple
“hotspots” may benefit the perception of fine spatial features such
as the detection of small changes in edge orientation, important
for fine manual dexterity (Pruszynski et al., 2018). All these
properties enable RA1 and SA1 receptors and associated fibres to
transmit detailed spatial representations of an object’s geometry
when in contact with the skin.

In contrast with RA1 and SA1, Pacinian corpuscles (RA2) are
more sparsely distributed (Johansson and Vallbo, 1979), and only
a single afferent fibre is connected to each Pacinian receptor.
Their receptive fields are relatively large (5–10 times that of SA1)
(Johansson and Vallbo, 1980) which makes these fibres unsuitable
for resolving fine spatial details. Nonetheless, the high sensitivity
of RA2 to sub-micron vibrations of the skin, over a wide range of
high frequencies, plays a major role in the detection of very fine
features during dynamic exploration. For example, LaMotte and
Srinivasan (1991) found that RA2 fibres responded consistently
during a sliding movement over a texture composed of bars with
a height of only 0.05 µm. They showed that these values are
in agreement with human detection thresholds suggesting that
RA2 units might play a major role for detecting this sort of
micro feature. SA2 fibres, instead, tend to be distributed near
the fingernails, which makes them less sensitive than RA1 and
SA1 to the transient components of sensations, and it has been
shown that they might contribute to the perception of applied
force (Brothers and Hollins, 2014). However, the role of Ruffini
receptors is still not fully determined, as most neurophysiological
studies on touch have been conducted on monkeys’ glabrous skin
rather than humans’, which is devoid of SA2 fibres.

TACTILE PERCEPTION

Humans are able to detect and discriminate many different
classes of stimuli. Such sensitivity is due to the ability to
code spatiotemporal patterns of the stimulation by leveraging
the properties of individual receptors, combining skin pressure
information close to the indentation site (static component)
with the variations of pressure (i.e., vibrations/waves) that
propagate away from the contact points (dynamic component)
throughout the hand up to the wrist (Shao et al., 2016).
Interestingly, the stimulation originating from long-distance
propagation of waves to remote receptors can alone still
be used for sensory discrimination in some instances. For
example, patients with pathological denervation of the fingertip
and participants with an anaesthetised finger are unable to
do tasks based on local information (like grating orientation
discrimination using static touch). However, by using only
information like vibration propagated to the wrist during
sliding touch they can perform roughness discrimination tasks
(Libouton et al., 2012). The receptors involved in this task

are thought to be primarily Pacinian Corpuscles (RA2) which
are located in the deeper layers of the skin as well as in
the proximity of muscles, tendons and ligaments (Mountcastle,
2005). However, it has been observed that proprioceptive
receptors such as Golgi tendon organs and muscle spindle
primary and secondary endings are also sensitive to small
vibrations (Fallon and Macefield, 2007). In particular, Golgi
tendon organs seem to respond to vibrations during voluntary
muscle contraction but not when the muscles are relaxed
suggesting that this type of mechanoreceptor may contribute
to tactile sensation during active movement. Interestingly, this
long-distance activation seems to be driven by Rayleigh waves
that can propagate through all the skin layers equally without
any energy loss and are not affected by the stiffness of the
stratum corneum, unlike pressure waves and shear waves
(Andrews et al., 2020).

Spatial and Temporal Code
The contrasting findings for static and sliding touch suggest
that tactile perception relies on at least two different neural
mechanisms. In fact, the encoding of tactile information
may involve a spatial or a temporal code depending on the
circumstances. The former refers to the firing rate variations
between afferents due to the layout of the pattern indented into
the skin. The latter, in contrast, employs firing rates variations of
individual afferents over time. Models should consider these two
components depending on the type of stimuli involved.

In a seminal work, Phillips et al. (1988) showed that during
static contact, the spatial layout of the indentation is reflected
in the spatial activation of SA1, and to a lesser extent, RA1
fibres. They repeatedly indented each letter of the alphabet into
the finger of rhesus monkeys while shifting the position of the
letter on each iteration. Then, they plotted the generated action
potentials of the 89 recorded afferents (34 SA1, 36 RA1, and 19
RA2) to build a Spatial Event Plot (SEP). These plots showed
that SA1 responses carry fine spatial details of the image, while
RA1 plot are less sharp, and RA2 plots even more blurred
(Figure 4). In fact, SA1 and RA1 have small receptive fields
and are present at high density which make them suited to
resolve fine spatial details. However, it is not clear whether the
innervation density limits tactile acuity or whether there are
factors that allow perception of features with a resolution beyond
the spacing of afferents.

Afferent spacing was initially considered as a limit to the
resolution of fine details by static touch, but several studies
showed that hyperacuity (Westheimer, 1975) is present in the
tactile as well as in other sensory modalities. For example, it
has been shown that edge orientation thresholds are around
20◦ in a 2-IFC discrimination task (Bensmaia et al., 2008a).
The authors suggested that tactile discrimination of bars is poor
when compared to the visual counterpart, but they are similar in
the extent to which the resolution limit is set by the respective
innervation density of both modalities. However, in a recent
study using a tactile pointer-alignment task, Pruszynski et al.
(2018) showed that participants can detect very small changes in
the orientation of edges (i.e., 3◦ for edges spanning the entire
fingertip – 10 mm). These findings are in contrast with the
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FIGURE 4 | Somatosensory Evoked Potentials (SEP) in rhesus monkeys for several indented letters. Rows from top to bottom show SEPs from one SA1, one RA1,
and one RA2, respectively. Image reproduced with the author’s permission (Phillips et al., 1988).

TABLE 1 | Summary table of the main features of selected models.

Model Gerling et al., 2013 Saal et al., 2017 Ouyang et al., 2021 Hay and Pruszynski, 2020

Data Monkeys Monkeys Monkeys Humans

Afferent
population type

SA1 SA1, RA1, RA2 SA1, RA1, RA2 RA1, second-order neurons

Receptive field Simple, no multiple hotspots Simple, no multiple hotspots Simple, no multiple hotspots Complex with multiple hotspots

Response
properties

Firing rate
Spike timing
Response adaptation

Firing rate
Spike timing
Frequency tuning
Response adaptation
Edge enhancement

Firing rate
Spike timing
Frequency tuning
Response adaptation
Edge enhancement

Firing rate
Spike timing
Response adaptation
Edge enhancement

Models of skin
mechanics

3D Finite Element Model
resembling different layers and
viscoelastic properties

Skin treated as a flat surface –
continuum mechanics to derive
deformation

Skin treated as a resistance
network

No, skin is only represented by a
grid as reference for receptors
location

Neural dynamics Leaky integrate and fire Leaky integrate and fire Leaky integrate and fire No

Stimuli Static indentation of cylinders,
bars, and spheres

Static spatiotemporal indentation of
single pins that can be combined to
form complex shapes

Static spatiotemporal
indentation of single pins that
can be combined to form
complex shapes

Static indentation of edges and
dots

Applications Predicting behavioural
response from simulated neural
response.
Assessing the effects of realistic
skin properties (e.g.,
viscoelasticity) on the skin
response with static indentation
of cylinders, bars, spheres.
Evaluating potential
mechanisms of peripheral
sensory processing at the level
of first-order neurons.

Predicting behavioural response
from simulated neural response.
Assessing the effects of finger
properties (e.g., skin elasticity and
afferent density) on the neural
population response to static and
vibratory stimuli having a wide
range of shapes.
Real-time generation of spike trains
for robotics and neuroprosthetics.
Evaluating potential mechanisms of
peripheral sensory processing at
the level of first-order neurons.

Predicting behavioural
response from simulated neural
response.
Simulating the neural
population response to static
and vibratory stimuli having a
wide range of shapes.
Real-time generation of spike
trains for robotics and
neuroprosthetics.
Evaluating potential
mechanisms of peripheral
sensory processing at the level
of first-order neurons.

Predicting behavioural response
from simulated neural response.
Assessing the role of complex
receptive fields on the neural
population response to statically
indented edges and dots.
Evaluating potential mechanisms of
peripheral sensory processing at
the level of second-order neurons.

Code n/a bensmaialab.github.io/software/ github.com/ouyangqq senselab.med.yale.edu/modeldb

Documentation n/a Yes Limited Limited

traditional view that tactile spatial resolution is limited by the
afferent density and the centre-to-centre spacing of the receptive
fields (Dodson et al., 1998; Friedman et al., 2002). Pruszynski et al.
(2018) used a modelling approach to show that implementing
complex receptive fields with multiple hotspots of high sensitivity
can enable the tactile system to resolve fine details near the
limit of receptive field spacing. These results suggest that tactile

orientation discrimination can be as good as vision. Recently,
Jarocka et al. (2021) provided further evidence that the spatial
sensitivity of SA1 and RA1 is defined by the complex structure
of their receptive fields having high responsive subfields and not
only their spacing. They estimated that the subfield acuity is
approximately 0.4 mm, which would allow to resolve details finer
than the innervation density.
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A temporal code is observed for the perception of fine or
micro features such as microdots and fine gratings. In a series of
studies, Johansson and LaMotte (1983), LaMotte and Whitehouse
(1986), and LaMotte and Srinivasan (1991) showed that humans
can detect very small dots, on an otherwise smooth surface,
of only 1 micron height with a diameter of ∼600 microns (3
microns with ∼230 microns diameter and 6 microns height
with a diameter of ∼40 microns) and very fine textures (parallel
bars 45 microns wide and spaced ∼100 microns) of only 0.1
microns height, when compared against a smooth surface in
a 2AFC task. They found that lateral sliding is essential for
these fine features to be perceived, as no sensitivity to the same
set of stimuli was found with static touch. Neurophysiological
recordings suggest that rapidly adapting mechanoreceptors (RA1
and RA2) have a primary role in the perception of the microdots
and fine textures as they are sensitive to low amplitude and high-
frequency vibrations (LaMotte and Srinivasan, 1991). The sliding
movement is necessary to elicit skin vibrations (Manfredi et al.,
2014) that in turn trigger the vibratory response of both types of
rapidly adapting fibres.

Open Questions
Several studies support the idea that coarse features (>0.1–
0,2 mm) are mainly encoded in a spatial manner mediated by
SA1 fibres, while fine feature (<0.1–0.2 mm) perception relies
on the vibratory activity generated by stroking movement which
mainly activates RA fibres (Blake et al., 1997; Hollins and Risner,
2000; Hollins et al., 2001). However, the prevalence of a spatial
variation code over a temporal variation code might not be as
evident in texture perception (e.g., Connor and Johnson, 1992),
and the contribution of SA and RA may not be so distinct
(Weber et al., 2013).

In fact, it is unlikely that the different mechanoreceptor types
work in isolation. Instead tactile perception arises from the
contribution of all the different units and their interaction (see
Saal and Bensmaia, 2014). For example, Weber et al. (2013)
showed that the perceived roughness of a wide range of textures
is driven by three types of tactile units. On the one hand, coarser
textures elicit the response of all afferent types but are best
resolved from the spatiotemporal activation of SA1 fibres which
is generated by the spatial layout of the texture in contact with
the skin. On the other hand, finer features are mainly conveyed
by the precise spike timing of RA and PC fibres (and to a less
extent SA1 type). In a nutshell, Weber et al. (2013) showed that
combining the response of RA1, RA2, and SA1 provides a more
accurate prediction of the perceived texture than the response
of a single unit type. Similarly, grip control can be achieved by
a combination of the perceived object curvature, direction of
motion (i.e., slip), onset or offset of contact, and applied pressure
which are mediated by the four different classes of afferent fibres
(Westling and Johansson, 1987; Birznieks et al., 2001; Jenmalm
et al., 2003).

Furthermore, it is worth mentioning that although passive
and active touch generate similar responses in the population
of receptors and fibres, they differ in the extent to which the
contact dynamics, and hence, the activation of tactile units can
be controlled. Proprioceptive feedback and motor control allow

exploratory patterns to be adjusted to optimise the sensory input
(Kaim and Drewing, 2011), and can provide additional cues.
For example, the applied force and speed alone can affect the
signal in several ways. Higher force may result in greater contact
area between the finger pad and the surface, generate stronger
vibrations, and provide more reliable auditory cues when sliding.

Another question is how the state of the peripheral
components affects the information encoded in the response of
afferent fibres and transmitted to the central nervous system.
As mentioned previously, skin and mechanoreceptors properties
depend on the individual characteristics such as occupation,
gender, age. People differ in terms of skin stiffness due, for
instance, to the thickness of stratum corneum. Or, the afferent
density which is inversely related to the finger pad area and
decreases with ageing.

In order to extend the understanding of the relationship
between neural activation and tactile perception, it becomes clear
that models should account for the presence of all fibre types at
population level, their properties, and a realistic definition of the
skin. Yet, modelling the four afferent types together or each one at
a time as well as the extent to which the modelled skin reproduces
the complexity of the real skin requires a different range of skills
and resources. Thus, in order to improve efficiency, the amount
of details that are included in a model should be related to the
type of stimuli simulated (e.g., static indentation vs. vibrations),
type of skin contact (e.g., pressing vs. sliding, active vs. passive),
and the task that is being analysed.

MODELS OF TACTILE NEURONS

The challenge of recording the population activity of the afferent
fibres in combination with psychophysical testing, makes it
difficult to understand how the information is encoded from
behavioural or neurophysiological data alone. In order to further
characterize the low-level mechanisms of tactile perception and
to extend the knowledge of the underlying cognitive mechanisms,
it is necessary to study the response of the four afferent
populations working together, and the effects of skin properties
on the neural activation. In this regard, computational modelling
holds promise to bridge the gap between neurophysiological,
psychophysical and neuroimaging studies. Although a model
is built on the limited data from neurophysiology, it can
provide further insights into how tactile features are extracted
at population level and link the neural activation to perception.
It allows examination of the recorded data from a different
perspective and to make and test predictions faster by simply
changing one or more parameters (e.g., skin stiffness and number
of receptors). However, this approach carries the limitations
embedded in the data on which it is built, such as the type of task
used during the recordings.

Introduction to Models
The most common approach to build and validate a model is to
rely on neurophysiological data recorded on monkeys. Although
they are devoid of SA2 fibres, monkeys’ tactile systems are very
similar to the human tactile system (Parè et al., 2002). The
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literature on these types of studies provides more data when
compared to those from recordings in humans but tends to be
limited in the psychophysical tasks used.

Generally, a computational model aimed at simulating the
activity of afferent fibres comprises three major components:
the stimulus (i.e., which stimuli can be simulated and how), the
skin mechanics (i.e., how the finger is shaped and how the skin
moves leading to mechanical stimulation of the receptors, mostly
involving a continuum mechanics approach or a Finite Element
Method of analysis), and the neural model (i.e., afferent type
and response properties, how the neural dynamics are generated,
usually on an integrate and fire basis). These components may be
characterised from an engineering and mathematical perspective
in terms of a stimulus transformation into a neural response by
means of a series of functions and equations (Figure 5).

The goal of a model is to tractably implement the properties of
each afferent type so as to produce an output when stimulated
by a specific input. This normally includes the four types of
fibres, and their properties, such as receptive field characteristics
(e.g., small and large, single and multiple hotspots), firing rates,
spike timing, frequency tuning, adaptation, edge enhancement,
and surround suppression. In addition, the model should have
a realistic definition of the finger shape and its mechanics (i.e.,
3D shape, presence of hard structure like bones and nails, and
viscoelasticity), with the possibility of simulating both static and
sliding stimuli, and a faithful mechanotransduction process for
a wide range of stimuli. In reality, all of this is not possible
yet, mainly because of the computational demand and the
lack of knowledge in some domains such as skin mechanics.
Accordingly, all the models available focus on one or few aspects,
come with limitations, and are far from exhaustive.

The next few paragraphs outline the main characteristics of a
few selected models presented in Gerling et al. (2013), Saal et al.
(2017), Hay and Pruszynski (2020), and Ouyang et al. (2021).
The selection of these models was based on the fact that each
successfully reproduces a small set of properties (e.g., slow versus
fast adapting units and viscoelasticity of the skin) and is more
or less suited for specific tasks as illustrated in the Application
section. The models differ from one other with respect to the
stimuli that are simulated, how they resolve skin mechanics
and which afferents are included, the response properties of
the simulated fibres, and their applications (for a summary see
Table 1).

Stimuli
Tactile inputs are of many different sorts as they depend
on specific object characteristics, properties of the finger,
and their interaction. Lederman and Klatzky (1987) identified
two major classes of object properties: substance-related (i.e.,
roughness, slipperiness, hardness, and weight) and structure-
related properties (i.e., weight, volume, and shape). In fact,
real-world objects comprise a variety of these properties which,
in combination with the different exploratory procedures that
can be employed, generate a variety of possible tactile inputs.
Accordingly, it would be difficult to replicate the full range of
inputs that we deal with in real life, and researchers have to

select the most relevant stimuli according to the scope of their
model (Table 1).

Gerling et al. (2013) used cylinder, bar and sphere indenters
of different but fixed size to validate their model of the finger
and the resulting units’ response. These inputs were always
simulated to be statically indented and no vibratory stimuli
were considered. Saal et al. (2017) tried to extend the set of
virtual stimuli by defining the input for their model as a single
cylindrical pin or a set of pins that indent the skin orthogonally
with spatiotemporal variations. Each pin is independent from
the others with regards to location and indentation depth. As
a result, it is possible to approximate different shapes from a
single dot of a desired diameter to gratings, textures, curved
lines, or other spatial patterns. In addition, their model allows the
manipulation of the dynamics of the indentation including static
stimuli with controlled onset and offset (i.e., ramp-and-hold) and
vibratory stimuli (e.g., sinusoidal, diharmonic, etc.). Similarly,
Ouyang et al. (2021) defined their stimulus as a single or a set
of probes, with fixed diameter, indented orthogonally into the
skin. Here, the probes can have different heights (i.e., indentation
depth) that can be combined to produce many different spatial
configurations. Their approach also allows direct creation of
tactile input from a visual image. It is sufficient to extract height
information from a grayscale 2D image and input it to the model.
Similar to Saal et al. (2017), this model can be used to simulate
static and vibratory stimuli but not sliding contacts.

Hay and Pruszynski (2020) built their model on
neurophysiological data recorded in response to embossed
dots and oriented bars sliding over the finger pad with
specified velocity (Pruszynski and Johansson, 2014). The sliding
movement was chosen to finely characterise the spatial layout of
the recorded afferent’s receptive field and to investigate how the
distribution of highly sensitive zones within each receptive field
affects the neural response.

Properties of the Virtual Skin
The implementation of skin mechanics and different types
of afferents is subject to a trade-off between realism and
computational efficiency. As a result, modelers have to make a
choice about what elements to include and how to implement
them (Table 1).

Gerling et al. (2013) used finite element modelling to create
a 3D model of the human distal phalange consisting of about
276.000 elements and 232.000 nodes (Figure 6, left). They
included the different layers of the skin and their properties such
as viscoelasticity, but not anisotropy. Then, in order to derive
the response of SA1 fibres, they used strain energy density as
the input for their leaky integrate-and-fire neural model. This
solution originated in the work of Phillips and Johnson (1981b)
who found that SA1 firing rates closely correlate to maximum
compressive strain and strain energy density generated in the
skin. Subsequently, Sripati et al. (2006) developed the model of
Phillips and Johnson (1981b) by implementing the RA1 fibres
and testing how well different measures of stresses and strains
can predict the neural response. They showed that maximum
compressive strain and stress, maximum deformative strain and
stress, maximum tensile strain, and relative change in receptor
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FIGURE 5 | Schematic view of a hypothetical model to simulate the activity of tactile units of the hand. (A) First step involves the definition of the hand/finger model
(shape, geometry, and mechanics), the depth and density of receptors/fibres, and the stimulus generation. Then, these factors are used to compute local and distant
pressure distribution and derive the stresses acting at the receptors’ depth. (B) The mechanical output is fed into a neural model to generate spiking responses. The
signal can be transformed through a series of functions to resemble the biological properties of the neurons. For example, low-pass filter is often used to account for
the fact the tactile units do not respond above certain frequencies. Saturation reproduces the tendency of the neurons to saturate at high intensities. Eventually,
noise is introduced to account for the random occurrence of the spikes in some conditions. (C) Spikes are generated for each receptor or each tactile unit (receptors
and fibers together, first-order neurons). The activity of each receptor must be integrated to account for innervation branching observed in SA1 and RA1 but not in
RA2 (PC) and SA2. (D) Subsequently, the output of first-order neurons is combined at the level of second-order neurons for further processing before is transmitted
upstream. The last step is often overlooked in this kind of models but is fundamental to understand the nature of the information that is sent to the brain.
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FIGURE 6 | Left: 3D mesh of human distal phalange in Gerling et al. (2013). (A) overall mesh, (B) cross section of the mesh near the interconnect with the middle
phalange, (C,D) longitudinal section for both the outer surface and inner mesh, and (E) four layers of microstructures. In (E) the epidermis is 0.471 mm thick
(0.371 mm stratum corneum and 0.1 mm living epidermis) and the dermis is 1.153 mm thick. Right: 2D reconstruction of the virtual hand in Saal et al. (2017). Here,
the skin is treated as a flat surface. (Left) republished with permission of The Institute of Electrical and Electronics Engineers, Incorporated (IEEE), from Gerling et al.
(2013); permission conveyed through Copyright Clearance Center, Inc.

area are all good candidates to drive the response of both RA1
and SA1 afferent fibres.

Although computationally demanding, the realistic 3D shape
and a subject-specific definition of the finger of a finite element
model can provide a good understanding of the relationship
between skin properties, neural activity, and tactile perception. In
fact, individual differences in skin elasticity, finger size, and shape
are likely to affect the skin mechanical response, the resulting
contact area, pressure, friction, and mechanoreceptor activation.
This is especially relevant in the presence of tangential loading,
such as during object manipulation.

In contrast to finite element models, continuum mechanics
simplifies the analysis allowing the skin response to be resolved
more efficiently (Figure 6, right). In this approach, the skin is
considered as a flat surface with homogenous elasticity, with
isotropic and elastic behaviour, and devoid of any underlying
hard structures. This method allows fast computation and
produces characteristic responses in both slowly and rapidly
adapting fibres. With this approach, Saal et al. (2017) were able
to simulate the activity of multiple SA1, RA1, and RA2 fibres.
This model was focused on the whole hand and allows the
manipulation of the location and density of the units. Saal et al.
(2017) exploited continuum mechanics to derive the stresses at
the depth of receptor that are then used as input to a leaky
integrate-and-fire neural model to generate trains of action
potentials. The stresses are estimated for two different aspects
of the indentation: a (quasi)static and a dynamic component.
The former represents the resulting distribution of pressure
over the skin close to the contact point, the latter accounts

for the variations of pressure that propagates through the skin
which cause the afferents to respond to vibrations far from
the contact point.

Although simple, this approach is relatively cumbersome
when dealing with complex stimuli because the resulting
deformation is computed individually for each of the pins that
form the stimulus. In order to increase the efficiency and reach
real-time simulation of afferent response, Ouyang et al. (2021)
went further to simplify the definition of the skin mechanics.
The authors built the virtual skin as a resistance network made
out of multiple connected nodes each representing a tactile unit.
The units have fixed locations and are distributed only on the
fingertip. Here, the assumption is that the actual pattern of
indentation can be represented by a pattern of node voltages. The
input currents for each node (i.e., afferent) are computed solely
from the indentation depth of the stimulus image. The resulting
voltages are processed by a two-channel filter in which low-pass
and band pass filters mimic the static and dynamic aspect of the
indentation. Then, an integrate and fire model is used to generate
the action potentials. The advantage of this method is that the
input currents are fast and easy to compute compared to the skin
deformation and resulting stresses at receptor depth as in Gerling
et al. (2013) ’s or Saal et al. (2017)’s approaches. This makes this
method more suitable for real-world applications such as neural
prostheses and robotics where speed and accuracy may be crucial.

Importantly, all the skin models shown so far are limited
to responses to stimuli indented orthogonally into the skin
and do not include lateral sliding, the tangential forces, the
friction between the skin and the stimulus nor the onset of
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slip which are relevant factors when simulating a sliding or a
grasping movement.

A further approach is to omit any consideration of skin
mechanics. Obviously, this prevents understanding of the link
between skin properties and neural response, but it represents
a viable solution to focus the efforts on the neural elements.
For example, Hay and Pruszynski (2020) set up the virtual
skin as a 12 mm × 12 mm grid uniquely designed for the
arrangement of a set of modelled RA1 mechanoreceptors.
They focused their modelling on an accurate definition of the
relationship between mechanoreceptors, first-order neurons (i.e.,
afferent fibres), and second-order neurons (i.e., spinal cord and
cuneate nucleus).

Tactile Units of the Virtual Hand
Tactile neurons respond to stimuli in a specific manner.
The response features include a receptive field which may
be of varying size with single (SA2 and RA2) or multiple
hotspots (SA1 and RA1), adaptation to constant stimuli,
timing of individual action potentials, frequency tuning, and
spatiotemporal sensitivity. For a model to be useful in aiding
research about how tactile features are extracted, it is important
that it is able to reproduce the response properties of interest
(Table 1). For example, if we were to look at how vibratory
stimuli are reflected in the spike timing, the model would have
to simulate this feature accurately.

The finite element model of Gerling et al. (2013) focused on
simulating a realistic skin response and the resulting activity
of the population of simulated SA1 fibres. They showed that
their model matches the proximal (<0.5 mm) and distal (0.5–
5 mm) skin deflection observed in the work of Srinivasan
(1989) in humans. Here, the skin deflection is simulated in
response to a 50 microns line load and a 3.17 mm cylinder
with 1 mm indentation depth, consisting of a dynamic ramp
and a static hold. Interestingly, the spike timing and firing rate
during the ramp and static phases, which closely matched the
data on monkeys recorded by Phillips and Johnson (1981a),
showed a faithful representation of the SA1 adaptation rate
to statically indented stimuli. Although, this model does not
implement vibratory stimuli, it outperforms the model of Ouyang
et al. (2021) in reproducing the trend and the intensity of
the response to indented stimuli (Figure 7) during the static
phase of indentation.

A more systematic attempt to reproduce the response
properties of tactile neurons has been made by Saal et al.
(2017). Their model was fitted to data recorded from rhesus
macaques (Muniak et al., 2007) when presented with sinusoidal
and bandpass noise vibrations (frequency range 1–1,000 Hz) and
tested with diharmonic stimuli of different frequency. Four main
points emerge from their simulation.

First, the simulated firing rate and the spike timing correlated
well with the actual data. The model can simulate the response
of each afferent type to a static ramp-and-hold indentation
that results in a different pattern of firing rate (i.e., adaptation,
slow versus fast). In addition, the model is able to simulate the
timing of spikes with a temporal precision from 3 to 8 ms for
SA1 and RA1, and sub-millisecond precision for RA2. Although

not entirely accurate, this range of values is acceptable as it
has been shown that the stimulus information (i.e., vibratory
frequency and texture) can be best decoded when spike trains are
compared to one another with a temporal resolution of around
5 ms for RA1, 10 ms for SA1, and 2 ms for RA2 (Mackevicius
et al., 2012; Weber et al., 2013). Second, the simulated receptive
fields have similar features to the actual ones, including size,
susceptibility to indentation depth (e.g., RA1 RFs increase with
increasing indentation, but not SA1), and increased threshold
amplitude with increasing distance from the RF centre. However,
the innervation pattern, and hence, the receptive field shape
does not match the real characteristics. In the human hand,
SA1 and RA1 are connected to multiple receptor organs and
each receptor is innervated by multiple fibres. Instead, the
mapping between the modelled receptors and fibres is 1 to 1.
Accordingly, one must keep in mind that the nature of these
virtual receptive fields might affect the activation of the simulated
tactile fibres. Third, tactile neurons are sensitive to different
frequency ranges. Here, the simulated response of each class
of fibre to sinusoidal vibration mirrors the actual sensitivity
profile with respect to the minimum amplitude to elicit a single
spike (i.e., absolute threshold), and the minimum amplitude to
generate at least one spike per cycle (i.e., tuning threshold).
Fourth, the simulated SA1 and RA1 fibres reflect the spatial layout
of the applied stimulus which is achieved by a combination of
edge enhancement and surround suppression, which is more
evident for SA1.

The work of Ouyang et al. (2021) has a number of similarities
with Saal et al. (2017). The authors used the same dataset as in
Saal et al. (2017) for fitting their model (Muniak et al., 2007), and
despite a different solution to reproduce the interaction between
the skin and the stimulus, they obtained similar results with
regards to the precision of the firing rate and spike timing when
compared to real data. In particular, the simulated firing rates
reproduce the trend observed when a probe with a diameter of
1 mm is indented with different frequencies and depths. The
rate increases with depth as expected, although the number
of spikes does not match the actual measurements perfectly.
On the other hand, spike timing has a temporal precision
slightly higher than in Saal et al. (2017) for SA1 and RA2 (3–
6 ms versus 3–8 ms), and similar for RA2. Using a resistance
network to model the skin mechanics proves an interesting
solution when dealing with receptive field characteristics. This
model provides a viable way to characterise the receptive
field size and the changes that occur in response to different
indentation depths. Also, it can generate the characteristic edge
enhancement and surround suppression, prominent in SA1
and less in RA1, observed in response to statically indented
texture, form and shape.

It is worth noting that none of the above models included a
realistic definition of the innervation branching that characterises
SA1 and RA1 units. In this regard, Pruszynski et al. (2018)
proposed a model that takes into account the complexity of
the receptive field of first-order tactile neurons having multiple
subfields. They compare this model to a second version in
which all units had uniform sensitivity in the context of edge
orientation discrimination. In both versions, the first-order
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FIGURE 7 | Firing rates during the static phase of the response to a 3 mm wide edge indented 1 mm. (Left) Recorded (dotted line, Phillips and Johnson, 1981a)
and predicted (solid line, Gerling et al., 2013) SA1 firing rates as a function of the location with respect to the stimulus. Note the x-axis is different in the two graphs.
(Right) Recorded (gray, Ouyang et al., 2021) and predicted (green, Phillips and Johnson, 1981a) SA1 firing rates as a function of the location with respect to the
stimulus. Left image from Gerling et al. (2013). Right image from Ouyang et al. (2021). (Right) Republished with permission of The Institute of Electrical and
Electronics Engineers, Incorporated (IEEE), from Ouyang et al. (2021); permission conveyed through Copyright Clearance Center, Inc. (Left) Republished with
permission of The Institute of Electrical and Electronics Engineers, Incorporated (IEEE), from Gerling et al. (2013); permission conveyed through Copyright Clearance
Center, Inc.

neurons have the same receptive field size but are connected
to either a single receptor that covers the entire area for the
simple model or multiple receptors that form random subfields
of sensitivity (Figure 8A). The activation of each first-order
neuron in the two models can only be either 0 or 1 based on
whether the virtual edge falls on the receptor area. As a result,
the population response of complex receptive fields shows more
variability (Figure 8B) and can better account for the behavioural
results (Figure 8C).

Recently, Hay and Pruszynski (2020) extended these findings
with a model built on data from microneurography recordings
in humans presented with embossed dots and bars of different
orientations (Pruszynski and Johansson, 2014). Here, the
individual RA1 afferents are designed to be connected to multiple
mechanoreceptors arranged on a 12 mm × 12 mm grid and
spaced 0.1 mm. The location and the weight (i.e., output) of
the mechanoreceptors as well as the maximal firing rate of
the first-order neuron were free parameters determined by a
genetic algorithm. Locations were searched within the area of
responsivity of the recorded neurons and different numbers of
innervated mechanoreceptors were used for optimisation runs.
The best fit model was obtained at around 20 mechanoreceptors,
each having different weights representing the different degree of
sensitivity within the same receptive field, in line with empirical
findings (Nolano et al., 2003). Also, this model predicted the spike
timing and firing rate with high accuracy in response to edges
with different orientation. In addition, the authors included a
model for input integration at the level of second-order neurons
and tested whether the output can discriminate between different
oriented stimuli. First, they simulated the response of 330 RA1
units and convolved it with two post-synaptic waveforms having

short or long decay representing two types of synapse, AMPA and
NMDA, respectively. Then, the weighted sum of the convolved
outputs is computed to simulate the integration of the signal
mediated by second-order neurons.

Applications
One of the main goals of modelling the activity of tactile afferent
fibres is to clarify the nature of the inputs the central nervous
system receives and to help explain how individual differences
(e.g., skin properties in the ageing population) contribute to
shape the tactile signals at early stages. In this review, the
focus has been on how modelling can be employed to better
understand the basic sensory mechanisms that underlie and
enable tactile perception, and how it can be used in combination
with behavioural experimentation. In this section we highlight
the applicability of each selected model.

Finite element 2D and 3D models can be built with different
level of detail, including macrostructures (e.g., finger shape and
skin layers) as well as microstructures (e.g., fingerprint, dermal
papillae, etc.). Although the main strength of finite element
modelling is the realistic definition of the finger properties
to accurately estimate the deformation of the skin and the
stresses acting on the mechanoreceptors, it can certainly be
used in combination with psychophysics to assess potential
mechanisms of peripheral sensory processing. For example,
Gerling et al. (2013) showed that the simulated firing rate in
response to spherical indenters with different radii can predict
the behavioural performance in a previous psychophysical
experiment on curvature discrimination (i.e., Goodwin et al.,
1991). Interestingly, they tested two potential encoding strategies
based on first spike latencies and the firing rate in the dynamic
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FIGURE 8 | (A) Schematic of skin patch with papillary ridges (grey lines) and mechanoreceptors (white and colored dots). Blue, black and red dots represent
receptors innervated by one of three first-order tactile neurons. Colored contour represents first-order neurons receptive field, while shaded area behind the colored
dot represents subfields. (B) Color-coded subfields for 10 first-order tactile neurons. Representation of 10 first-order tactile neurons with overlapping receptive field
and subfields (color-coded). First-order neurons are activated if the edge falls on one subfield. Here, the activation response is shown for 10 neurons and 2 edges of
2 mm with different orientation (0◦ and 20◦). Colored circles are filled if the neurons is active and empty otherwise. (C) Output of the two tested models (subfields vs.
uniform sensitivity). The lines indicate the mean and the shaded areas represent the 95% confidence interval. Image from Pruszynski et al. (2018) reproduced under
the terms of a Creative Commons Attribution License.

and static hold, separately. These two coding schemes are
Gradient Sum Method and Euclidean Distance Method (see
Gerling et al., 2013 for details). They found that the firing rate
during the static phase of indentation produced a better fit to the
behavioural data for both methods. Notwithstanding this finding,
the first spike latencies and the firing rate in the dynamic phase
were still good predictors suggesting that these two measures may
carry information about the stimulus as early as the initial phase
of the stimulation. However, this model does not include RA1
fibres, which have good spatial resolution, and may contribute to
the encoding of stimulus information. Also, only static stimuli are
included while vibrations and dynamic contacts are not.

Continuum mechanics models can provide further insights
into the mechanisms underlying tactile perception and offer a
more efficient way to simulate the spiking response. A good
example of this is a study of Delhaye et al. (2019) on edge
orientation. They used the model of Saal et al. (2017) to simulate
the activity of the entire population of SA1 and RA1 fibres
of the finger pad in response to indented edges with different
orientation. They sought to determine how the information
about the geometric feature (e.g., orientation) in contact with
the skin can be extracted so efficiently as to enable rapid object
manipulation. Although previous studies show that shape can
be extracted from the spatial variation of the response of the
tactile fibres (e.g., Phillips and Johnson, 1981a), the focus was
on the mean firing rates over long time intervals and only for a
few recorded afferents. As a result, it is not clear whether such a
spatial code can be accurate and fast enough. Delhaye et al. (2019)
used a classification approach to show that the spatial pattern
of activation of simulated SA1 and RA1 fibres contains accurate
information about edge orientation and that it can be decoded
starting from the early phase of the indentation. In particular,
they found that edge orientation can be decoded within 10 ms,
when most afferents have produced only a single spike, with
an error of 5◦, and within 50 ms with an error of 1◦ to 3◦. In
addition, they found that taking spike timing into account did

not improve performance. These results suggest that a spatial
variation code is a better candidate for how peripheral neurons
encode geometric features. This work has some limitations too.
For example, the model output does not faithfully reproduce
the trial-to-trial variability observed in real neurons which may
boost the orientation decoding performance. The authors tried to
overcome this issue by jittering the stimulus position on each trial
to resemble this variability. Most importantly, the model does
not provide an accurate picture of neuronal receptive fields. Real
SA1 and FA1 neurons have multiple hotspots of sensitivity, not
implemented in Saal’s model, which may affect how a stimulus
activates the population of afferents.

The role of the complex structure of receptive fields is
highlighted in the results of Hay and Pruszynski (2020). Their
model of RA1 units shows that such complexity enables the
discrimination of fine orientations (e.g., −1◦ vs. +1◦) under
different level of stimulus noise and outperforms a similar model
with uniform receptive fields. In addition, they implemented the
population response of second-order neurons, connected to first-
order neurons with both AMPA- and NMDA-like connections.
Using different stimulus presentation time windows (from
5 ms to unlimited time) revealed that AMPA- and NMDA-like
synapses are more robust to noise within short and long-time
windows, respectively. These results suggest that AMPA-like
connections may allow the computations that underlie fast object
manipulations while NMDA-like connections may be involved in
object discrimination. Overall, this work supports the possibility
of peripheral sensory processing of geometric features as opposed
to the traditional view of central processing (Bensmaia et al.,
2008b) and can be used to assess similar questions related to
shape or texture. Similar to other models, these results provide
only a partial picture due to the lack of SA1 neurons which
are known to have very fine spatial resolution. In addition,
Hay and Pruszynski (2020) implemented sliding stimuli with
no consideration of skin mechanics. The sliding movement
produces a complex mechanical response that may result in a
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rearrangement of the receptive fields depending on scanning
direction (Jarocka et al., 2021).

The model of Saal et al. (2017) has also been used to investigate
the activity of RA2 units in contexts where vibrations are the only
source of tactile information. Miller et al. (2019) simulated the
response of RA2 fibers to corroborate their neurophysiological
findings in a tool sensing task. First, the authors showed that the
primary somatosensory cortex can rapidly and efficiently access
the information relative to where a rod, hold in the hand, is hit
(close vs. far). This is reflected by a repetition suppression effect
in the somatosensory evoked potential between 44 and 108 ms.
This finding suggests that mapping touch on an external tool
is achieved in a manner similar to somatosensation in terms of
temporal dynamics and brain area involved. Miller et al. (2019)
then used the experimental acceleration recordings, collected by
hitting the rod at close or far locations, as the signal to stimulate
the virtual RA2. They showed that the simulated spiking patterns
carry information about location as early as 20 ms, a time-course
compatible with their neurophysiological findings.

As an additional example we suggest how Saal et al. (2017)
model can be used to investigate the impact of skin elasticity
and afferent density on the encoding of the stimulus. It is
known that these factors change with ageing (Yang et al., 2018;
García-Piqueras et al., 2019) which is also characterised by a
deterioration of tactile spatial sensitivity. However, there is no
evidence to support a link between these age-related anatomical
and morphological changes and poorer performance. To address
this question, Saal’s model can be used to simulate the neural
activity for young and elderly group in response to 2-point
discrimination task and estimate the perceptual performance
based on the virtual response. This model allows the two groups
to be defined by setting lower elasticity and lower afferent
density for the elderly and generate the virtual response to a
single pin and two-pins at different separation levels for each
group. The model output can then be used as input for an
LDA classifier trained to discriminate between the single pin and
the two-pins at each separation level, separately, and estimate
the perceptual thresholds by fitting a logistic function to the
classifier output.

In summary, modelling can be used to investigate the sensory
mechanisms of tactile perception including potential coding
strategies and the extent to which each afferent type contributes
to the encoding of the stimulus, and to assess the effects of
skin properties.

DISCUSSION

Somatosensory processing begins at the periphery with the
transformation of the mechanical stimulation into neural activity.
The components involved in processing tactile signals enable
the multifaceted aspects of touch, which include object and
body perception, social and affective interaction, and they
provide the basis for action control. Tactile information is
transmitted from the skin to the upper spinal cord, and on to
the thalamus, the primary and secondary somatosensory areas,
which are the ending point of a hierarchical organisation with

various overlapping networks involved in different functions
(de Haan and Dijkerman, 2020).

Simulating the activity of tactile neurons and estimating the
information conveyed by their activation pattern under different
circumstances is crucial to assess the mechanisms acting at lower
levels of the somatosensory system and to predict the impact of
different skin and peripheral neuron properties.

The state of the art of this type of models has enabled research
to focus on the basic sensory mechanisms underlying tactile
perception without the need for challenging microneurography
recordings. Research in different fields can benefit from
this approach as it can provide additional evidence to test
experimental hypotheses. However, it is important to be aware
of the limitations of the model being used and to interpret
results with caution. Models are built on real data recorded
from a limited number of tactile fibres when stimulated with
specific stimuli (e.g., vibration, edge indentation, etc.), and
only some of the properties of the skin and neurons can
be currently reproduced. Although these limitations prevent
complete reliance on modelling for hypothesis testing, this
approach can provide useful insight into open questions that
cannot still be addressed with microneurography. For example,
it can help address the effects of contact dynamics and the
state of the peripheral sensory components on the information
subserving tactile perception.

Interestingly, Saal et al. (2017)’s model allows some factors
to be manipulated with ease. It is possible to change the
density and distribution of the simulated fibres, the stiffness
of the skin, the position of the indentation, or its depth on
each trial. Having the possibility to manipulate these properties
may help address questions related to the decay in spatial
sensitivity observed in the elderly, a group which typically
has stiffer skin and fewer mechanoreceptors, as described in
the previous sections. One advantage of this model over the
others is its ease of use. The available bundle of functions
for MATLAB and Python, supported with usage examples,
makes it accessible even to users that are not familiar with
modelling (for code and documentation availability of all
models see Table 1). Hay and Pruszynski (2020) and Ouyang
et al. (2021) also provided the code for their model but
only very limited documentation to help the users running
the scripts. Gerling et al. (2013), instead, did not release
their code but explained the framework in detail on their
original publication.

Another limitation of all the models presented in this
review is that none of them implement skin mechanics
and neural dynamics in the presence of tangential loading.
In fact, an important aspect of tactile perception is the
dynamic behaviour of the skin during object manipulation
and sliding movement in which normal and tangential forces
act concurrently. In these contexts, the friction between the
finger and the surfaces well as the 3D geometry of the
finger are extremely important. The development of a realistic
3D definition of the finger geometry will be crucial to
understand the effects of tangential loading on the bulk and
local deformation of the skin, and hence on the resulting
neural response.

Frontiers in Human Neuroscience | www.frontiersin.org 16 June 2022 | Volume 16 | Article 862344

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-862344 May 28, 2022 Time: 16:6 # 17

Deflorio et al. Simulating Tactile Neuron Population Response

Finally, the models discussed in this review cannot directly
account for whether and how the information coming from
peripheral neurons is used at higher level. For example, the fact
that two different stimuli are discriminable based on a spatial
code does not imply that the brain can directly extract this
information. Similarly, faster sliding movement on the same
texture will produce higher frequency vibrations in the skin
and higher firing rates in the peripheral neurons (Greenspon
et al., 2020) posing the problem of understanding how perceptual
constancy is achieved for the same tactile stimulus under
different conditions. In this regard, a recent study on intracortical
recordings of rhesus macaques S1 area by Lieber and Bensmaia
(2020) provides some insights. The authors showed that scanning
the same texture at different speeds generates higher variability
in the afferent fibers compared to the cortical neurons in S1.
These results suggest that perceptual constancy for the same
texture explored at different speed stem from the property of S1
neurons which can represent texture and speed in a relatively
independent fashion.

Accordingly, further models are needed to establish how the
cortical representations are formed, maintained and reorganized
(e.g., Detorakis and Rougier, 2012), and perceptual judgment are
made by taking into account additional factors such as memory
decay and perceptual noise (e.g., Metzger and Drewing, 2021).

Future work should be aimed at improving the understanding
of the dynamic behaviour of the skin and in general of its
mechanics as well as of the mechanotransduction process
and the individual differences. The goal is to develop models

that implement realistic 3D finger geometry, skin and
mechanoreceptors properties, includes SA2 fibres, and is able to
reproduce the dynamic aspect of touch. Improving the accuracy,
generalizability and efficiency of these models will help research
in other related fields such as cognitive neuroscience, psychology,
and neurorehabilitation.
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