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Abstract

The systematic translation of cancer genomic data into knowledge of tumor biology and 

therapeutic avenues remains challenging. Such efforts should be greatly aided by robust 

preclinical model systems that reflect the genomic diversity of human cancers and for which 

detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell 

Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and 

massively parallel sequencing data from 947 human cancer cell lines. When coupled with 

pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed 

identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In 

addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 

receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant 

lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our 

results suggest that large, annotated cell line collections may help to enable preclinical 

stratification schemata for anticancer agents. The generation of genetic predictions of drug 

response in the preclinical setting and their incorporation into cancer clinical trial design could 

speed the emergence of “personalized” therapeutic regimens2.
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Human cancer cell lines represent a mainstay of tumor biology and drug discovery through 

facile experimental manipulation, global and detailed mechanistic studies, and various high-

throughput applications. Numerous studies have employed cell line panels annotated with 

both genetic and pharmacologic data, either within a tumor lineage3–5 or across multiple 

cancer types6–12. While affirming the promise of systematic cell line studies, many prior 

efforts were limited in their depth of genetic characterization and pharmacologic 

interrogation.

To address these challenges, we generated a large-scale genomic dataset for 947 human 

cancer cell lines, together with pharmacologic profiling of 24 compounds across ~500 of 

these lines. The resulting collection, which we termed the Cancer Cell Line Encyclopedia 

(CCLE), encompasses 36 tumor types (Fig. 1a, Supplementary Table 1 and 

www.broadinstitute.org/ccle). All cell lines were characterized by several genomic 

technology platforms. The mutational status of >1,600 genes was determined by targeted 

massively parallel sequencing, followed by removal of variants likely to be germline events 

(Supplementary Methods). Moreover, 392 recurrent mutations affecting 33 known cancer 

genes were assessed by mass spectrometric genotyping13 (Supplementary Table 2 and 

Supplementary Fig. 1). DNA copy number was measured using high-density single 

nucleotide polymorphism arrays (Affymetrix SNP 6.0; Supplementary Methods). Finally, 

mRNA expression levels were obtained for each of the lines using Affymetrix U133 plus 2.0 

arrays. These data were also used to confirm cell line identities (Supplementary Methods, 

Supplementary Figs. 2–4).

We next measured the genomic similarities by lineage between CCLE lines and primary 

tumors from Tumorscape14, expO, MILE and COSMIC datasets (Fig. 1b–d, see 

Supplementary Methods). For most lineages, a strong positive correlation was observed in 

both chromosomal copy number and gene expression patterns (median correlation 

coefficients of 0.77, range = 0.52–0.94, p < 10−15, for copy number and 0.60, range = 0.29–

0.77, p < 10−15, for expression, respectively; Fig. 1b–c, Supplementary Table 3 and 4), as 

has been described previously3–5,15. A positive correlation was also observed for point 

mutation frequencies (median correlation coefficient = 0.71, range = −0.06–0.97, p < 10−2 

for all but 3 lineages, Supplementary Fig. 5), even when TP53 was removed from the dataset 

(median correlation coefficient = 0.64, range = −0.31–0.97, p < 10−2 for all but 3 lineages; 

Fig. 1d, Supplementary Table 5). Thus, with relatively few exceptions (Supplementary 

Information), the CCLE may provide representative genetic proxies for primary tumors in 

many cancer types.

Given the pressing clinical need for robust molecular correlates of anticancer drug response, 

we incorporated a systematic framework to ascertain molecular correlates of pharmacologic 

sensitivity in vitro. First, 8-point dose response curves for 24 compounds (targeted and 

cytotoxic agents) across 481 cell lines were generated (Supplementary Tables 1 and 6, and 

Supplementary Methods). These curves were represented by a logistic sigmoidal function 

with a maximal effect level (Amax), the concentration at half- maximal activity of the 

compound (EC50), a Hill coefficient representing the sigmoidal transition, and the 

concentration at which the drug response reached an absolute inhibition of 50% (IC50).
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Broadly active compounds, exemplified by the HDAC inhibitor panobinostat, showed a 

roughly even distribution of Amax and EC50 values across most cell lines (Fig. 2a). In 

contrast, the RAF inhibitor PLX4720 displayed a more selective profile: Amax or EC50 

values for most cell lines could be categorized as “sensitive” or “insensitive” to PLX4720, 

with sensitive lines enriched for the BRAFV600E mutation (Fig. 2a). To capture 

simultaneously the efficacy and potency of a drug, we designated an “activity area” (Fig. 2b 

and Supplementary Fig. 6). The 24 compounds profiled showed wide variations in activity 

area, and those with similar mechanisms of action clustered together (Supplementary Fig. 7).

Genomic correlates of drug sensitivity may be extracted by predictive models using machine 

learning techniques6,10. We therefore assembled all CCLE genomic data types into a matrix 

wherein each feature was converted to a z-score across all lines (Supplementary Methods). 

Next, we adapted a categorical modeling approach that utilized a naive Bayes classification 

and discrete sensitivity calls, or an elastic net regression analysis16 for continuous sensitivity 

measurements. Both approaches were applied to all compounds with or without gene 

expression data (Supplementary Methods). Prediction performance was determined using 

ten-fold cross-validation, and the elastic net features were bootstrapped to retain only those 

that were consistent across runs (Supplementary Methods).

Out of >50,000 input features, the regression-based analysis identified multiple known 

features as top predictors of sensitivity to several agents (Supplementary Table 7 and 

Supplementary Fig. 8 and 9), with robust cross-validated performance (Supplementary Fig. 

10 and 11). For example, activating mutations in BRAF and NRAS were among the top four 

predictors of sensitivity in models generated for the MEK inhibitor PD-032590110 (Fig. 2c). 

Additional predictive features for MEK inhibition included expression of PTEN, PTPN5, 

and SPRY2, which encodes a regulator of MAPK output. KRAS mutations were also 

identified, albeit with a lower predictive value (Fig. 2c, Supplementary Tables 8–9 and 

Supplementary Fig. 8).

Additional top predictors included EGFR mutations and ERBB2 amplification/over- 

expression for Erlotinib8 and Lapatinib17, respectively; BRAFV600E for RAF inhibitors 

(PLX472018 and RAF265); HGF expression and MET amplification for the MET/ALK 

inhibitor PF-234106619; and MDM2 over-expression for Nutlin-320 sensitivity. Variants 

affecting the EXT2 gene, which encodes a glycosyltransferase involved in heparin sulfate 

biosynthesis, were significantly correlated with Erlotinib sensitivity (Supplementary Fig. 

12). This observation is intriguing in light of a report linking heparin sulfate with erlotinib 

sensitivity21. In addition, NQO1 expression was identified as the top predictive feature for 

sensitivity to the Hsp90 inhibitor 17-AAG, a quinone moiety metabolized by 

NAD(P)H:quinone oxidoreductase (NQO1). NQO1 produces a high-potency intermediate 

(17-AAGH2)22, and has previously been identified as a potential biomarker for Hsp90 

inhibitors23.

Since some genetic/molecular alterations occur commonly in specific tumor types, lineage 

may become a confounding factor in predictive analyses. Indeed, a classifier built using the 

entire cell line dataset performed suboptimally when applied exclusively to melanoma 

derived-cell lines (Fig. 2d), whereas a model built with only melanoma cell lines performed 
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better (Fig. 2d). Predictive features in the melanoma-only model showed a strong over-

expression of genes regulated by the transcription factors MITF and SOX10 (Supplementary 

Table 10), recently identified as predictive of RAF inhibitor drug sensitivity within a 

melanoma-dominated cell line collection.

On the other hand, lineage emerged as the predominant predictive feature for several 

compounds. For example, elastic net studies of the HDAC inhibitor LBH589 (panobinostat) 

identified hematologic lineages as predictors of sensitivity (Fig. 2e and Supplementary Fig. 

9). Interestingly, most clinical responses to panobinostat and related compounds (e.g., 

vorinostat and romidepsin) have been observed in hematological cancers. Similarly, most 

multiple myeloma cell lines (12 of 14 lines tested) exhibited enhanced sensitivity to the 

IGF-1 receptor inhibitor AEW541 (Fig. 2f and Supplementary Fig. 8 and 9) and showed 

high IGF1 expression (Fig. 2f). Interestingly, elevated IGF1R expression also correlated 

with AEW541 sensitivity (Supplementary Fig. 9). The CCLE results suggest that multiple 

myeloma may be a promising indication for clinical trials of IGF-1 receptor inhibitors24 and 

that these drugs may have enhanced efficacy in cancers with high IGF1 or IGF1R 

expression.

While BRAF and NRAS mutations are known single-gene predictors of sensitivity to MEK 

inhibitors, several “sensitive” cell lines lacked mutations in these genes, whereas other lines 

harboring these mutations were nonetheless “insensitive” (Fig. 2c). The elastic net 

regression model derived from the subset of cell lines with validated NRAS mutations 

identified elevated expression of the AHR gene (which encodes the aryl hydrocarbon 

receptor) as strongly correlated with sensitivity to the MEK inhibitor PD-0325901 (Fig. 3a). 

This finding was intriguing in light of prior studies suggesting that a related MEK inhibitor 

(PD-98059) may also function as a direct AHR antagonist25. We therefore hypothesized that 

the enhanced sensitivity of some NRAS-mutant cell lines to MEK inhibitors might relate to a 

coexistent dependence on AHR function.

To test this hypothesis, we first confirmed the correlation between AHR expression and 

sensitivity to MEK inhibitors in a subset of NRAS-mutant cell lines (Fig. 3b and 

Supplementary Fig. 13). Next, we performed shRNA knockdown of AHR in cell lines with 

high or low AHR expression (Fig. 3c). Silencing of AHR suppressed the growth of three 

NRAS-mutant cell lines with elevated AHR expression (Figs. 3d–f), but had no effect on the 

growth of two lines with low AHR expression (Figs. 3g–h). The growth inhibitory effect was 

confirmed with two additional shRNAs, where evidence for a dose-dependent knockdown 

effect was also apparent (Figs. 3i–j). We also tested the hypothesis that allosteric MEK 

inhibitors may function as AHR antagonists by measuring the effect of PD-0325901 and 

PD-98059 on endogenous CYP1A1 mRNA, a transcriptional target of AHR in some 

contexts. Both compounds reduced CYP1A1 levels in NRAS-mutant melanoma cells 

(IPC-298 and SK-MEL-2; Fig. 3k) but not in neuroblastoma cells (CHP-212, Fig. 3k), 

suggesting that other factors may govern CYP1A1 expression in the latter lineage. Together, 

these results suggest that AHR dependency may co-occur with MAP kinase activation in 

some NRAS-mutant cancer cells, and that elevated AHR may serve as a mechanistic 

biomarker for enhanced MEK inhibitor sensitivity in this setting.
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We also looked for markers predictive of response to several conventional chemotherapeutic 

agents (Supplementary Fig. 7 and Supplementary Table 6) and identified SLFN11 

expression as the top correlate of sensitivity to irinotecan (Fig. 4a), a camptothecin analog 

that inhibits the topoisomerase I (TOP1) enzyme. SLFN11 expression also emerged as the 

top predictor of topotecan sensitivity (another TOP1 inhibitor; Supplementary Figs. 8 and 

14). Overall, 12 of 16 lineages showed significant SLFN11 associations for topotecan or 

irinotecan sensitivity (Pearson’s r ≥ 0.2, Supplementary Fig. 14b). This finding was 

independently validated using data from the NCI-60 collection (Supplementary Fig. 15). 

SLFN11 knockdown did not affect steady-state growth sensitivity profiles (Supplementary 

Fig. 14d–f).

All three Ewing’s sarcoma cell lines screened showed both high SLFN11 expression and 

sensitivity to irinotecan (Fig. 4b, Supplementary Fig. 14). Ewing’s sarcomas also exhibited 

the highest SLFN11 expression among 4,103 primary tumor samples spanning 39 lineages 

(Fig. 4c), suggesting that TOP1 inhibitors might offer an effective treatment option for this 

cancer type. Toward this end, several ongoing trials in Ewing’s sarcoma are examining 

irinotecan-based combinations, or the addition of topotecan to standard regimens26. For 

some lineages with high SLFN11 expression, (e.g. cervical adenocarcinoma) topoisomerase 

inhibitors already comprise a standard chemotherapy regimen. In other tumors where 

topoisomerase inhibitors are commonly used (e.g., colorectal and ovarian cancers), a range 

of SLFN11 expression was observed, raising the possibility that high SLFN11 expression 

might enrich for tumors more likely to respond. If confirmed in correlative clinical studies, 

SLFN11 expression may offer a means to stratify patients for topoisomerase inhibitor 

treatment.

By assembling the Cancer Cell Line Encyclopedia (CCLE), we have expanded the process 

of detailed annotation of preclinical human cancer models (www.broadinstitute.org/ccle). 

Genomic predictors of drug sensitivity revealed both known and novel candidate biomarkers 

of response. Even within genetically defined sub-populations—or when agents were broadly 

active without clear genetic targets—predictive modeling studies identified key predictors or 

mechanistic effectors of drug response. Future efforts that increase the scale and add 

additional types of information (e.g., whole genome/transcriptome sequencing, epigenetic 

studies, metabolic profiling or proteomic/phosphoproteomic analysis) should enable 

additional insights. In the future, comprehensive and tractable cell line systems provided 

through this and other efforts27 may facilitate numerous advances in cancer biology and 

drug discovery.

Methods Summary

A total of 947 independent cancer cell lines were profiled at the genomic level (data 

available at www.broadinstitute.org/ccle and Gene Expression Omnibus (GEO) using 

accession numbers GSE36139) and compound sensitivity data was obtained for 479 lines 

(Supplementary Table 11). Mutation information was obtained both by using massively 

parallel sequencing of >1,600 genes (Supplementary Table 12) and by mass spectrometric 

genotyping (OncoMap), which interrogated 492 mutations in 33 known oncogenes and 

tumor suppressors. Genotyping/copy number analysis was performed using Affymetrix 
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Genome-Wide Human SNP Array 6.0 and expression analysis using the GeneChip Human 

Genome U133 Plus 2.0 Array. 8-point dose response curves were generated for 24 

anticancer drugs using an automated compound-screening platform. Compound sensitivity 

data were used for two types of predictive models that utilized the naive Bayes classifier or 

the elastic net regression algorithm. The effects of AHR expression silencing on cell viability 

were assessed by stable expression of shRNA lentiviral vectors targeting either this gene or 

luciferase as control. The effect of compound treatment on AHR target gene expression was 

assessed by quantitative RT-PCR. A full description of the Methods is included in the 

Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Cancer Cell Line Encyclopedia (CCLE)
a. Distribution of cancer types in the CCLE by lineage. b. Comparison of DNA copy-

number profiles (GISTIC G-scores) between cell lines and primary tumors. The diagonal of 

the heatmap shows the Pearson correlation between corresponding sample types. Because 

cell lines and tumors are separate datasets, the correlation matrix is asymmetric: the top left 

showing how well the tumor features correlate with the average of the cell lines in a lineage, 

and the bottom right showing the converse. c. Comparison of mRNA expression profiles 

between cell lines and primary tumors. For each tumor type, the log-fold-change of the 

5,000 most variable genes is calculated between that tumor type and all others. Pearson 

correlations between tumor type fold-changes from primary tumors and cell lines are shown 

as a heatmap. d. Comparison of point mutation frequencies between cell lines and primary 

tumors in COSMIC (v56), restricted to genes that are well represented in both sample sets 

but excluding TP53 which is highly prevalent in most tumor types. Pairwise Pearson 

correlations are shown as a heatmap. *The correlations of esophageal, liver, and head and 

neck cancer mutation frequencies are restored when including TP53.
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Figure 2. Predictive modeling of pharmacologic sensitivity using CCLE genomic data
a. Drug responses for Panobinostat (green) and PLX4720 (orange/purple) represented by the 

high-concentration effect level (Amax) and transitional concentration (EC50) for a sigmoidal 

fit to the response curve (b). c. Elastic net regression modeling of genomic features that 

predict sensitivity to PD-0325901. The bottom curve indicates drug response, measured as 

the area over the dose-response curve (activity area), for each cell line. The central heatmap 

shows the CCLE features in the model (continuous z-score for expression and copy-number, 

dark red for discrete mutation calls), across all cell lines (x-axis). Bar plot (left): weight of 

the top predictive features for sensitivity (bottom) or insensitivity (top). Parenthesis indicate 

features present in >80% of models after bootstrapping. d. Specificity and sensitivity (ROC 

curves) of cross-validated categorical models predicting the response to a MEK inhibitor, 

PD-0325901 (activity area). Mean true positive rate and standard deviation (n=5) are shown 

when models are built using all lines (“Global categorical model” in blue and orange), or 

within only melanoma lines (green). e. Activity area values for LBH589 (panobinostat) 

between cell lines derived from hematopoietic (n=61) and solid tumors (n=387). The middle 

bar = median, box = inter-quartile range, and bars extend to 1.5x the inter-quartile range. f. 
Distribution of activity area values for AEW541 relative to IGF1 mRNA expression. Orange 

dots: multiple myeloma cell lines (n=14); blue dots: cell lines from other tumor types 

(n=434). Box-and-whisker plots show the activity area or mRNA expression distributions 
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relative to each cell line type (line = median and box = inter-quartile range), with bars 

extending to 1.5x the inter-quartile range.
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Figure 3. AHR expression may denote a tumor dependency targeted by MEK inhibitors in 
NRAS-mutant cell lines
a. Predictive features for PD-0325901 sensitivity (varying baseline activity area) in 

validated NRAS-mutant cell lines. b. Growth inhibition curves for NRAS-mutant cell lines 

expressing high (red) or low (blue) levels of AHR mRNA in the presence of the MEK 

inhibitor PD-0325901. c. Relative AHR mRNA expression across a panel of NRAS-mutant 

cell lines (arrows indicate cell lines where AHR dependency was analyzed). d–h. 

Proliferation of NRAS-mutant cell lines displaying high (d–f) and low (g–h) AHR mRNA 

expression, after introduction of shRNAs against AHR (red lines) or luciferase (blue lines). 

i. (left) Proliferation of IPC-298 cells (high AHR) after introduction of additional shRNAs 

against AHR (shAHR_1 and shAHR_4; green and purple lines, respectively) or luciferase 

(control shLuc; blue line); (right) corresponding immunoblot analysis of AHR protein. j. 
Equivalent studies as in (i) with using SK-MEL-2 cells (high AHR). k. Endogenous 

CYP1A1 mRNA expression in the neuroblastoma line CHP-212 or the melanoma lines 

IPC-298 and SK-MEL-2 after exposure to vehicle (blue) or MEK inhibitors (PD-0325901, 

green or PD-98059, purple). Error bars: standard deviation between replicates, with n=12 

(b), n=3 (c), n=6 (d–k).
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Figure 4. Predicting sensitivity to topoisomerase I inhibitors
a. Elastic net regression analysis of genomic correlates of irinotecan sensitivity is shown for 

250 cell lines. b. Dose-response curves for three Ewing’s sarcoma cell lines (MSS-ES-1, 

SK-ES-1, and TC-71) and two control cell lines with low SLFN11 expression (HCC-56, and 

SK-HEP-1). Grey vertical bars: standard deviation of the mean growth inhibition (n=2). c. 
SLFN11 expression across 4103 primary tumors. Box-and-whisker plots show the 

distribution of mRNA expression for each subtype, ordered by the median SLFN11 

expression level (line), the inter-quartile range (box) and up to 1.5x the inter-quartile range 

(bars). Sample numbers (n) are indicated in parentheses.
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