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We investigated in rats induced to sepsis the activity of ectonucleoside triphosphate diphosphohydrolase (NTPDase; CD39; E.C.
3.6.1.5), an enzyme involved in the modulation of immune responses. After 12 hours of surgery, lymphocytes were isolated
from blood and NTPDase activity was determined. It was also performed the histology of kidney, liver, and lung. The results
demonstrated an increase in the hydrolysis of adenosine-5′-triphosphate (ATP) (P < 0.01), but no changes regarding adenosine-
5′-monophosphate (ADP) hydrolysis (P > 0.05). Histological analysis showed several morphological changes in the septic group,
such as vascular congestion, necrosis, and infiltration of mononuclear cells. It is known that the intracellular milieu contains much
more ATP nucleotides than the extracellular. In this context, the increased ATPasic activity was probably induced as a dynamic
response to clean up the elevated ATP levels resulting from cellular death.

1. Introduction

Sepsis is characterized by an inflammatory reaction as
a consequence of immune system response to bacterial
infection [1, 2]. The immune system has an important role
in the pathogenesis of sepsis, which may cause tissue damage
and lead to organic failure [3, 4]. The main process involves
the activation of inflammatory cells such as leukocytes,
tissue macrophages, dendritic cells, and eosinophils [5]. The
exacerbated activation of innate immune response is one of
the main components involved in the physiopathology of
sepsis, which can be identified by increased proinflammatory
factors after infection [6].

The membrane bound enzyme ectonucleoside triphos-
phate diphosphohydrolase (NTPDase; CD39; E.C. 3.6.1.5)
modulates adenine nucleotides level, which are fundamental
to the modulation of immune responses [7]. The enzymes
of this family are widely distributed in animal tissues and
represent the main ectoenzyme expressed by endothelial cells
and muscle cells of the circulatory system [8, 9]. Under
physiological conditions, the nucleotides are present in the
extracellular environment in low concentrations, usually
nanomolar, but may be found up to micromolar levels [10].
It is known that extracellular ATP, for example, when in
micromolar concentrations, can induce the formation of
pores in the cell membranes, resulting in osmotic changes
[11], and it can also induce two antagonistic effects: cell
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proliferation, when in low concentrations, and cell death,
when in high concentrations [10].

Considering the involvement of adenine nucleotides
hydrolysis in the modulation of immune system and the
participation of immune response in sepsis, the purpose of
this study was to evaluate the hydrolysis of ATP and ADP in
lymphocytes from rats with induced sepsis.

2. Materials and Methods

2.1. Chemicals. Adenosine 5′-triphosphate disodium salt
(ATP), adenosine 5′-diphosphate sodium salt (ADP), bovine
serum albumine, Trizma base, Trypan Blue solution, and
Coomassie Brilliant Blue G were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Ficoll-Hypaque (Lympho-
prep) was purchased from Nycomed Pharma (Oslo, Nor-
way). Physiological solution (0.9 g NaCl/100 mL distilled
water) was obtained from Fresenius KABI (Brazil). K2HPO4

was purchased from Reagen (Brazil). All chemicals used in
the experiments were of analytical grade and of the highest
purity.

2.2. Animals. Male and female Wistar rats of 200–300 g
bodyweight were used for all experiments, which were
performed in accordance with the guidelines of Committee
on Care and Use of Experimental Animal Resources (UFSM,
Brazil) and in accordance with international guidelines.

2.3. Sepsis Induction and Samples Preparation. Animals were
randomly divided into two groups (5 rats in each group):
control and induced sepsis. To induce sepsis, it was used a
model of cecal ligation and puncture as previously described
[12]. After 12 h of induction, animals were anesthetized with
isoflurane and the whole blood was collected through cardiac
puncture in tubes containing ethylenediamine tetraacetic
acid.

2.4. Isolation of Mononuclear Cells from Blood. Lymphocyte-
rich mononuclear cells were isolated from blood collected
with ethylenediamine tetraacetic acid and separated on
Ficoll-Histopaque density [13] as previously described. The
percentage of lymphocytes was superior to 93% as previously
described [14].

2.5. NTPDase Activity Assay. After the isolation of lympho-
cytes, the NTPDase activity was determined as described
previously by our group [15], measuring the amount of liber-
ated inorganic phosphate (Pi) using a colorimetric assay. The
reaction medium contained 0.5 mM CaCl2, 120 mM NaCl,
5 mM KCl, 60 mM glucose, and 50 mM Tris-HCl buffer
(pH 8.0) in a final volume of 200 μL. Then 20 μL of intact
mononuclear cells suspended in saline solution was added
to the reaction medium (2–4 μL protein) and preincubated
for 10 min at 37◦C. The reaction was started by adding the
substrate (ATP or ADP) at a final concentration of 2 mM
and was stopped with 200 μL of 10% trichloroacetic acid to
provide a final concentration of 5%. The samples were chilled
on ice for 10 min before assaying the release of Pi as described

previously [16], using malachite green as a colorimetric
reagent and KH2PO4 as a standard. Light absorbance was
measured at 630 nm in a spectrophotometer (Biospectro SP-
22). Control reactions were performed by adding the enzyme
preparation after the addition of trichloroacetic acid to
correct for nonenzymatic nucleotide hydrolysis. All samples
were run in triplicate, and the specific activity is reported
as nanomoles of Pi released per minute per milligram of
protein.

2.6. Protein Determination. Protein was measured by the
Coomassie blue method as described previously [17]. Briefly,
a solution of Coomassie (117 μL Coomassie, 0.85 M ethyl
alcohol, and 1.46 M ortho-phosphoric acid) was prepared. A
standard curve with bovine serum albumin varying from 0.1
to 0.5 mg of protein per milliliter was performed. To quantify
the protein content, 50 μL of sample was added to 2.5 mL
of Coomassie solution and, after 5 min, the absorbance was
read in a spectrophotometer (Biospectro SP-22) at 595 nm.

2.7. Anatomopathologic Analysis. Samples of liver, kidney,
and lung tissue, ex vivo, were collected and fixed in 10%
formalin solution and then dehydrated and embedded in
paraffin, followed by sectioning and histological staining
with hematoxylin and eosin (H&E). The slides were observed
in an optical microscope (400x) to check for possible changes
in the respective tissues.

2.8. Statistical Analysis. Statistical analysis was performed
using the nonparametric Mann-Whitney test, since results
did not show Gaussian distributions. P < 0.05 was consid-
ered to represent a significant difference among the analyses
performed. All data were expressed as mean± standard error
of the mean.

3. Results

3.1. Clinical Features. After 12 h of sepsis induction, the ani-
mals showed swollen abdominal region with fecal material
release, as described by Benjamin [18].

3.2. NTPDase Activity in Lymphocytes. The statistical anal-
ysis demonstrated that animals from septic group had an
increased ATP hydrolysis (P < 0.01) (Figure 1(a)) but did
not show any statistical difference (P > 0.05) in regard to
ADP hydrolysis (Figure 1(b)).

3.3. Anatomopathologic Analysis. Kidney section of control
group showed normal (A) glomeruli and convoluted tubules
within renal cortex. No abnormal proliferations were seen.
The medulla and hilum were microscopically normal. Atypi-
cal congested convoluted tubules were seen in kidneys of rats
with induced sepsis. In some areas, the convoluted tubules
were lined by crowded hyperchromatic cuboidal cells, which
had decreased cytoplasm. Kidney sections also showed some
congested glomeruli, besides tubular necrosis with multiple
points along the nephron with cellular vacuolization (degen-
eration) and necrosis. Shedding or desquamation of cell



The Scientific World Journal 3

Control Sepsis
0

10

20

30

40

50
N

T
P

D
as

e 
ac

ti
vi

ty
(n

m
ol

 P
i/

m
in

/m
g 

of
 p

ro
te

in
)

∗∗

(a)

Control Sepsis
0

10

20

30

40

50

N
T

P
D

as
e 

ac
ti

vi
ty

(n
m

ol
 P

i/
m

in
/m

g 
of

 p
ro

te
in

)

(b)

Figure 1: NTPDase activity in peripheral blood lymphocytes from rats with induced sepsis using (a) ATP or (b) ADP as a substrate. Bars
represent means ± standard error of the mean (P < 0.01, n = 5). Mann-Whitney test. ∗∗Indicates a significant difference compared with
control.
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(c) (d)
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Figure 2: (a) Normal architecture of kidney with normal convoluted tubules and glomeruli (HE, 10x). (b) Abnormal kidney of rat with
induced sepsis showed architecture with cellular vacuolization (degeneration) (HE, 10x). (c) Congested tubules (HE, 10x). (d) Congested
convoluted proximal tubules lined by vacuolar cells with absence of individual tubular cells (HE, 40x). (e) Presence of substantial vascular
congestion in capllaries in the cortex and desquamation of cell fragments into lumen (HE, 10x). (f) The medullar area shows congested
peritubular capillaries (vasa recta) with discrete polymorphonuclear infiltrate (HE, 10x).
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Figure 3: (a) Liver sections of control rats showing normal
histological appearance (HE, 10x). (b) Liver of the rats with
induced sepsis showed a partial hepatic cord disarrangement and
an increased number of hepatocytes in process of involution with
pyknotic nuclei and condensed cytoplasm (HE, 10x). (c) The
central vascular sinusoids are dilated and congested filled with
erythrocytes. Periportal hepatocytes are normal (not showed) (HE,
10x).

fragments into lumen and absence of individual tubular cells
were also viewed. Presence of marked vascular congestion
in arterioles and peritubular capillaries in the renal cortex
and medullar area were observed (Figure 2). These findings
suggest tubular necrosis.

The liver section of control group showed normal
histological appearance with normal polyhedral hepatocytes.
The rats with induced sepsis showed important morpho-
logic changes, as vascular congestion and some marks of
necrosis. The microscopic analysis showed partial hepatic
cord disarrangement and increased number of hepatocytes
undergoing involution with pyknotic nuclei and condensed
cytoplasm. The central veins, spaces of Disse, and central

vascular sinusoids were dilated and congested, filled with
erythrocytes (Figure 3).

The lung section of control group showed normal histo-
logical appearance showing a bronchiole and adjacent alve-
oli, airways, blood vessel, and parenchyma with delicate alve-
olar septal tissues. The rats with induced sepsis different
degrees of lung consolidation developed and alveolar spaces
were infiltrated with a large number of mononuclear cells
(Figure 4).

4. Discussion
The extracellular nucleotides are important signaling
molecules, being essential to start and maintain the inflam-
matory reactions [19]. These nucleotides are found in high
concentrations within cells when compared to the extra-
cellular environment, which is a characteristic of signaling
molecules. Thus, in response to different stimulus or con-
ditions, including damage to plasmatic membrane induced
by hypoxia, ischemia, or inflammation, increasing concen-
trations of nucleotides can be released to the extracellular
environment [20]. During the inflammatory process, ATP
is involved in the development of inflammation by several
processes: released histamine from mastocytes, production
of prostaglandins, and production and release of cytokines
from immune cells [21]. Besides these release forms, related
mainly to cellular injury, ATP may be released from intact
cells by physiological mechanisms, as it occurs, for example,
in nervous transmission.

In this study, histological analysis showed several mor-
phological changes in organs analyzed from septic group in
tissues such as kidney, liver, and lung. Among the more out-
standing changes include the marked vascular congestion,
necrosis, and infiltration of mononuclear cells in agreement
with previous studies [22] in lung tissue.

Furthermore, the results also demonstrated that the
animals induced to sepsis had an increase in the NTPDase
activity (ATP as a substrate) and no alterations in the ADP
hydrolysis. The increased NTPDase activity in lymphocytes
and the morphological alterations observed in the septic
group are probably related with a physiological increase of
ATP in the extracellular milieu. A physiological role for ATP
is the regulation of inflammation [23], and it is known that
once released, it interacts with specific receptors, denomi-
nated purinergic receptors, which establish a communication
between cells [24]. The action of ATP during the inflam-
matory process occurs primarily via activation of purinergic
P2X receptors, which may lead the cellular apoptosis [25].
Extracellular ATP has been shown to induce shedding of
L-selectin from T lymphocytes via activation of puriner-
gic P2X7 receptors [26–30]. Since L-selectin is primarily
involved in lymphocyte homing to lymphoid tissues and is
shed upon lymphocyte activation, ATP was proposed to be
involved in migration of activated lymphocytes to sites of
inflammation [31]. Additionally, there was verified [32] a
possible involvement of P2X7 receptors in the lymphocytes
proliferation and the activation of interleukin-2 transcrip-
tion factor as a consequence. Interleukin-2 is a proinflam-
matory cytokine as interleukin-6, tumor necrosis factor-α,
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Figure 4: (a) Lung section of control group with normal histological appearance of alveolus (A), bronchiole (B), arteriole (Ar) and venule
(V) (HE, 10X). (b) Lung of rats with induced sepsis showing different degrees of lung consolidation and alveolar spaces were infiltrated
with a large number of mononuclear cells (HE, 10x). (c) Presence of mononuclear infiltrated in the wall of bronchiole (HE, 10x). (d) Local
thickening of infiltrated mononuclear cells in alveolar wall and peribronchial area (HE, 20x).

and interferon-γ [1], which participate in the inflammatory
response regulation in sepsis [33]. These results corroborate
with our findings, which suggest an increased extracellular
ATP level in the animals induced to sepsis.

It is proposed that the systemic injuries promoted by
this induced clinical condition may have increased the
extracellular levels of ATP as a consequence of the cellular
damage observed. In this context, the increased ATPasic
activity was probably induced as a dynamic response to clean
up the elevated ATP levels resulting from cellular death.
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