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Abstract
1.	 The attraction of natural enemies towards herbivore-induced plant volatiles is a 

well-documented phenomenon. However, the majority of published studies are 
carried under optimal water and nutrient regimes and with just one herbivore. But 
what happens when additional levels of ecological complexity are added? Does the 
presence of a second herbivore, microorganisms, and abiotic stress interfere with 
plant–natural enemy communication? or is communication stable enough to with-
stand disruption by additional biotic and abiotic factors?

2.	 Investigating the effects of these additional levels of ecological complexity is key to 
understanding the stability of tritrophic interactions in natural ecosystems and may 
aid to forecast the impact of environmental disturbances on these, especially in 
climate change scenarios, which are often associated with modifications in plant 
and arthropod species distribution and increased levels of abiotic stress.

3.	 This review explores the literature on natural enemy attraction to herbivore-in-
duced volatiles when, besides herbivory, plants are challenged by additional biotic 
and abiotic factors.

4.	 The aim of this review was to establish the impact of different biotic and abiotic 
factors on plant–natural enemy communication and to highlight critical aspects to 
guide future research efforts.
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1  | INTRODUCTION

Volatile compounds serve multiple protective functions for the 
plants emitting them and are one of the principal currencies mediat-
ing plant communication with conspecifics and other trophic lev-
els (Holopainen, 2004). The emission of herbivore-induced volatiles 
(HIPVs) has been linked to the attraction of natural enemies of the 
herbivores in over a hundred tritrophic systems (Hilker & Meiners, 
2006; Clavijo McCormick, Unsicker, & Gershenzon, 2012; Mumm & 
Dicke, 2010). Over the years, considerable progress has been made 

in elucidating the biosynthetic routes, leading to the formation of vol-
atile compounds and the molecular mechanisms underlying this pro-
cess, for example, signaling transduction pathways and transcriptome 
changes in response to herbivory (Arimura, Matsui, & Takabayashi, 
2009; Dudareva, Picherski, & Gershenzon, 2004; Stam et al., 2014). 
We have also advanced in understanding how natural enemies make 
use of these volatile cues, and the role of learning in their responses 
to plant volatiles (Allison & Hare, 2009; de Boer & Dicke, 2006; 
Dicke, 1999; Hoedjes et al., 2011; Clavijo McCormick et al., 2012; 
Takabayashi, Sabelis, Janssen, Shiojiri, & van Wijk, 2006).
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The majority of studies on tritrophic interactions have been 
performed using monoclonal, herbaceous cultivated species under 
controlled conditions, which, while useful from a logistical stand-
point, poorly reflect natural ecosystems where plants exist as mixed-
genotype populations in heterogeneous landscapes, and usually 
interact with multiple biotic players under variable abiotic conditions 
(Bezemer & van Dam, 2005; Dicke & van Loon, 2000; Hunter, 2002; 
Takabayashi, Dicke, & Posthumus, 1994). An increasing number of field 
studies demonstrate that attraction of natural enemies to HIPVs is 
widespread under natural conditions, suggesting that volatile cues are 
sufficiently robust to withstand certain levels of environmental varia-
tion (Birkett et al., 2000; De Moraes, Lewis, Pare, Alborn, & Tumlinson, 
1998; Kessler & Baldwin, 2001; Clavijo McCormick, Irmisch, et al. 
2014; Thaler, 1999). However, the extent of the impact of interacting 
biotic and abiotic factors remains poorly documented.

During the last decade, attention has been paid on the potential 
effects of climate change on multitrophic interactions. However, as 
a recent meta-analysis reveals, of over 2000 selected publications on 
climate change and trophic interactions, the majority dealt with only 
two trophic levels, and only 15% evaluated the effects of one or more 
abiotic factors on the outcome of multitrophic interactions (Rosenblatt 
& Schmitz, 2014). This meta-analysis suggests that many climate 
change studies are overlooking ecological complexity, and a question 
emerges about how can we truly understand the consequences of cli-
mate change on these interactions if we do not yet grasp the range of 
variation occurring under “normal” natural conditions. Hence, one of 
the main challenges in the study of multitrophic interactions is pro-
gressing from evaluating linear systems under controlled settings, into 
more complex scenarios incorporating additional biotic and abiotic 
conditions (Dicke, van Loon, & Soler, 2009; Mumm & Dicke, 2010). As 
volatile compounds are a primary currency mediating plant communi-
cation, their study under complex scenarios is vital to understand the 
community dynamics and how biotic and abiotic factors shape these.

This review explores the available literature on natural enemy at-
traction to HIPVs in scenarios of multiple herbivores attacking, her-
bivory in the presence of microorganisms, and herbivory under abiotic 
stress factors. The aim is to address some relevant questions such as 
(1) Is plant–natural enemy communication stable enough to withstand 
disruption by biotic and abiotic factors? (2) Which biotic and abiotic 
factors disrupt communication between plants and natural enemies? 
and (3) Are there common patterns allowing us to make predictions 
about the outcome of these tritrophic interactions under biotic and 
abiotic stress scenarios?

2  | MULTIPLE VARIABLES AFFECT PLANT 
VOLATILE EMISSIONS AND NATURAL 
ENEMY RESPONSES

The first attempts to understand and predict the outcome of tritrophic 
interactions under complex ecological settings come from the knowl-
edge that different types of herbivore damage can elicit different de-
fense signaling pathways. In general, phloem feeders (whiteflies and 

aphids) activate the salicylic acid (SA)-dependent shikimic acid path-
way, while chewing insects (beetles and caterpillars) and cell-content 
feeders (mites and thrips) induce the jasmonic acid (JA)-dependent 
octadecanoic pathway. Each of these pathways regulates the expres-
sion of different sets of downstream genes associated with indirect 
plant defenses (i.e., those defenses promoting the efficiency of natural 
enemies to control herbivores (Gols, 2014), leading to the emission of 
distinct volatile blends (Erb, Meldau, & Howe, 2012; Heil & Ton, 2008; 
Walling, 2000).

Initial evidence that the JA and SA pathways act antagonistically 
led to the hypothesis that induced plant volatile phenotypes and the 
outcomes of volatile-mediated interactions may be predictable based 
on the knowledge of the attacker (Erb et al., 2012; Heil & Ton, 2008; 
Walling, 2000). For instance, a JA-inducing herbivore would be ex-
pected to disrupt the attraction of natural enemies of a SA-inducing 
herbivore under simultaneous attack and vice versa. Although this out-
come is possible (Zarate, Kempema, & Walling, 2007), it is now appar-
ent that knowledge of herbivore damage type is insufficient to predict 
plant volatile phenotypes. For example, recent studies suggest that 
interactions between the JA and SA pathways do not always result 
in one pathway disrupting the other, but may involve more back-and-
forth communication or “cross talk.” Besides, other phytohormones, 
such as ethylene and abscisic acid, play a significant role in defense 
signaling cascades acting synergistically or antagonistically with both 
JA and SA (Bostock, 2005; Dicke et al., 2009; Koornneef & Pieterse, 
2008; Pieterse, Leon-Reyes, Van der Ent, & Van Wees, 2009; Stam 
et al., 2014).

Changes in volatile phenotypes can also occur as a result of within-
species variation as is the case when different life stages of a given 
herbivore inflict different patterns (Clavijo McCormick, Boeckler, 
Köllner, Gershenzon, & Unsicker, 2014; Takabayashi, Takahashi, 
Dicke, & Posthumus, 1995; Yoneya, Kugimiya, & Takabayashi, 2009) 
and amounts (Geervliet, Posthumus, Vet, & Dicke, 1997; Maeda & 
Takabayashi, 2001) of feeding damage (Figure 1). For example, early 
instar Lymantria dispar caterpillars produce relatively small lesions and 
attack a larger number of leaves compared to late instars. These dif-
ferences result in strikingly different patterns of HIPV emission from 
poplar trees, which may be exploited by parasitoids to obtain infor-
mation about the suitable developmental stage of their prey (Clavijo 
McCormick, Boeckler, et al., 2014). Furthermore, different insect-
derived elicitors, for example, those emitted by oviposition vs. salivary 
compounds, can induce distinct volatile profiles (Alborn et al., 2007; 
Hilker, Stein, Schroder, Varama, & Mumm, 2005; Louis, Peiffer, Ray, 
Luthe, & Felton, 2013; Schmelz, Engelberth, Alborn, Tumlinson, & 
Teal, 2009). Some herbivore species are even able to manipulate the 
plant defense signaling network to their advantage (Kahl et al., 2000; 
Musser et al., 2002; Sarmento et al., 2011) (Figure 1). For example, the 
spider mite Tetranychus evansi blocks the induction of the SA and JA 
signaling routes, leading to a suppression of direct defenses (i.e., those 
traits that act upon the herbivore directly (Gols, 2014) and volatile 
emissions (Sarmento et al., 2011).

Volatile profiles also differ in systematic ways among plant spe-
cies, cultivars, varieties, and genotypes, and even between tissues 
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within the same plant (Jonsson, Lindkvist, & Anderson, 2005; Kappers, 
Hoogerbrugge, Bouwmeester, & Dicke, 2011; Krips et al., 2001). 
These responses may be further modified by exposure to the HIPVs 
of damaged plant parts or nearby attacked neighbors, which “prime” 
undamaged plants or plant parts to respond more efficiently, and to a 
higher degree, to subsequent herbivore damage (Engelberth, Alborn, 
Schmelz, & Tumlinson, 2004; Heil & Kost, 2006; Heil & Silva Bueno, 
2007; Ruther & Furstenau, 2005) (Figure 1). As an example of this phe-
nomenon, corn seedlings exposed to green leaf volatiles (GLVs) from 
neighboring plants produced significantly more JA and volatile ses-
quiterpenes after mechanical damage in combination with caterpillar 
regurgitant than seedlings not exposed to GLVs, leading authors to hy-
pothesize that priming may affect plant–plant and plant–insect inter-
actions (Engelberth et al., 2004). Last but not least, trade-offs between 
direct and indirect defenses in combination with specific ecological 
settings can also result in unique “plant defense syndromes” involving 
differences in HIPV emission (Agrawal & Fishbein, 2006).

From the perspective of natural enemies, there are also several bio-
logical and ecological factors playing a role in determining their ability to 
exploit HIPVs, for instance, their diet breadth and degree of host spec-
ificity (Cortesero, De Moraes, Stapel, Tumlinson, & Lewis, 1997; Holt & 
Lawton, 1994; Shiojiri, Takabayashi, Yano, & Takafuji, 2000a; Steidle & 

van Loon, 2003; Tamo, Ricard, Held, Davison, & Turlings, 2006), learning 
capacity and behavioral plasticity (de Boer & Dicke, 2006; Glinwood, 
Ahmed, Qvarfordt, & Ninkovic, 2011; Hoedjes et al., 2011), and possi-
bly differences in the sensitivity and mechanisms of perception of plant 
volatiles (Clavijo McCormick et al., 2012) among others.

Nevertheless, a critical factor determining the relative importance 
of HIPVs, and hence the tolerance to cue disruption, is the foraging 
behavior of the natural enemy. The foraging behavior is a complex pro-
cess product of the co-evolution of prey and predator and is largely 
determined by the prey’s behavior and defense mechanisms, as well 
as by the community characteristics such as diversity and complexity 
(Malcom, 2009; de Rijk, Dicke, & Poelman, 2013). In the case of herbi-
vore’s natural enemies, the foraging behavior will determine to which 
extent parasitoids and predators rely on other nonchemical cues (e.g., 
visual, acoustic, and vibrational signals) and on other sorts of chemical 
cues rather than HIPVs (e.g., habitat related cues, host-derived odors, 
and odors of conspecifics) to find their prey (Steidle & van Loon, 2003; 
Wäschke, Meiners & Rostas, 2013).

A recent theoretical study (Yoneya & Miki, 2015) suggests that 
co-evolution of foraging behavior in herbivores and natural enemies 
allows both groups of organisms to use HIPVs as multifunctional sig-
nals depending on the intensity of the attack. For example, a recent 

F IGURE  1 Multiple variables affect plant volatile emissions and natural enemy (NE) responses. The bullet points highlighted in red are 
critical for the occurrence of a particular plant–herbivore–natural enemy interaction under natural conditions. The points in blue correspond to 
additional factors having an impact on volatile emission and the use of volatile cues by natural enemies
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study shows that HIPVs emitted after short-term (up to 6 hr) damage 
are attractive to experienced (fed on poplar) L. dispar larvae, whereas 
volatiles from long-term damage (24–30 hr) were avoided (Clavijo 
McCormick, Reinecke, Gershenzon, & Unsicker, 2016). In this case, 
the first set of volatiles (up to 6 hr) indicated food availability and low 
competition, whereas the second (24–30 hr) probably signaled high 
competition and enhanced plant defense. In a similar manner, natural 
enemies are expected to use different patterns of volatile emission to 
make foraging decisions.

For all actors involved (plant, herbivore, and natural enemy), 
physiological and phenological aspects such as the age, previous ex-
perience, nutritional state, and “health” conditions are likely to have 
further effects on the outcome of the interaction (e.g., Anderson & 
Anton, 2014; Fatouros, van Loon, Hordijk, Smid, & Dicke, 2005; 
Jonsson et al., 2005; Steinberg, Dicke, Vet, & Wanningen, 1992). All 
of these factors are influenced by abiotic factors and the interactions 
with other community members (Figure 1). Due to the complex net-
works that may arise from the combination of these variables, it seems 
quite difficult, if not impossible, to generalize or predict the outcome 
of a tritrophic interaction based only on the study of one individual 
element (herbivore, plant, or natural enemy).

3  | EFFECTS OF BIOTIC AND ABIOTIC 
FACTORS ON PLANT–NATURAL 
ENEMY COMMUNICATION

3.1 | Multiple herbivory

In nature, most plants are exposed to numerous attackers, acting si-
multaneously or sequentially (Dicke et al., 2009). Early studies on the 
effect of multiple herbivory on indirect defense focused on above-
ground interactions, but recent work has brought to our attention that 
simultaneous above- and belowground attack can also have profound 
impacts on natural enemy recruitment (Bezemer & van Dam, 2005; 
Erb, Ton, Degenhardt, & Turlings, 2008; Van der Putten, Vet, Harvey, 
& Wäckers, 2001), establishing the role of microbes in this equation 
is a challenging aspect for further research (Soler, Pozo, Rasmann, & 
Turlings, 2015).

Available data (Table 1) show that multiple aboveground herbivory 
can lead to diverse outcomes, including either increased natural enemy 
attraction, reduced attraction, or no effect, independently of the type 
of damage and defense pathway elicited by the attackers. For gener-
alist natural enemies, increased attraction often occurs in combination 
with significant increases in total volatile emission (de Boer, Hordijk, 
Posthumus, & Dicke, 2008; Moayeri, Ashouri, Poll, & Enkegaard, 2007; 
Rodriguez-Saona, Chalmers, Raj, & Thaler, 2005; Shiojiri et al. 2000a; 
Shiojiri, Takabayashi, Yano, & Takafuji, 2000b; Shiojiri, Takabayashi, 
Yano, & Takafuji, 2001, 2002), whereas disruption is linked to signif-
icant reductions in volatile emission (Shiojiri et al. 2000a,b; Shiojiri 
et al., 2001, 2002; Zhang et al., 2009). Meanwhile, no effects were 
observed in situations where there were no measurable differences in 
volatile emission between single and multiple attackers (Erb, Foresti, 
& Turlings, 2010; Vos, Berrocal, Karamaouna, Hemerik, & Vet, 2001).

In the case of specialists, the only available study reports disrup-
tion due to multiple attackers, yet how this relates to changes in HIPV 
emissions and whether disruption is common for other specialists 
remain unclear. An exhaustive study of 140 research papers on nat-
ural enemy attraction to infochemicals showed that there is no sig-
nificant difference between specialist and generalist natural enemies 
in the proportion species that use volatiles during foraging; however, 
the ability to learn and display plastic responses to these compounds 
seems to be more common in generalist species (Steidle & van Loon, 
2003). Additional studies suggest that generalists and specialists may 
differ in their use of volatile cues, with generalists relying on wide-
spread damage-related compounds such as GLVs, while specialists 
utilize more precise volatile signatures associated with their preferred 
prey (Cortesero et al., 1997; Ngumbi, Chen, & Fadamiro, 2009, 2010). 
However, whether differences in feeding specialization render one of 
these two groups more susceptible to signal disruption than the other 
remains to be investigated.

In simultaneous above- and belowground herbivory scenarios, the 
most common outcome is decreased natural enemy attraction (both 
above- and belowground), independently of the feeding guild of the 
natural enemy or the changes in total volatile emissions (Table 1). There 
are two nonexclusive hypotheses that may explain why disruption 
occurs: simultaneous above- and belowground herbivory may cause 
a systemic response, leading to an increased production of defense-
related compounds (including volatiles), which may deter natural en-
emies (van Dam et al., 2003). Alternatively, due to the importance of 
roots as nutrient providers for the plant, belowground damage could 
cause severe constraints on resource allocation. Lack of nutrients and 
water would affect both primary and secondary metabolism, and the 
signaling pathways leading to volatile emission, causing a decrease in 
the overall volatile emission or a significant reduction (or no emission) 
of particular compounds used as cues by natural enemies (Bezemer & 
van Dam, 2005; Soler et al., 2007).

Root herbivory is likely to be a major factor disrupting plant–nat-
ural enemy communication in nature, due to its significant negative 
impact on plant and herbivore communities (Blossey & Hunt-Joshi, 
2003). The available studies evidence that disruption of natural enemy 
attraction due to the presence of belowground herbivores is a com-
mon outcome. However, it remains unclear whether the disruption is 
due to a complete inhibition or reduced emission of volatile cues, or 
because natural enemies (both specialists and generalists) can obtain 
information about the quality of the herbivores as hosts based on dif-
fering plant volatile profiles, and avoid those feeding on highly de-
fended or low-quality plants.

There is abundant evidence of specificity in the use of volatile cues 
by predators and parasitoids to support the second argument (Clavijo 
McCormick et al., 2012; and references therein). Nevertheless, a major 
challenge in the resolution of this issue is that we still ignore what part 
of the complex volatile blend emitted by the plant comprises the ac-
tual cue (i.e., individual compounds, a subset of compounds in specific 
ratios, or whole blends). Most research investigating the role of vola-
tiles on tritrophic interactions has focused on changes in the emission 
of abundant compounds (terpenoids and GLVs). Yet minor compounds, 
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and those belonging to other chemical classes, for example, sulfur- and 
nitrogen-containing compounds, are known to play important roles in 
plant–natural enemy interactions and be more resistant to environ-
mental degradation than terpenoids and GLVs and therefore should 
not be overlooked (D’Alessandro, Brunner, von Merey, & Turlings, 
2009; Clavijo McCormick, Gershenzon & Unsicker, 2014; Pinto, Nerg, 
& Holopainen, 2007; Pinto, Blande, et al. 2007).

3.2 | Presence of microorganisms

Plants are not only challenged by multiple herbivores but by ben-
eficial microorganisms and pathogens, which can also elicit distinct 
signaling pathways. For example, biotrophic pathogens (those grow-
ing and feeding within the living cells of their hosts) typically elicit 
SA-mediated induced defenses. Necrotrophic pathogens (those killing 
its host cells and then feeding on the dead matter) often induce JA/
ethylene-mediated defenses (Glazebrook, 2005; Thomma, Penninckx, 
Broekaert, & Cammue, 2001), and interactions with beneficial mi-
croorganisms are generally mediated by the JA signaling pathway 
(Glazebrook, 2005).

In addition to the attacker-specific responses, microorganisms can 
elicit other lines of defense. Pathogens that establish as local infec-
tions can elicit systemic acquired resistance (SAR) via a SA-dependent 
signaling cascade. As a result, the entire plant is primed to resist or 
tolerate subsequent attack (Conrath, 2006; Durrant & Dong, 2004). A 
similar priming of defense occurs when plants associate with beneficial 
bacteria, eliciting induced systemic resistance (ISR), which is commonly 
JA-mediated, and leads to a broad spectrum of long-lasting resistance 
traits, such as cell wall changes, production of pathogenesis-related 
proteins and phytoalexins (Heil & Bostock, 2002; Pieterse et al., 2014; 
Van der Ent, Van Wees, & Pieterse, 2009).

Although much is known about the molecular basis of plant–
pathogen interactions, few studies have explored the effect of her-
bivore attack in combination with microorganisms on plant volatile 
emission and its effects on natural enemy recruitment (Ponzio, Gols, 
Pieterse, & Dicke, 2013). Available studies involving beneficial and 
nonpathogenic microorganisms report multiple outcomes (Table 2). As 
one study involving three different species of arbuscular mycorrhizae 
points out, the outcome of the interaction may be strongly driven by 
the species of microorganism and the phenotypic changes (morpho-
logical or chemical) it induces on the plant. These changes may have 
either a negative or positive impact on herbivore quality as prey, or 
on the access of natural enemies to the herbivores (Gange, Brown, & 
Aplin, 2003).

Contrastingly, the few studies on pathogenic microorganisms 
show an increased attraction of natural enemies toward pathogen-
infested plants (Table 2), indicating that tritrophic interactions can 
withstand pathogen disruption. The authors of these studies hy-
pothesize that pathogens have a strong effect on plant nutrients and 
defense compounds affecting plant quality for herbivores, making 
them either better quality hosts or lower quality, but more apt preys 
(Cardoza, Teal, & Tumlinson, 2003; Tack, Gripenberg, & Roslin, 2012). 
For example, infestation by white mold fungus (Sclerotium rolfsii) on 

peanut plants causes an increase in levels of soluble sugars and de-
creases soluble phenolics (defense compounds). These changes in 
nutrient and defense compounds had a significant positive effect 
on preference and performance of the herbivore, which correlated 
with natural enemy preference, suggesting once more that predators 
and parasitoids can infer host quality based on volatile cues (Cardoza 
et al., 2003).

An exception is the case of cultivated corn Zea mays, where 
Spodoptera littoralis preference and performance were not affected 
by northern corn leaf blight infection. The composition of the volatile 
blend remained quite stable (albeit reduced), and there were no signif-
icant effects on the attraction of a generalist or a specialist parasitoid 
(Rostás, Ton, Mauch-Mani, & Turlings, 2006). This plant species emits 
a fairly constant volatile blend, not only in the presence of pathogens 
but also in the presence of multiple aboveground (Erb et al., 2010) and 
aboveground–belowground herbivores (Rasmann & Turlings, 2007), 
suggesting high stress tolerance regarding HIPV emissions. However, 
it is likely that cultivated plant species have reduced responses to bi-
otic and abiotic stress. In these plants, selection pressures leading to 
maintaining defense traits have been alleviated by moving them to 
geographical ranges where they escape their native herbivores, are 
artificially protected them from herbivores, or selectively bred giving 
priority to other traits (Kempel, Schädler, Chrobock, Fischer, & van 
Kleunen, 2011). Further studies involving wild and cultivated plant va-
rieties are required to investigate the impact of cultivation and breed-
ing practices on plant responses to herbivory and their repercussion at 
the community level.

Another interesting study case shows that infection by a vector-
borne pathogen increases natural enemy attraction (Martini, Pelz-
Stelinski, & Stelinski, 2014). There is evidence that vector-borne plant 
pathogens (e.g., viruses and phytoplasmas) can manipulate HIPV 
emission of plants to attract arthropod vectors (Martini et al., 2014; 
Mauck, De Moraes, & Mescher, 2010), so further studies are required 
to explore the consequences of this manipulation on natural enemy 
recruitment.

3.3 | Abiotic factors

Abiotic stress is expected to have a large impact on tritrophic interac-
tions as it affects plant nutritional quality, phenology, and architec-
ture, as well as the production of secondary metabolites (both volatile 
and nonvolatile) (Boullis, Francis, & Verheggen, 2015; Chen, Olson, 
& Ruberson, 2010; Gershenzon, 1984; Ramakrishna & Ravishankar, 
2011). However, several volatile compounds such as isoprene and 
monoterpenes are known to protect the plants from drought, radia-
tion, thermal and oxidative stress and could play an important role 
in stabilizing volatile-mediated tritrophic interactions in scenarios of 
abiotic stress (Holopainen, 2004; Lavoir et al., 2011; Peñuelas J., & 
Llusià J. 2003; Sharkey, Wiberley, & Donohue, 2008; Way, Schnitzler, 
Monson, & Jackson, 2011).

Despite the expected negative effects, the available reports 
(Table 3) indicate that plant–natural enemy communication can with-
stand several abiotic stresses, with a couple of exceptions in the case 
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of drought and changes in CO2 concentration. Disruption due to al-
terations in CO2 levels and drought is comprehensible as carbon diox-
ide and water are crucial for primary metabolism, which in turn is the 
main energy provider for plant growth and development, as well as 
for the production of secondary metabolites involved in plant defense 
(Bolton, 2009; Lawlor & Cornic, 2002). However, as shown in the case 
of CO2, different plant genotypes (Sun, Feng, Gao, & Ge, 2011) and 
natural enemy species react differently when tested under similar 

conditions (Fonseca, Santos, & Auad, 2014; Vuorinen, Nerg, Ibrahim, 
Reddy, & Holopainen, 2004), indicating there may be variability in the 
tolerance to abiotic stress factors at both ends of the scale (plant and 
natural enemy).

Abiotic stress has been reported to have negative bottom-up 
effects on natural enemy fitness and performance in correlation 
with poor-quality hosts (Calatayud, Polania, Seligmann, & Bellotti, 
2002; Chen et al., 2010; Klaiber, Najar-Rodriguez, Dialer, & Dorn, 

TABLE  3 Effects of abiotic factors on plant-volatile emission and plant–natural enemy communication

Plant species Abiotic factor
Natural enemy and host 
specificity

Species and 
feeding guild of the 
herbivore

Outcome and effect on HIPV 
emission References

Gossypium 
hirsutum

Drought Microplitis croceipes 
(Specialist parasitoid)

Spodoptera exigua 
(CH)

Disruption
HIPV not quantified

Olson et al. (2009)

Brassica oleracea Drought Microplitis mediator 
(Generalist parasitoid)

Mamestra brassicae 
(CH)

No disruption
Enhanced emission of green 

leaf volatile, nitriles and 
DMNT in drought stressed 
plant samples with herbivory

Weldegergis et al. (2015)

Two cultivars of 
B. oleracea

Elevated CO2 Cotesia plutellae  
(Specialist parasitoid)

Podisus maculiventris 
(Generalist predator)

Plutella xylostella 
(CH)

Disruption for C. plutellae
Disruption for P. maculiventris 

on one cultivar
No significant effect on HIPV 

emissions, albeit minor 
reductions in the emission of 
some terpenoids

Vuorinen et al. (2004)

Pennisetum 
purpureum

Elevated CO2 Cycloneda sanguinea 
(Generalist predator)

Diomus seminulus 
(Generalist predator)

Sipha flava (PF) Disruption for D. seminulus
No disruption for C. sanguinea

HIPV not measured

Fonseca et al. (2014)

Brassica napus Elevated CO2 Cotesia vestalis  
(Specialist parasitoid)

P. xylostella (CH) No disruption
Increased terpenoid emissions

Himanen et al. (2009)

B. oleracea Elevated O3 C. plutellae  
(Specialist parasitoid)

P. xylostella (CH) No disruption
Degradation of most herbivore-

induced terpenes and green 
leaf volatiles

Pinto, Blande et al. 
(2007), Pinto,  
Nerg et al. (2007),  
Pinto et al. (2008)

Phaseolus 
lunatus

Elevated O3 Phytoseiulus persimilis 
(Oligophagous predator)

Tetranychus urticae 
(PH)

No disruption
Degradation of most herbivore-

induced terpenes and green 
leaf volatiles

Pinto, Blande et al. 
(2007), Pinto, Nerg 
et al. (2007), Pinto et al. 
(2008)

G. hirsutum Excess and 
Lack N2

M. croceipes (Specialist 
parasitoid)

Spodoptera exigua 
(CH)

No disruption
Lower volatile emissions due to 

excess or lack of N2

Olson et al. (2009)

Glycine max Low N2 Cotesia marginiventris 
(Generalist parasitoid)

Spodoptera 
frugiperda (CH)

No disruption
No significant differences in 

HIPV emission

Winter & Rostás (2010)

G. max Reduction of 
UV radiation

C. marginiventris 
(Generalist parasitoid)

S. frugiperda (CH) No disruption
No significant differences in 

HIPV emission

Winter & Rostás (2008)

B. oleracea Increased UV-B 
radiation

C. plutellae  
(Specialist parasitoid)

P. xylostella (CH) Increased attraction
HIPV not measured

Foggo et al. (2007)

Different plant 
species

Increased 
temperature

Aphidius matricariae 
(Generalist parasitoid)

Myzus persicae (PF) Increased attraction
HIPV not measured

Bezemer et al. (1998)

CH, chewing herbivore; PF, phloem feeder; HIPV, herbivore-induced plant volatiles; DMNT, (E)-4,8-dimethyl-1,3,7-nonatriene.
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2013; Winter & Rostás, 2010). However, this is not always the case 
(Bezemer, Jones, & Knight, 1998; Stacey & Fellowes, 2002; Sun et al., 
2011). For example, a study on the long-term effects of temperature 
on populations of the aphid Myzus persicae and its parasitoid Aphidius 
matricariae reported that elevated temperature decreased plant bio-
mass while increasing leaf nitrogen concentrations, which in turn en-
hanced herbivore abundance and increased parasitism rates (Bezemer 
et al., 1998). Such studies evidence that bottom-up effects of abiotic 
stress are not always negative.

Another interesting aspect is that under controlled settings, plant–
natural enemy communication can withstand disruption due to abi-
otic stress, yet when offered a choice, natural enemies would prefer 
“healthy” herbivore-induced plants to those under stress conditions 
(Olson, Cortesero, Rains, Potter, & Lewis, 2009). The main question is 
how this translates into field scenarios, as plants growing under similar 
conditions are likely to experience similar levels of abiotic stress. What 
happens when there is no choice? Up to which extent can plant–natu-
ral enemy communication withstand abiotic stress?

It is possible that effects of abiotic factors on natural enemy re-
cruitment vary depending on the magnitude of the stress and its 
impacts on the plant metabolism, with severe stress having stronger 
effects due to constraints in resource availability and allocation affect-
ing HIPV production and release. For example, existing studies show 
that mild drought increases HIPV emissions or has no effect, whereas 
severe drought decreases emissions (Becker et al., 2015; Lavoir et al., 
2009; Peñuelas & Staudt, 2010). Moreover, responses may vary for 
individual plant species, as some plants have evolved unique adap-
tations to stress, and the presence or absence of stress-tolerance 
traits will determine the threshold levels for a particular species (Bray, 
1997; Pareek, Sopory, Bohnert, & Govindjee, 2010; Wang, Vinocur, & 
Altman, 2003).

It is evident that individual abiotic factors affect HIPV emis-
sion, but there is much potential for interaction among them, lead-
ing to different outcomes from those caused by a single stress or 
those expected by additive effects (Becker et al., 2015; Bezemer 
et al., 1998; Peñuelas & Staudt, 2010). Studying these interactions 
among abiotic factors is necessary, especially in scenarios of global 
warming where multiple abiotic stress factors are likely to occur 
simultaneously.

The predicted impacts of climate change on natural enemies are 
severe and include, but are no restricted to: loss of fitness due to 
poor prey quality, lower susceptibility of herbivores to parasitism or 
predation due to changes in plant phenology and altered timing of 
herbivore life cycles, permanent loss of prey due to prey extinction or 
changes in plant and herbivore distribution, and increased competi-
tion with new natural enemies, due to changes in distribution ranges 
(Boullis et al., 2015; Hance, Van Baaren, Vernon, & Boivin, 2006; 
Thomson, Macfadyen, & Hoffmann, 2010). In agricultural systems, a 
number of additional effects may appear as a result of adaptive man-
agement strategies adopted by farmers to cope with climate change 
(Thomson et al., 2010). Whether disruption in plant–natural enemy 
communication needs to be incorporated to the list remains to be 
investigated.

3.4 | Combining biotic and abiotic factors: a 
new approach

Recently, two pioneer studies have brilliantly incorporated the effects 
of abiotic factors with above- and belowground organisms and their 
effects on the attraction of natural enemies (Johnson, Staley, McLeod, 
& Hartley, 2011; Tariq, Wright, Bruce, & Staley, 2013). The first study 
evaluated the effects of summer drought on plant community con-
taining Hordeum vulgare (barley), Capsella bursa-pastoris (shepherd’s 
purse), and Senecio vulgaris (common groundsel), in the presence of 
the earthworm Aporrectodea caliginosa, the aphid Rhopalosiphum 
padi and its parasitoid, Aphidius ervi (Johnson et al., 2011). Johnson 
and co-authors found that summer drought alone had a negative 
impact on plant shoot and root biomass, but the addition of earth-
worms significantly reduced root biomass loss. Drought also led to 
a significant decrease in aphid abundance, which was moderated by 
the presence of earthworms, and these effects reflected on parasit-
ism rates. Interestingly, the effect of earthworms was much higher in 
one-plant species plots than in multiple species plots, suggesting that 
other community members can also have an impact on the outcome 
of tritrophic interactions.

The second study evaluated the effect of drought in a system com-
prising Brassica oleracea, the root herbivore Delia radicum, the aphids 
Myzus persicae and Brevicoryne brassicae, and the parasitoids Aphidius 
colemani and Diaeretiella rapae (Tariq et al., 2013). Their results showed 
that drought conditions and root herbivory separately had negative ef-
fects on parasitism rates. However, there was a significant interaction 
between drought and root herbivory, in which drought stress partially 
reversed the negative effect of root herbivory on parasitism rates.

These rare examples demonstrate that multiple biotic and abiotic 
factors interact, having a strong impact on plant–natural enemy com-
munication. It is hoped that we will be seeing more such studies in the 
future, which are closer to the natural situation of plants under both cul-
tivated and natural conditions. Similar studies could be useful to investi-
gate plant–natural enemy communication in climate change scenarios.

4  | CONCLUSIONS AND OUTLOOK

To wrap up this review, I will answer the questions proposed in the 
introduction in light of the available literature.

1.	 Is plant–natural enemy communication stable enough to withstand 
disruption by biotic and abiotic factors?

The existing literature shows that many volatile-mediated plant–nat-
ural enemy interactions can withstand disruption due to multiple biotic 
and abiotic factors. However, there are exceptions in all cases, and with 
so few studies available, the risk of hasty generalization is high. The over-
all stability of the interaction is likely to depend on the individual variabil-
ity at both ends of the scale (e.g., the levels of plant tolerance to stress or 
foraging behavior of the natural enemy), and on the bottom-up effects of 
biotic and abiotic stress factors.
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2.	 Which biotic and abiotic factors disrupt communication between 
plants and natural enemies?

Due to the limited amount of available of literature, it is difficult to 
predict accurately which factors disrupt plant–natural enemy communi-
cation. Each system is unique and needs to be explored in the ecological 
context in which it occurs, including the interactions between multiple 
biotic and abiotic factors. However, the literature reviewed here sug-
gests that belowground herbivory consistently disrupts natural enemy 
attraction, presumably due to the strong effects of root herbivory on nu-
trient uptake and plant metabolism that impact plant signaling and her-
bivore quality as a prey. More studies are required to support or reject 
this hypothesis.

3.	 Are there common patterns allowing us to make predictions 
about the outcome of these tritrophic interactions under biotic 
and abiotic stress scenarios?

Although it may be tempting trying to predict the outcome of plant–
natural enemy interactions by investigating only one the actors involved, 
this is often insufficient and pays no heed to ecological complexity. A 
more systemic approach is needed to understand the stability and direc-
tion of these interactions in nature, and under biotic and abiotic stress. 
There is a common thread in the existing reports, suggesting that natural 
enemies can infer host quality based on volatile cues. Hence, the bot-
tom-up effects (both positive and negative) of biotic and abiotic factors 
on plant quality for the herbivore, and of this as host for the natural ene-
mies, are likely to play an important role determining the outcome of the 
interaction. Therefore, investigating these bottom-up effects is crucial 
for further studies aiming to understand the impact of biotic and abiotic 
factors on plant–natural enemy interactions.

Research on multitrophic interactions has slowly progressed from 
evaluating linear plant–herbivore–natural enemy systems under con-
trolled conditions into more complex models incorporating multiple 
attackers and abiotic conditions. However, even at this level, there 
is a high risk of oversimplification, as both biotic and abiotic factors 
are likely to interact in complex ways, rather than just having additive 
effects.

Critical aspects for future research to understand the stability of 
plant–natural enemy interactions in nature include the effects of bi-
otic and abiotic stress on natural enemy foraging behavior, the im-
pact of the stress intensity on volatile emission and natural enemy 
recruitment, and the complex role of microorganisms on plant–natu-
ral enemy interactions. The ultimate goal is to establish the impact of 
multiple co-occurring biotic and abiotic factors that recreate natural 
and climate change scenarios, and the identification and exploration 
of newly emerged and threatened interactions as a result of climate 
change.
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