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Introduction
Dipicolinic acid (DPA; 2,6-pyridinedicarboxylic acid) is a 
tryptophan metabolite of microorganisms and is found in 
natto, a foodstuff consisting of fermented soybeans. Dipicolinic 
acid has various biological activities,1,2 such as affecting the 
heat resistance of bacterial spores3,4 and inhibiting platelet 
aggregation.5 Consequently, a method for determining DPA 
levels would help elucidate DPA’s biochemical mechanism and 
also to assess the quality of commercially available natto.

The DPA quantification has been carried out using a colori-
metric assay,6 gas–liquid chromatography,7 fluorometry,8,9 and 
liquid chromatography.10 However, these methods require a 
time-consuming pretreatment. In this work, a method for the 
determination of DPA by high-performance liquid chroma-
tography (HPLC) coupled with postcolumn photoirradiation 
with zinc acetate has been developed. To provide a DPA assay 
by separating admixture components, using a Capcell Pak C18 
(type of MG III) column and in the derivatization reaction, 
zinc acetate is added to a 2-picolinic acid compounds, and 
ultraviolet (UV) light is emitted to generate fluorescence. 
Natto is made into a paste, subsequently weighed, dissolved, 
and deproteinized with perchloric acid to prepare a sample for 
injection. Thus, the system could be adapted for determining 
DPA in natto by a simple pretreatment.

Experiment
Chemicals

DPA (Figure 1) was purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Zinc acetate and other chemicals were purchased 

from FUJIFILM Wako Pure Chemical (Osaka, Japan). All 
chemicals were analytical reagent grade.

Natto sample

Commercially available natto was used as an analytical sample 
until the flavor expiration date and was stored at 4°C until 
analyzed.

Fluorescence spectra of UV-irradiated DPA

Fluorescence spectra were recorded using a fluorescence spec-
trophotometer (F-7000; Hitachi, Tokyo, Japan). Reaction con-
ditions: to 0.5 mL of DPA solutions (10 μg/mL) was added 
2.5 mL of the mobile phase in a petri dish. The mixture was 
irradiated with germicidal light (Model GL-15BL) for 
20 minutes.

Chromatographic system

The chromatographic system (Figure 2) comprised a high-pres-
sure pump (Model LC-20AD, Shimadzu, Kyoto, Japan), a sample 
injector (Model 7125, Rheodyne), an analytical column 
(250 × 4.6 mm i.d.) of Capcell Pak C18 (type of MG III; OSAKA 
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Figure 1. Structure of dipicolinic acid (DPA).
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SODA, Osaka, Japan), an RF-20Axs fluorescence spectropho-
tometer, and a Chromatopac C-R6A data processor (Shimadzu, 
Kyoto, Japan). Ultraviolet irradiation was carried out in an ethyl-
ene tetrafluroethylene tube (8.0 m × 0.25 mm i.d.), which was 
wound around a “germicidal light” source (Model GL-15). The 
mobile phase of 0.1 mol/L disodium hydrogen phosphate, 
0.05 mol/L citric acid buffer containing 35 mmol/L perchloric 
acid and 3.0 mmol/L zinc acetate (pH 3.0), was delivered at a flow 
rate of 0.8 mL/min. Fluorescence was measured at excitation and 
emission wavelengths of 336 and 448 nm, respectively.

To avoid any cross-contamination and regenerate the col-
umn, the flow rate was increased to 1.2 mL/min and 100 μL of 
tetrahydrofuran (THF) were injected into the column. After 
10 minutes, flow rate was decreased to 0.8 mL/min and 100 μL 
of mobile phase were injected.

Analytical validation

Calibration graphs were based on the analysis of standard solu-
tion of DPA with injection amounts of 13.3 to 7467 ng/mL by 
injecting a 15 μL volume. The detection limit was determined 
as three times the baseline noise. Intraday and interday preci-
sions for the developed method were measured in terms of 
relative standard deviation (%) with 240 and 333 ng/mL DPA, 
respectively. To determine the recovery, diluted sample of natto 
was prepared by adding 160 ng/mL DPA standard solution.

Pretreatment of natto

Five grams of natto were grinded into paste using a mortar and 
pestle. And, 0.5 g of paste was suspended in 100 mL of deion-
ized water and sonicated for 1 minute at room temperature in 
an ultrasonic cleaner. The suspension (200 μL) was then 
deproteinized by adding 100 μL of 0.5 mol/L perchloric acid. 
Excess perchlorate was removed by adding 100 μL of 0.5 mol/L 
potassium chloride. Prior to injection, the deproteinized sus-
pension was 0.2-μm-filtered and 15 μL was injected into the 
HPLC.

Results and Discussion
Fluorescence spectra of UV-photoirradiated DPA

Figure 3 shows the excitation and emission spectra of the fluo-
rescence produced by picolinic acid and DPA on UV irradia-
tion in the presence of zinc acetate. The excitation (ex.) and 
emission (em.) maxima were observed at 336 and 448 nm, 
respectively.

When the metal salts made the fluorescence intensity of 
zinc acetate 100% by UV-irradiation, magnesium (II) sulfate 
was 18%, and calcium (II) acetate, iron (III), and iron (II) 
chloride did not show the fluorescence. Although the fluo-
rometry using zinc acetate is an example of kynurenic acid 
developed at our laboratory,11 the presented method does not 
fluoresce without photoirradiation. In the pyridine-2-car-
boxylic acid derivatives, eg, pyrazine-2-carboxamide (PZ) 
and glipizide (GPZ), they produced fluorophore with photo-
reaction using zinc acetate. Pyrazine-2-carboxamide and 
glipizide were observed at ex.367 nm, em.419 nm and at 
ex.364 nm, em.416 nm, respectively. The photoreaction of 
2-pyridinecarboxylic acid was reported including chelate 
componds.12 Sugimori et al13 reported the formation of 
2,2′-bipyridine in the photoreaction of 2-pyridinecarboxyla-
toiron (III) complex. In this method, the fluorophore of 
DPA was still unknown.

Figure 2. Flow diagram of postcolumn photoderivatization system. 

Conditions are given in the “Experiment” section.
MP = mobile phase; P = high-pressure pump; VI = valve injector; C = analytical 
column; PR = photoreactor coil; FD = fluorescence monitor; INT = integrator.

Figure 3. Fluorescence excitation and emission spectra of picolinic (A) and dipicolinic acid (B) obtained by the method of “Experiment” section. a1 and b1, 

DPA; a2 and b2, sample blank for a1 and b1, respectively.
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Chromatographic conditions and 
photoderivatization

The mobile phase did not contain an organic solvent, and the 
C8 column had insufficient separation of DPA and impurities. 
Furthermore, in Capcell Pak ADME filled with an adamantyl 
group, DPA peak observed a broader peak than C18 column. 
Capcell Pak C18 was able to obtain a sharp peak by adding 
perchloric acid to the mobile phase.

Figure 4 depicts a typical chromatogram of a standard DPA 
sample. The retention time of DPA was 7.7 minutes. In addi-
tion, retention time of picolinic acid was 8.7 minutes.

In the mobile phase, the concentration of zinc acetate for 
the maximum fluorescence intensity was observed at 3.0 mmol/L. 
Figure 5 shows the maximum fluorescence of pH was observed 
at pH 4.0, but the pH 3.0 was adopted, because of became 
clouded in the mobile phase at pH 4.5 or higher. The optimum 

condition of coil length was 7.0 to 9.0 m; here, 8.0 m length was 
adopted.

Validation of the chromatographic system

Table 1 shows the validation results for this method. The intra-
day and interday precisions for DPA was <7% (n = 6). The 
DPA calibration was linear in a range of 0.20 to 112 ng 
(y = 10.7x − 0.44, r = 0.999) and relative standard deviation was 
3.6% at 3.6 ng (n = 8). The recovery (%) of DPA was >92% 
(n = 6).

Figure 6 depicts chromatograms of DPA in natto. The DPA 
peak was observed at the corresponding retention time after 
irradiation (Figure 6A), but not when the sample was not irra-
diated (Figure 6B), demonstrating the specificity of the method.

More peaks were detected at higher retention times. They 
were not sufficiently removed by methanol injection and took 
several hours to analyze the next sample. It was thought that 
octadecyl silylated silica (ODS) group of packing material in 
the column became a ligand collapse in mobile phase contain-
ing methanol14,15 and stood up in THF. Therefore, to avoid any 
cross-contamination and regenerate the column, THF were 
injected into the column. After 100 μL of mobile phase were 
injected, column was conditioned for 40 minutes before new 
sample injection (Figure 7).

The mean ± SD of DPA in a commercially available natto 
sample was 7.24 ± 0.54 mg/100 g (wet weight, n = 6) by the pre-
sented assay. Sumi and Ohosugi16 reported that the amount of 
DPA in natto without and with an autoclaving; 6.64 and 
20.55 ± 13.67 mg/100 g, respectively. The value without auto-
clave treatment is similar to the value by presented assay. The 
autoclave was used to break spores; however, in our experiments, 
the amount of autoclaved standard DPA decreased to 14.2% and 
17.7% at 121°C, in 20 and 30 minutes, respectively. Therefore, 
pretreatment with the autoclave may not be appropriate.

This method facilitates easy pretreatment and is highly sensi-
tivity and efficient for determining DPA levels in natto, indicat-
ing that it could be useful in nutritional and biochemical studies.

Figure 4. Chromatogram of DPA standard sample. The photoirradiation 

reaction was carried out as described in the “Experiment” section using 

amount of 5.0 ng DPA.

Figure 5. Effect of (A) pH and (B) coil length for DPA on the fluorescence intensity.
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