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Hermansky-Pudlak Syndrome (HPS) is a rare, genetic, multisystem disorder characterized
by oculocutaneous albinism (OCA), bleeding diathesis, immunodeficiency, granulomatous
colitis, and pulmonary fibrosis. HPS pulmonary fibrosis (HPS-PF) occurs in 100% of
patients with subtype HPS-1 and has a similar presentation to idiopathic pulmonary
fibrosis. Upon onset, individuals with HPS-PF have approximately 3 years before
experiencing signs of respiratory failure and eventual death. This review aims to
summarize current research on HPS along with its associated pulmonary fibrosis and
its implications for the development of novel treatments. We will discuss the genetic basis
of the disease, its epidemiology, and current therapeutic and clinical management
strategies. We continue to review the cellular processes leading to the development of
HPS-PF in alveolar epithelial cells, lymphocytes, mast cells, and fibrocytes, along with the
molecular mechanisms that contribute to its pathogenesis and may be targeted in the
treatment of HPS-PF. Finally, we will discuss emerging new cellular and molecular
approaches for studying HPS, including lentiviral-mediated gene transfer, induced
pluripotent stem cells (iPSCs), organoid and 3D-modelling, and CRISPR/Cas9-based
gene editing approaches.
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INTRODUCTION

Hermansky-Pudlak Syndrome (HPS) is a rare, autosomal recessive, multisystem disorder that has a
disproportionately high effect on Puerto Ricans (1 in 1800) (Witkop et al., 1990). This disorder is
caused by genetic mutations which result in defective lysosome-related organelles (LROs) such as
melanosomes, which synthesize and store melanin, and platelet dense granules, which store small
signaling molecules involved in platelet aggregation (Hermansky and Pudlak 1959; Seiji et al., 1963;
King and Reed, 2002). Consequently, patients with HPS often develop oculocutaneous albinism
(OCA), which results in hypopigmentation of hair, skin, and eyes, iris transilluminations, visual
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acuity, congenital nystagmus, foveal hypoplasia, and increased
optic nerve decussation (Gahl et al., 1998; Power et al., 2019).
Other symptoms include bleeding diathesis, and in a large
number of individuals, immunodeficiency, granulomatous
colitis, and pulmonary fibrosis. Affected individuals with
bleeding diathesis may experience variable bruising, gingival
bleeding, postpartum hemorrhage, colonic bleeding, and
epistaxis (Huizing et al., 1993). Granulomatous colitis, which
affects approximately 15% of patients with HPS, has similar
clinical and pathological presentations as chronic ulcerative
colitis and Crohn’s disease (Huizing et al., 1993; Grucela et al.,
2006; Hazzan et al., 2006; Salvaggio et al., 2014).

HPS pulmonary fibrosis (HPS-PF) is a highly penetrant
pulmonary fibrosis that occurs in patients with subtypes HPS-
1, HPS-2, and HPS-4 (White et al., 1984; Brantly et al., 2000;
Bachli et al., 2004). Onset usually occurs at 30–40 or 50–60 years
of age, depending on the individual’s genetic makeup and
response to inflammation (Vicary et al., 2016). HPS-PF shares
a similar histological pattern as idiopathic pulmonary fibrosis
(IPF) and is characterized by the development of dyspnea and
incrementing debilitating hypoxemia (American Thoracic
Society, 2002; Vicary et al., 2016). Much like IPF, HPS-PF
results in progressive and irreversible scarring of lung tissue
that ultimately leads to respiratory failure and death within
approximately 10 years of HPS-PF onset (American Thoracic
Society, 2002; Gahl et al., 2002). There are currently no available
therapeutic interventions designed to treat HPS-PF, and the
mainstay of clinical management is lung transplantation.
However, the processes of finding a donor and performing the
transplant can be difficult and risky. In Puerto Rico, for example,
centers capable of performing lung transplantation are not
available (Vicary et al., 2016). Thus, there is a pressing need to
better understand the underlying mechanisms and pathogenesis
of HPS and HPS-PF in order to begin developing effective
therapeutic treatments.

Cellular processes that contribute to the pathogenesis of HPS-
PF include apoptosis and dysfunction of type II alveolar (AT2)
cells, and immune cell activation and dysfunction leading to
alveolar inflammation (Fontana et al., 2006; Phan 2012; Trimble
et al., 2014; Gil-Krzewska et al., 2017). Clinical studies suggest
that mast cells and fibrocytes also likely play a role in HPS-PF
although their mechanism of action is not fully understood
(Trimble et al., 2014; Kirshenbaum et al., 2016). Studies using
murine models of HPS have shined a light on the molecular
mechanisms of fibroprolifeation in HPS. High levels of Chitinase-
3-like 1 (CHI3L1), a prototypic chitinase-like protein, have been
associated with tissue injury and remodeling in various forms of
pulmonary fibrosis (PF), including HPS-PF (Zhou et al., 2015).
Galectin-3 (Gal-3), a β-galactoside-binding lectin that interacts
with CHI3L1 and its receptor IL-13Rα2, is associated with the
progression of HPS-PF (Zhou et al., 2018). Additionally, various
matrix metalloproteinases (MMPs) that have been shown to
contribute to other forms of PF, is dysregulated in the HPS
lung (Summer et al., 2019). Defective autophagy may also play a
role in the development of HPS-PF (Ahuja et al., 2016). While
many of these cellular and molecular processes have been
identified as important contributors to the development of

HPS-PF, little is known about the mechanisms linking these
processes to the actual fibroproliferative processes, and no
therapeutic has been developed to target these cell and
molecular pathways.

The goal of this review is to summarize the current
understanding of HPS, focusing on its genetic basis,
epidemiology, and current clinical management, along with
the cellular and molecular pathways involved in the
progression of HPS-PF. This review will also discuss novel
models for future studies of HPS-PF, potential targets for
treatment, and areas of research within HPS that require
further investigation.

GENETICS

The ten subtypes of HPS, HPS-1 through HPS-10, are caused by
mutations in human genes HPS1 through HPS10, respectively.
These HPS genes encode proteins that form Biogenesis of
Lysosome-related Organelles Complexes (BLOCs), which are
essential for the synthesis of LROs such as melanosomes,
platelet dense bodies, lamellar bodies, and lytic granules of
cytotoxic T lymphocytes (Dell’Angelica et al., 2000;
Dell’Angelica, 2004). Defects in these LROs result in
hypopigmentation and platelet storage deficiencies observed in
all patients with HPS (Huizing et al., 2000). Three BLOCs-BLOC-
1, BLOC-2, and BLOC-3-have been associated with the
development of HPS. As displayed in Figure 1, BLOC-1 is a
multimeric complex containing proteins HPS-7, HPS-8, and
HPS-9, along with other subunits such as Snapin and other
BLOS subunits (Li et al., 2003; Cullinane et al., 2012; Badolato
et al., 2012; Starcevic and Dell’Angelica 2004). BLOC-2 is
comprised of three large subunits, HPS-3, HPS-5 and HPS-6
(Carmona-Rivera et al., 2011; Starcevic and Dell’Angelica 2004;
Bowman et al., 2019). BLOC-3 is a two-subunit complex
composed of HPS-1 and HPS-4 proteins (Chiang et al., 2003).
Mutations in adaptor protein complex-3 (AP-3)—a stable
heterotetrametric complex (Figure 1) that assists in the
transport of vesicles from endosomes and the biogenesis of
LROs—have also been implicated in the development of HPS
(Simpson et al., 1997). Specifically, genes AP3B1 and AP3D
encode the subunits β3A and δ of AP-3, respectively, and
mutations in these genes result in HPS subtypes HPS-2 and
HPS-10 (Simpson et al., 1997; Mohammed et al., 2019).
Mutations found in the same BLOCs result in similar
phenotypes with BLOC-3-related HPS subtypes having the
most severe complications including the development of HPS-
PF (Hermos et al., 2002; Anderson et al., 2003; Huizing et al.,
2009). Individuals with a BLOC-1 and BLOC-2 related mutations
present with milder OCA symptoms, and little to no pulmonary
fibrosis when compared to individuals with mutations in HPS1
and HPS4 (BLOC-3 related) (Iwata et al., 2000; Anikster et al.,
2001).

At present, there is still uncertainty about how mutations in
the HPS genes lead to the clinical manifestations of HPS, but
several studies have begun to identify the functions of HPS
proteins and their associated BLOCs. BLOC-1, BLOC-2, and
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AP-3 interact and assist in melanosome biogenesis by trafficking
necessary components from endosomes away from the
degradative lysosomal pathway (Di Pietro et al., 2006; Setty
et al., 2007; Truschel et al., 2009). BLOC-3 is a Rab32 and
Rab38 (Rab32/38) guanine nucleotide exchange factor (GEF),
which is capable of activating small GTPases and affecting
downstream targets via intracellular signaling and protein
trafficking. Rab32/38 assists in the trafficking of enzymes
important for proper pigmentation, and mutations in Rab38
and the prenylation machinery that links Rab proteins to
membranes can result in alteration of platelet and
melanosome formation, causing pigmentation defects
(Gerondopoulos et al., 2012; Vicary et al., 2016). Additionally,
activated Rab32/38 is needed for the transport of tyrosinase and
tyrosinase-related protein I (TYRP1) from premature endosomes
to melanosomes in melanocytes (Wasmeier et al., 2006).
Disruption of this Rab32/38 function leads to the common
oculocutaneous manifestations found in individuals with
HPS-1 (Ikawa et al., 2015). AT2 cells play a crucial role in
surfactant synthesis and secretion in the lungs (Guttentag
et al., 2005; Atochina-Vasserman et al., 2011). In AT2 cells,
Rab38 assists in the maturation and maintenance of lamellar
bodies, surfactant homeostasis, and the structure of the
alveolar epithelium (Osanai et al., 2008; Zhang et al., 2011).
AT2 cells lacking Rab38 have enlarged lamellar bodies with
altered surfactant contents, leading to the progressive lung
fibrosis seen in patients with subtypes HPS-1 and HPS-4.
While studies suggest that mutations causing defects in
BLOC-3 and Rab32 in macrophages and monocytes might
lead to susceptibility to granulomatous colitis, little is still
known about the molecular and cellular basis of this
connection.

EPIDEMIOLOGY

HPS has been reported in patients worldwide and seen in
individuals with different ethnic backgrounds, including
India, China, Japan, Western Europe, the Middle East, and
Latin America (Carmona-Rivera et al., 2011). However, it has
been most commonly reported in the Caribbean island of
Puerto Rico. In the northwest region of Puerto Rico, 1 in 1800
suffer from subtype HPS-1, and 1 in 21 are a carrier of the

founder mutation, a 16 base pair (bp) duplication in exon 15
of HPS1 (El-Chemaly and Young, 2016). Molecular analysis of
non-Puerto Rican Hispanic HPS patients have revealed that
none of these patients carries the Puerto Rican mutation in the
HPS1 gene, but rather other mutations in the HPS1, HPS4 and
HPS5 genes (Carmona-Rivera et al., 2011). In central Puerto
Rico, 1 in 4000 people are affected by subtype HPS-3 (Anikster
et al., 2001; Santiago Borrero et al., 2006). Ashkenazi Jews
comprise a majority of the non-Puerto Rican patients affected
by the HPS-3 subtype (Huizing et al., 2001). Given how the
severity of HPS clinical symptoms can vary depending on the
HPS subtype, it may be valuable to do wider screenings for
HPS in patients with mild hypopigmentation disorders. One
study has shown that 35% of the German albino population
are candidates for having mild HPS (Passmore et al., 1999;
Huizing et al., 2001).

CLINICAL MANIFESTATIONS

All HPS subtypes result in OCA and a platelet storage pool
deficiency (Seward and Gahl, 2013). However, each subtype of
HPS is distinguished from the others by signs, symptoms and
genetic cause, as described in the above sections (Huizing et al.,
1993; Li et al., 2004; Sánchez-Guiu et al., 2014). PF can occur in
patients with mutations in HPS1, AP3B1 (HPS2), and HPS4, and
individuals in the northwest region of Puerto Rico are largely
affected (Huizing et al., 1993). Other subtypes like HPS-3, HPS-5,
and HPS-6 have milder symptoms (Kelil et al., 2014; Vicary et al.,
2016).

Skin/Hair/Eye Hypopigmentation
Hair color in HPS patients ranges from white to brown and can
also darken with age. Skin color can be white or olive (Huizing
et al., 1993). Patients with hypopigmentation of the skin are at
increased risk of solar keratosis, photo-aging of the skin, sunburn,
and 3 major forms of cutaneous malignancy: squamous cell
carcinoma, basal cell carcinoma, and melanoma (Huizing
et al., 2000). The risk of UV-associated skin damage in
patients with HPS is highest in childhood (Seward and Gahl,
2013). The eyes in almost all children with HPS have nystagmus
and periodic alternating nystagmus which cause wandering eye
movements and lack of visual attention (Gradstein et al., 2005).

FIGURE 1 |Genes encoding subunits of four proteins complexes called the Biogenesis of Lysosome-related Organelles Complexes (BLOC-1, -2, -3) and Adaptor
Protein-3 (AP-3). The protein complexes play a role in the intracellular trafficking required for LRO biogenesis. Created with BioRender.com.
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Bleeding Diathesis
The HPS platelet storage pool deficiency causes bleeding diathesis
and often manifests in infancy and persists throughout life.
Bleeding can occur with simple trauma to the skin, dental
extractions or dental cleanings, and menstrual bleeding for
many women with HPS (Seward and Gahl, 2013). Pregnancies
have to be managed as high risk because of the bleeding diathesis
(Beesley et al., 2008). Epistaxis usually occurs in childhood and
diminishes after adolescence (Huizing et al., 1993). Patients with
HPS wear medical alert bracelets: due to bleeding diathesis
complications, blood-thinning medications such as ibuprofen,
aspirin, and warfarin should be avoided. Instead, desmopressin
can be used to prevent these bleeding complications.
Additionally, platelet transfusions may be required in the case
of severe bleeding episodes or surgical procedures (El-Chemaly
and Young, 2016).

Colitis
The granulomatous inflammation in the bowel of patients with
HPS resembles that of Crohn’s disease both clinically and
pathologically (Salvaggio et al., 2014). The involvement of the
gastrointestinal tract by a granulomatous colitis has been
described in patients with HPS-1, HPS-4 and HPS-6 (Huizing
et al., 1993; El-Chemaly and Young, 2016). Severe colitis affects
approximately 15% of patients with HPS (El-Chemaly and
Young, 2016). Treatment of HPS-related colitis entails a
similar treatment to Crohn’s disease with anti-inflammatory
drugs, immunosuppressants, and infliximab (Hazzan et al.,
2006; Hussain et al., 2006). Surgery is the last resort for
patients with further complications (Seward and Gahl, 2013).

Immunodeficiency
Individuals with HPS-2, which is characterized by the lack of the
β3A subunit in the Adaptor protein-3 (AP-3), are
immunodeficient (Fontana et al., 2006). Neutropenia, an
abnormally low neutrophil count, has been associated with
AP-3-deficient HPS-2 patients, including the individuals with
the pathogenic variants in AP3B1 (Huizing et al., 1993; Fontana
et al., 2006). The mechanisms that contribute to the defective
immune system in HPS-2 patients remain unknown. Studies
using cells from HPS-2 patients predict cellular processes for
the immune dysfunction are associated with impaired function of
cytotoxic T cells and Natural Killers (NK) cells (Gil-Krzewska
et al., 2017). Dendritic cells from HPS-2 patients showed severely
impaired cytokine and chemokine release, indicating that faulty
cytokine secretion could be one of the major factors contributing
to immunological deficiency in individuals with HPS-2 (Prandini
et al., 2016; Gil-Krzewska et al., 2017). It is interesting to note that,
in addition to HPS-2, NK cells recovered from HPS-1 individuals
also had reduced cytotoxicity and lytic functions. HPS-1 patients
are generally not immunodeficient and are not predisposed to
infections because the reduced NK cell activity was mitigated with
increased cell number (Gil-Krzewska et al., 2017). However, the
authors found normal NK cell activity in HPS-4 individuals,
suggesting that BLOC-3 complex does not have a direct role in
regulating NK cell cytotoxicity. Animal models of HPS have
provided supportive evidence for defective immune system

associated with HPS-2. Using cells from AP3B1(HPS2)
deficient mice, Sasai et al. demonstrated that AP-3 is
responsible for the trafficking of TLR9 to this subcellular
compartment, contributing to pattern recognition of viral
nucleic acids (Sasai et al., 2010).

Pulmonary Fibrosis
Patients with HPS-1, HPS-2, and HPS-4 most commonly
experience associated PF. HPS-PF and IPF are considered
similar diseases because they show similar patterns clinically
and histologically (Vicary et al., 2016). In patients with HPS-1,
about 100% of individuals develop HPS-PF. Similar to IPF, HPS-
PF is characterized by a progressive fibrogenesis of the lung
parenchyma and interalveolar septa that eventually leads to death
from respiratory failure (Seward and Gahl, 2013). Both forms of
PF also manifest similar symptoms, including dyspnea and
incrementing debilitating hypoxemia. One difference is that
IPF typically manifests in individuals over age 50 years old
while HPS-PF typically manifests in individuals at the age of
30–40 years old. Additionally, the average survival time after
diagnosis with IPF and HPS is about 3 years (Witkop et al., 1990;
Vicary et al., 2016; Raghu et al., 2018). To date, the pathogenesis
of PF in HPS remains unknown, and the PF is the leading cause of
death in HPS patients. For the remaining of this article, we focus
on the clinical management strategies of HPS-PF, as well as
clinical and experimental evidences using cell culture and animal
models investigating the pathogenesis of HPS-PF.

CLINICAL MANAGEMENTS OF HPS-PF

Diagnosis
The diagnosis of pulmonary fibrosis is performed with a high-
resolution computed tomography of the chest (HRCT). HRCT is
performed using a CT scanner that takes thin-slice chest images
with lung details. Some of the findings in the HRCT in the early
stages include septal thickening, ground-glass pattern, mild
reticulation, and in the advanced stages of HPS-PF, severe
reticulation, bronchiectasis, subpleural cysts, and
peribronchovascular thickening may be found. HRCT is more
sensitive than chest radiography in the evaluation of the
progression of HPS-PF, and provides a good radiologic
monitoring of disease progression that correlates well with age,
extent of pulmonary dysfunction, and genetic findings (Avila
et al., 2002).

Pirfenidone as the Treatment for HPS-PF
Although the mechanism of action of pirfenidone is still
unknown, it has been shown to have both anti-inflammatory
and anti-fibrotic effects (Cho and Kopp, 2010). Inhibition of both
production and activity of TGF-β is considered as a key
characteristic of the anti-fibrotic mechanism of pirfenidone
(Myllärniemi and Kaarteenaho, 2015). Pirfenidone treatment
has been shown to drastically suppresses the TGF-β gene
transcription by 33% in bleomycin-induced lung injury
hamster model (Iyer et al., 1999b) and in the other study
pirfenidone extinguishes bleomycin-induced overexpression of
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procollagen I and III genes (Iyer et al., 1999a). It was subsequently
approved by the United States Food and Drug Administration as
treatment for IPF in 2014, after a multinational phase 3 trial
conducted for 52 weeks which showed that pirfenidone reduced
disease progression in patients with IPF and was associated with
acceptable side effects and fewer deaths (King et al., 2014; Meyer
and Decker, 2017). Pirfenidone was investigated at the National
Institutes of Health (NIH) Clinical Center as a treatment for HPS-
PF (O’Brien et al., 2011; O’Brien et al., 2018; Gahl et al., 2002). An
initial trial investigated the drug for mild to moderate HPS-PF
patients. However, the study was terminated due to futility (Gahl
et al., 2002). A subsequent study showed that subjects with an
initial forced vital capacity (FVC) between 50 and 75% who
received pirfenidone lost forced vital capacity at a slower rate than
those in the placebo group. Yet, the entire data showed no
significant difference between the pirfenidone and placebo
groups (Gahl et al., 2002; O’Brien et al., 2018). The results of
these trials are inconclusive if pirfenidone is a beneficial treatment
for HPS-PF patients. While this study did not provide sufficient
data whether pirfenidone is advantageous in treatment for HPS-
PF, it offered evidence about the safety of pirfenidone in patient
with mild to moderate HPS-PF. Patients experienced
comparatively few and mild side effects such as
photosensitivity rash which was treatable and conceivably an
elevated creatine phosphokinase. Continued long-term study
follow-up is important to inform clinical practice and to
demonstrate the efficacy and safety of pirfenidone, as
pulmonary fibrosis patents are expected to receive prolonged
treatment with pirfenidone. Accordingly, a more recent study
followed three HPS-PF patients with open-label pirfenidone for
12.8, 8.4, or 18.1 years (mean of 13.1± 2.8 years), and twenty-one
historical controls randomized to placebo (O’Brien et al., 2018).
Changes in the rate of decline of FVC and the diffusing capacity
for carbon monoxide (DLCO) in response to prolonged
treatment with pirfenidone was various in these 3 patients.
Overall, long-term pirfenidone treatment demonstrated
positive improvement in the results of serial pulmonary
function tests and HRCT scans in 2 out of 3 patients.
Moreover, all patients who shifted from placebo to open-label
pirfenidone experienced positive changes in the rate of FVC and
DLCO. In terms of pirfenidone treatment safety, all 3 patients had
normal levels of aspartate aminotransferase and normal blood
test results at their final evaluation except for low serum
potassium level and high platelet count in 2 different patients.
The results of this study demonstrated favorable clinical outcome
with few manageable adverse effects on HPS-PF patients that
were treated with pirfenidone for several years. These results
suggest that the drug can be considered on a case-by-case basis for
HPS-PF patients. Multiple clinical trials are investigating single
drug therapy for pulmonary fibrosis and have been unsuccessful.
For that reason, pulmonary fibrosis may need to be treated with a
multidrug regimen to target cellular and molecular pathways that
contribute to fibrosis.

Lung Transplantation
Lung transplantation remains the only available therapy for
patients with HPS-PF. HPS-PF patients should be referred for

lung transplant evaluation in the early stages of the disease (El-
Chemaly et al., 2018a). The bleeding diathesis associated with
HPS is not a major impediment to perform surgery in HPS
patients, although it can be a potential contraindication because
of the tendency to bleed due to deficiency of platelet dense bodies
(El-Chemaly et al., 2018b). Successful lung transplants have been
performed in individuals with HPS-1 despite the risks of bleeding
(El-Chemaly and Young, 2016). The bleeding diathesis is usually
treated with desmopressin or platelet transfusions. In Puerto
Rico, centers with capabilities in lung transplantation are not
available. For this reason, connections with centers for lung
transplantation in the United States are important because this
is the only available therapy for patients with HPS-PF (Vicary
et al., 2016).

PATHOGENESIS OF PULMONARY
FIBROSIS

The pathogenesis of HSP-PF is unknown. To date, there are
promising clinical studies investigating the pathogenesis of PF in
HPS patients. However, these studies are limited by the
availability of HPS lung tissue due to the disease rarity and
the dangers of lung transplantation caused by bleeding
diathesis (El-Chemaly et al., 2018a). For that reason,
researchers have used murine models since they share many
aspects with the human disease. In both human and mice, the
disease affects the biosynthesis of the related organelles:
melanosomes, lysosomes, and platelet dense granules (Swank
et al., 2000). Thus, researchers can easily assess cells and
tissues from various HPS mouse models, and perform genetic
and pathological manipulations. In addition to a limited number
of clinical studies profiling immune cell dysregulation in HPS
patients, current understandings of the pathogenesis of HPS-PF
are largely based on examining cellular and molecular pathways
involved using HPS mice and bleomycin-induced lung fibrosis as
experimental models.

Cellular Pathways
Epithelial Cell Stress and Apoptosis
The pulmonary alveolar epithelium is mainly composed of two
types of epithelial cells: alveolar type I (AT1) and AT2 cells. AT1
cells are large squamous cells that cover 95% of the alveolar
surface area and are essential for the air-blood barrier functions of
lungs. AT2 cells are smaller and cuboidal cells known for their
functions in synthesizing and secreting pulmonary surfactant
(Wang et al., 2018). Murine models and lung pathology
specimens have provided insights into the role of lung
epithelium in the pathogenesis of PF. In HPS patients, features
of HPS-PF include the apoptosis and dysfunction of AT2
epithelial cells (Figure 2), which appear foamy because of the
formation of giant lamellar bodies (Nakatani et al., 2000). Studies
have shown that pale-ear mice (with spontaneous HPS1
mutation) develop giant lamellar bodies in AT2 epithelial cells
at baseline and after bleomycin challenge (Tang et al., 2005;
Young et al., 2007). Additionally, investigations using HPS1/2
double mutant mice demonstrated abnormal intracellular
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accumulation of surfactant proteins in AT2 cells. Such surfactant
accumulation can lead to the production of Cathepsin D, a
lysosomal stress protease, and subsequent expression of the
pro-apoptotic endoplasmic reticulum (ER) stress factor CHOP
and its transcription factor ATF4, to induce apoptosis. The
combined lysosomal and ER stress in AT2 epithelial cells
results in significant AT2 epithelial cell apoptosis, airspace
enlargement, fibroblast proliferation, and spontaneous lung
fibrosis in HPS1/2 double mutant mice (Mahavadi et al.,
2010). In fact, Bone marrow transplantation experiments
demonstrate that, in various HPS mouse models, susceptibility
to bleomycin-induced fibrosis is determined by the threshold of
AT2 epithelial cell apoptosis, indicating the critical role for lung
epithelial cells in the regulation of immune activation and

subsequent fibroproliferative remodeling processes (Zoz et al.,
2011; Young et al., 2012).

Alveolar Epithelial Cell/Macrophage Interaction
The mechanisms linking AEC dysfunction and fibrotic
remodeling, specifically the interactions between epithelial
dysfunction, alveolar macrophage activation, and ultimately
fibroblast proliferation and differentiation, are understudied in
the context of HPS-PF (Zoz et al., 2011; Young et al., 2012). There
is strong evidence that macrophage-mediated inflammation
contributes to the development of PF in HPS in patients
(Rouhani et al., 2009). The authors found a significantly
higher concentration of total bronchoalveolar lavage cells and
alveolar macrophages in HPS-PF patients. The alveolar

FIGURE 2 | Cellular pathways for the development of lung fibrosis in HPS. Created with BioRender.com.
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macrophage activation and lung inflammation in HPS patients
are associated with high lung concentrations of cytokines and
chemokines such as monocyte chemoattractant protein-1 (MCP-
1), macrophage inflammatory protein-1α, and granulocyte-
macrophage colony-stimulation factor) (Rouhani et al., 2009).
This provide evidence that alveolar macrophage dysfuction may
contribute to the PF in HPS-1 patients. Using the pearl-earmouse
model of HPS-2, Young et al. found HPS alveolar macrophages
are hyperresponsive to TNF-α and LPS stimulation (Young et al.,
2006). In a follow-up study, the authors found that an increase of
macrophages in the lungs of HPS mice was associated with
excessive MCP-1 production from AECs, and that blocking
MCP-1/CCR2 signaling eliminated the increased macrophage
recruitment in the lung while also reducing excess fibrotic
responses. Lung macrophages activated by MCP-1 produce
TGF-β, which promotes fibrosis through activation and
differentiation of fibroblast cells (Young et al., 2016). These
studies highlight that increased MCP-1 production by
dysfunctional AECs results in recruitment and activation of
TGF-β-producing macrophages, and epithelial-macrophage
interactions stimulate fibrotic remodeling.

Lymphocytes
In addition to alveolar macrophages, lymphocyte populations
may also contribute to the overall increased total bronchoalveolar
lavage cell in HPS-1 patients (Rouhani et al., 2009). Studies using
peripheral blood samples from HPS patients have shown that
levels of CD38 + memory CD27-B cells, IgA + memory CD27+

B-cells, IgM+ and IgD + B cells, and CD39 + T helper cells were
increased, and that CD39-T helper cells was reduced in HPS-PF
when compared with unaffected controls (El-Chemaly et al.,
2018a). Interesting, B cell abnormalities have been identified in
other fibrotic diseases such as IPF, which has been found to be
related to disease progression (Xue et al., 2013). In HPS-PF, it was
discovered that high peripheral blood concentrations of activated
T-cell and B-cell populations are associated with altered leptin
and inflammatory cytokine levels (Figure 2; El-Chemaly et al.,
2018a). Leptin can activate human B cells to induce synthesis and
secretion of cytokines that are critical in the regulation of immune
activation, such as IL-6, IL-10, and TNF-α (Agrawal et al., 2011).
Leptin can also stimulate the proliferation and activation of both
CD4 and CD8 T cells (Martin-Romero et al., 2000). Taken
together, these studies suggest that the activation of T-cells
and B-cells is a critical feature of HPS-PF. Additional studies
in animal models are required to investigate the role of leptin in
the regulation of lymphocyte activation in the pathogenesis of
HPS-PF.

Mast Cells
Mast cells have been known to be present in patients with PF and
they present signs of on-going degranulation (Kawanami et al.,
1979). Recent studies suggest that mast cells may drive fibrotic
responses to lung injury by stimulating fibroblasts proliferation
and ECM production in IPF (Wygrecka et al., 2013). In HPS-1
patients, in situ study showed that HPS-1 mast cells contained
abnormalities in mast cell granules, which are also classified as
LROs (Kirshenbaum et al., 2016). In vitro experiments of derived

HPS mast cells showed a reduction of CD117 and FcεRI
expression, and increased expression of CD63 and CD203c. A
reduction of granule formation was verified in cell line derived
from one HPS-1 patient, along with increased release of IL-6, IL-
8, fibronectin-1 and Gal-3 (Kirshenbaum et al., 2016).
Interestingly, these proteins are known to participate in HPS-
PF and are also produced by fibroblast (Cullinane et al., 2014) and
endothelial cells (Kusuma et al.. 2012). The results showed that
HPS-1 mutated mast cells have abnormal granule formation, cell
activation, release of cytokines, and potentially affect synthesis of
matrix deposition. Similar to the lymphocyte population, future
work in animal models are required to establish a direct role of
mast cells in the pathogenesis of HPS-PF.

Fibrocytes
Fibrocytes are circulating bone marrow-derived progenitor cells,
and are of interest for the study of fibrotic disorders. Fibrocytes
are positive for CD45, and express extracellular matrix proteins
such as vimentin, fibronectin, and collagen I and III (Trimble
et al., 2014). They are found in injured tissues, and can serve as an
important source of myofibroblasts (Keeley et al., 2010). Studies
have demonstrated the presence of an increased number of
fibrocytes in the circulation of IPF patients that are known to
have fibroblast activation and macrophage inflammation
(Reilkoff et al., 2011). Expanded pool of fibrocytes are found
in the peripheral blood of IPF patients (Mehrad et al., 2007;
Andersson-Sjoland et al., 2008) and is an independent predictor
of mortality (Moeller et al., 2009). In individuals with HPS, levels
of circulating CXCR4-positive fibrocytes in peripheral blood were
markedly elevated in comparison with subjects without lung
disease and normal controls. Longitudinally, these elevations
correlated with subsequent death from progressive lung
disease (Trimble et al., 2014). The results suggest that
circulating fibrocytes may be an important source of
myofibroblasts, and a potential biomarker of prognosis in
HPS-PF.

Molecular Pathways
Chitinase-3-like-1 and its Receptors
The glycoside hydrolase 18 (GH18) family is an ancient gene
family which contains true chitinases that enzymatically cleave
chitin and chitinase-like proteins. GH18 is widely expressed in
archea, prokaryotes and eukaryotes (Funkhouser and Aronson,
2007). In mammals, endogenous chitin does not exist. However,
chitinases and chitiase-like proteins (including CHI3L1) are
expressed at high levels in the lungs (Bussink et al., 2007;
Zhou et al., 2014). The dysregulation of CHI3L1 is associated
with the development, severity or progression of many
pulmonary diseases, including asthma, COPD and IPF (Sohn
et al., 2010; Matsuura et al., 2011; Sakazaki et al., 2011; Zhou et al.,
2014; Kang et al., 2015). It is believed that CHI3L1 is a protein
that plays a protective role in the lung by decreasing cell death and
stimulating fibroproliferative repair (Zhou et al., 2014). In HPS,
levels of CHI3L1 are higher in patients with HPS-PF in
comparison with patients without pulmonary fibrosis, where
higher levels are associated with greater disease severity. Using
murine models, Zhou et al. found that the animals with BLOC-3
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mutation have a defect in the ability of CHI3L1 to restrain
epithelial cell death, yet CHI3L1 exhibits exaggerated
fibroproliferative effects, promoting fibrosis by inducing
alternative macrophage activation and fibroblast proliferation
(Zhou et al., 2015). The two distinctive features of CHI3L1 are
mediated by trafficking of two CHI3LI receptors, IL-13Rα2 and
CRTH2. The increase of apoptosis results from the abnormal
localization of IL-13Rα2, which is caused by the dysfunction of
BLOC-3. Fibrotic effects were caused by interactions between
CHI3L1 and CRTH2 receptors which traffic normally (Zhou
et al., 2015). These studies suggest that CHI3L1 and its receptors
are dysregulated and play critical roles in the generation and
progression of lung fibrosis associated with HPS (Figure 3). In
addition, these responses are largely mediated by CRTH2, which
may serve as a therapeutic target. Multiple clinical trials were
designed to assess the effects of CRTH2 antagonism on asthma
control. Future studies will be required to explore the possibility
of repurposing these small molecular CRTH2 antagonists for
HPS-PF treatment.

Galectin-3 Dysfunction and its Interaction with CHI3LI
Gal-3 is a β-galactoside–binding lectin with pro-fibrotic effects
(Young et al., 2006; Cullinane et al., 2014; Li et al., 2014). Gal-3
inhibitor TD139 is safe and well-tolerated, and has been shown to
decrease plasma biomarkers associated with IPF progression in a
phase I/IIa trial (Hirani et al., 2020). Strong evidence has
indicated the role of Gal-3 in the development of HPS-PF. In
samples from HPS-1 patients, AT2 cells, alveolar macrophages,
and fibroblasts have high levels of Gal-3 expression and
intracellular accumulation. It is speculated that the
accumulation of Gal-3 in the cells of HPS individuals can be
explained by the abnormal trafficking in the endosomal recycling

compartment, which can contribute to fibrogenesis in HPS-PF
(Cullinane et al., 2014). Consistently, murine studies have found
that Gal-3 has increased levels in the extracellular space, traffics
abnormally, and accumulates in lung fibroblasts and
macrophages. Extracellular Gal-3 stimulates epithelial
apoptosis and intracellular Gal-3 enhances fibroblast survival
and proliferation as well as myofibroblast and macrophage
differentiation. Further studies demonstrate that Gal-3
interfere with CHI3L1 signaling by competing for IL-13Rα2
binding. As a result, Gal-3 diminishes the anti-apoptotic
effects of CHI3L1 in epithelial cells while increasing
macrophage Wnt/ß-catenin signaling (Zhou et al., 2018).
Therefore, Gal-3 contributes to the exaggerated injury and
fibroproliferative repair response by altering the anti-apoptotic
and fibroproliferative effects of CHI3L1 and its receptors
(Figure 3). It can be speculated that Gal-3-based therapies
may very well act in an additive or synergistic manner with
interventions that augment membrane expression of IL-13Rα2 or
block CRTH2. Additional investigations will be required to assess
the utility of each of these approaches.

Matrix Metalloproteinases
MMPs are a family of zinc-dependent proteolytic enzymes
known for their role in degrading extracellular matrix proteins
and activating or inhibiting other effector molecules (Summer
et al., 2019; Parks and Shapiro 2001; Greenlee et al., 2007).
Activities of various MMPs are known to be dysregulated and
linked to the pathogenesis of numerous chronic lung diseases,
including asthma, emphysema, cystic fibrosis and IPF (Summer
et al., 2019; Cataldo et al., 2000; Chelladurai et al., 2012; Craig
et al., 2015; Henry et al., 2002). Recent studies have shown an
increase in enzymatic activity of MMP-2 and MMP-9 in lungs of

FIGURE 3 | Molecular pathways for the development of lung fibrosis in HPS. Created with BioRender.com.
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pearl ear HPS-2 mice after bleomycin challenge. Likewise, even at
baseline, the amount and level of activity of different MMPs are
increased in the lungs and bronchoalveolar fluid of mice carrying
the BLOC-3 gene mutations (Figure 3; Summer et al., 2019).
However, although MMP activity appears to be increased in the
lung of HPS patients, a correlation between MMP activity and
disease severity was not observed. More studies investigating the
dysregulation of MMPs are necessary to better understand their
contribution to the progression of HPS lung disease.

Autophagy
Autophagy is a basic homeostatic mechanism through which a
cell can degrade and recycle unnecessary or damaged proteins
and organelles via its lysosomes (Eskelinen 2008; Ahuja et al.,
2016). Autophagy can be categorized into macroautophagy,
microautophagy, and chaperone-mediated autophagy
(Mizushima 2007). Macroautophagy is a process involving
rearrangement of subcellular membranes to isolate cytoplasm
and organelles for delivery to the lysosomal compartment. In
HPS-1, melanosome-targeted proteins are localized to
membranous complexes. These membranous complexes have
similarities to macroautophagosomes, and studies have
demonstrated that the membranous complexes of HPS-1
melanocytes are macroautophagosomal representatives of the
lysosomal compartment (Smith et al., 2005). Additionally,
dysfunctional autophagy has been known to play an important
role in the development of numerous pathologies, including
lysosomal storage diseases, neurodegenerative diseases and
organ-specific diseases, including lung fibrosis (Cataldo et al.,
2000; Cao et al., 2006; Komatsu et al., 2006; Pacheco et al., 2007;
Settembre et al., 2008; Araya et al., 2013). Recent studies have
demonstrated that defective autophagy might result in the
excessive lysosomal stress in HPS. Key autophagy proteins,
including lipidated LC3B proteins and p62, were increased in
HPS1/2 double mutant murine models (Ahuja et al., 2016). LC3B
preferentially binds to the interior of lamellar bodies in the AT2
epithelial cells of HPS murine models, but not on the membrane
of lamellar bodies, leading to deficient autophagy and pro-
apoptotic caspase activation (Ahuja et al., 2016). These studies
added to the body of literature on AT2 cell apoptosis that loss of
HPS-1 protein results in impaired autophagy, which contributes
to lamellar body degeneration and AT2 epithelial apoptosis, and
defective autophagy might therefore play a critical role in the
initiation and development of HPS-PF (Figure 3).

NEW MODELS AND APPROACHES TO
STUDY HPS-PF

Lentiviral-Mediated Gene Transfer
Therapies targeting the cellular and molecular pathways in the
diseases are usually life-long treatments. For autosomal recessive
genetic diseases, efforts to develop gene therapy began soon after
the genetic mutations are discovered. For example, patients with
Cystic Fibrosis were treated with an adenoviral vector carrying a
CFTR expression cassette (Zabner et al., 1993). Lentiviral vectors
are known to be able to integrate into the host genome while

display low immunogenicity, ensuring persistent gene correction
and safety (Sinn et al., 2008; Stocker et al., 2009). Thus, genetic
correction of HPS mutations using lentiviral approaches can
provide an alternative therapeutic option. Studies have
demonstrated that lentiviral-mediated gene transfer corrects
expression of the HPS1 gene in melanocytes, restores BLOC-3
function, and corrects pigmentation in these cells (Ikawa et al.,
2015). The development of lentiviral vectors which transduce
lung tissue efficiently have opened up room for development of
gene therapy for HPS-PF and other clinical manifestations of HPS
in general. However, how to target lung AT2 epithelial cells
specifically and efficiently in the lung requires future research
before gene therapy can be considered for potential use in
correcting BLOC-3 mutations in patients.

Pluripotent Stem Cell-Derived Alveolar
Organoids and 3D Models
Generating in vitromodels of AT2 cells to study lung diseases has
been difficult due to the poor accessibility and the difficulty of
isolating and culturing primary AT2 cells. For that reason,
methods of generating and expanding AT2 cell organoids
from iPSCs have been established and utilized as a model for
various lung diseases (Gotoh et al., 2014; Yamamoto et al., 2017).
Using similar approaches, a recent study has created disease-
specific iPSCs and gene-corrected counterparts from a HPS-2
patient. Live cell imaging showed altered distribution of lamellar
bodies with enlargement, and impaired surfactant protein
secretion in HPS-2-iPSC-derived AT2 cells (Korogi et al.,
2019). These findings demonstrate the benefits of using
human iPSC-derived AT2 cellular models for future research
on the alveolar lung diseases.

Additional efforts have been devoted to the development of
iPSC-derived three dimensions (3D) multi-cellular organoid
models. Chen et al. were able to develop lung bud organoids
(LBOs) that contain multiple cell types and develop into
branching airway and early alveolar structures similar to
developing lung buds in vivo (Chen et al., 2017). The authors
then introduced various HPS mutations, and found fibrotic
changes characterized by cells with increased expression of
collagen genes, fibronectin, and mesenchymal markers (Chen
et al., 2017; Strikoudis et al., 2019). Genome-wide expression
analysis revealed an upregulation of interleukin-11 (IL-11) in the
epithelial cells of HPS mutant fibrotic organoids. Additionally,
IL-11 induced fibrosis in wildtype (WT) organoids, while its
deletion prevented fibrosis in HPS4 mutated organoids,
suggesting IL-11 as a potential therapeutic target (Strikoudis
et al., 2019). Human pluripotent stem cell (hPSC)-derived 3D
lung organoids have been shown to be a variable resource in
modeling fibrotic lung disease that assembles human disease
features, and is an innovative strategy allowing the
identification of potential novel therapeutic targets.

CRISPR-Cas9 Approaches for Gene Editing
Studies have shown that CRISPR/Cas9 gene editing can
generate small mutations in a site-directed manner leading
to permanent gene inactivation in a variety of cell types
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(Doudna and Charpentier, 2014). In HPS, as discussed in
previous sections, AT2 epithelial cells in BLOC-3 and AP-3-
related HPS subtypes are believed to be dysfunctional, and the
sensitivity of AT2 epithelial cells to stress-induced apoptosis
may determine subsequent susceptibility to lung fibrosis.
Using a mouse AT2 cell line MLE-15, Kook et al.
succesfully used CRISPR/Cas9 gene editing approaches to
generate a series of cell lines bearing HPS-specific
mutations. The authors found increased expression of
MCP-1, previously reported as the central mediator of
macrophage activation in HPS patients and mouse models,
in MLE-15/HPS-1 and MLE-15/HPS-2 cell lines. It is
interesting to note that higher MCP-1 expression was also
found in MLE-15/HPS-9 cells, suggesting BLOC-1 mutations
may also cause inflammatory macrophage infiltration (Kook
et al., 2018). The MLE-15/HPS cells replicate known
characteristics of primary HPS AT2 epithelial cells,
providing an alternative and permanent platform for the
studies of AT2 cellular pathophysiology that could
accelerate progress toward developing novel therapies.

In addition to the nonhomologous end joining mechanism
that CRISPR-Cas9 system uses to generate microinsertions or
microdeletions, it has also been programmed to correct
disease-causing genetic mutations. A recent study shows
that microduplications, such as that found in HPS-1
patients of Peurto Rico origins, can be efficiently corrected
simply by generating a double-strand break (DSB).
Streptococcus pyogenes Cas9 (SpyCas9) was used to
generate a DSB in HPS-1 patient-derived B lymphocytes
near the center of the 16 bp duplication that is responsible
for the mutation. It is discovered that efficient genotypic
correction was observed by the microhomology-mediated
end joining pathway (Iyer et al., 2019). This approach has
provided proof-of-concept for the use of gene editing in future
HPS treatment.

CONCLUSION

Although the direct link between HPS gene mutations and lung
pathobiology is unclear at present, significant advances in
identifying the cellular and molecular pathways affected by
HPS genetic mutations have been identified. AT2 epithelial
cell apoptosis and dysfunction, which may be attributed to
giant lamellar body formation, surfactant accumulation, and
severe lysosomal and ER stress, are believed to be the
initiating step for epithelial cell injury and subsequent lung
fibrosis. Immune cell activation such as T and B cells, mast
cells, and macrophages can promote fibroblast accumulation and
myofibroblast differentiation that are responsible for the
excessive deposition in extracellular matrices and lung
architecture destruction (King et al., 2011). In lung fibrosis,
myofibroblasts may also be derived from circulating fibrocytes
originated from bone marrow progenitors, from
transdifferentiation of epithelial cells through epithelial-

mesenchymal transition (EMT) or from transdifferentiation of
endothelial cells through endothelial mesenchymal transition
(EndoMT) (Phan 2012). Further studies will be required to
evaluate the possible involvements of EMT and EndoMT as
sources of myofibroblasts in HPS-PF (Franks et al., 2008;
Hashimoto et al., 2010).

In vitro studies of tissues, peripheral blood cells, and
bronchoalveolar lavage fluid from patients along with in vivo
studies using murine models have been useful for studying the
potentially intervenable biological pathways of HPS. Research on
the involvement of CHI3L1 and its receptors, its interaction with
Gal-3, and the activation of MMPs, as well as defective autophagy
pathways have shown promising preliminary results that guide
the progress needed to identify biomarkers and therapeutic
targets. Gene transfer and editing approaches have potential to
be a major alternative therapeutic strategy, but delivering the
genes specifically and efficiently to lung epithelium remains the
biggest hurdle. Future research is required to evaluate emerging
cellular and molecular mechanisms in the development of HPS-
PF. Extracellular vesicles (EVs) released by alveolar epithelial
cells, lung fibroblast and endothelial cells are indicated in the
pathogenesis of IPF (Bagnato and Harari, 2015; Bartel et al., 2020;
Ibrahim et al., 2021). They drive lung fibroproliferative processes
through activation of pro-fibrotic signaling pathways such as
TGF-β signaling, Wnt and cellular senescence (Schafer et al.,
2017; Martin-Medina et al., 2018; Barnes et al., 2019; Chanda
et al., 2019; Parimon et al., 2019; Reyfman et al., 2019; Adams
et al., 2020). Novel cellular models such as alveolar organoid and
gene-edited epithelial cells will be valuable resources to examine
the role of EVs in HPS-PF.
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