
sensors

Article

Application Layer Packet Processing Using PISA Switches

Ismail Butun 1,2,* , Yusuf Kursat Tuncel 2 and Kasim Oztoprak 2

����������
�������

Citation: Butun, I.; Tuncel, Y.K.;

Oztoprak, K. Application Layer

Packet Processing Using PISA

Switches. Sensors 2021, 21, 8010.

https://doi.org/10.3390/s21238010

Received: 3 November 2021

Accepted: 25 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, KTH Royal University of Technology, SE-114 28 Stockholm, Sweden
2 Department of Computer Engineering, Konya Food and Agriculture University, Konya 42080, Turkey;

yusuf.tuncel@gidatarim.edu.tr (Y.K.T.); kasim.oztoprak@gidatarim.edu.tr (K.O.)
* Correspondence: butun@kth.se or ismail.butun@gidatarim.edu.tr

Abstract: This paper investigates and proposes a solution for Protocol Independent Switch Architec-
ture (PISA) to process application layer data, enabling the inspection of application content. PISA
is a novel approach in networking where the switch does not run any embedded binary code but
rather an interpreted code written in a domain-specific language. The main motivation behind this
approach is that telecommunication operators do not want to be locked in by a vendor for any type
of networking equipment, develop their own networking code in a hardware environment that is not
governed by a single equipment manufacturer. This approach also eases the modeling of equipment
in a simulation environment as all of the components of a hardware switch run the same compatible
code in a software modeled switch. The novel techniques in this paper exploit the main functions
of a programmable switch and combine the streaming data processor to create the desired effect
from a telecommunication operator perspective to lower the costs and govern the network in a
comprehensive manner. The results indicate that the proposed solution using PISA switches enables
application visibility in an outstanding performance. This ability helps the operators to remove
a fundamental gap between flexibility and scalability by making the best use of limited compute
resources in application identification and the response to them. The experimental study indicates
that, without any optimization, the proposed solution increases the performance of application
identification systems 5.5 to 47.0 times. This study promises that DPI, NGFW (Next-Generation
Firewall), and such application layer systems which have quite high costs per unit traffic volume and
could not scale to a Tbps level, can be combined with PISA to overcome the cost and scalability issues.

Keywords: software-defined networks; protocol independent switch architecture; programmable
switches; P4; virtualization; stream processor; deep packet inspection

1. Introduction

The telecommunication world is undergoing a great transformation. The most important
aspect of this transformation is to switch from old hardware-dependent, vertical architectures
to software-defined architecture. Although the use of NFV was a key improvement in a
data plane with improved flexibility, Protocol Independent Switch Architecture (PISA) is one
of the key elements with the accelerated performance and intelligent processing ability in
the data plane during this change. The change in the architecture affects all stakeholders in
a telecommunication operator infrastructure including applications. Legacy Applications
written for legacy hardware are transformed into software-defined architecture.

Independent from the Software Defined Architectures, application identification be-
came critical in the last decade. It positioned itself in the center of cyber-security, accounting,
quality of service management, and similar services. One of the most important problems
incurred by application identification is resource hungry behavior in itself. Next-Generation
Firewalls (NGFW), and Deep Packet Inspection (DPI) systems are two of the most popular
usage areas of application identification. DPI, as the name implies, inspects every packet
that is running through the network deeply, and tries to classify it under a human-readable

Sensors 2021, 21, 8010. https://doi.org/10.3390/s21238010 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1723-5741
https://orcid.org/0000-0002-3585-129X
https://orcid.org/0000-0003-2483-8070
https://doi.org/10.3390/s21238010
https://doi.org/10.3390/s21238010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238010
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238010?type=check_update&version=2

Sensors 2021, 21, 8010 2 of 20

name. It not only relies on packets metadata and headers but also packet payload, hence
the name “Deep”.

While L4 (OSI Layer-4) provides valuable information about a packet, it cannot give us
any clue about the payload. In order to do that, packets must be inspected by maintaining
the stateful information, and the payload must be constructed accordingly, so that it can
be classified correctly [1]. With the help of L4 information, network-side security, such as
stateful firewalls, can be built. Similar to NGFW processing packets in L7, DPI still needs
to be inspected at L7. With the emergence of SDN architecture, DPI vendors switched
from hardware to software based L7 DPIs. As they switch from hardware-dependent
architecture to SDN based architecture, they lack the proper scalability to match the actual
line speed of the switches. While the capacities of the data backbone increase, the systems
depending on application identification became the bottleneck of the infrastructure.

In this transformation, the network applications become a Virtual Network Functions
(VNF). Current state-of-the-art high performance software-based DPI systems (DPI VNFs)
can scale up to 160 Gbps in a Virtual Machine running on top of powerful hardware [2]. As
the demand increases, the telecom operators will need application identification systems
like NGFWs and DPI systems running with the speeds in the order of Tbps of traffic
classification in real time and such as in a single instance of DPI. The performance gain
arises from the fact that the classification operation starts at the switch-level code data
plane and continues in the user-plane.

In the meantime, several parallel works concentrated on various aspects (machine and
deep learning methods, cybersecurity, etc.) of SDN. For instance, Ref. [3] argued about the
necessity of providing quality of service (QoS) for each application on the network by the
network operators, which can be accomplished by classifying network traffic associated
with the applications. Authors have shown that deep learning models can be employed for
classifying the network traffic, and residual network (ResNet) model outperforms the CNN
convolutional neural network (CNN) model. In another work, cybersecurity related issues
on the network layer are investigated [4]—for instance, detecting application-layer DoS
attacks that utilize encrypted protocols by applying an anomaly-detection-based approach
to statistics extracted from network packets.

In this paper, we aimed to introduce application layer processing capabilities of
P4-based programmable switches and their usage in application layer processing. We
investigated and proposed a solution for Protocol Independent Switch Architecture to
process application layer data, enabling the inspection of an application content and
triggering appropriate response. Protocol Independent Switch Architecture is a novel
approach in networking where the switch does not run any embedded binary code but
rather an interpreted code written in a purpose-specific language. The main motivation
behind this approach is that telecommunication operators do not want to be locked in by a
vendor for any type of networking equipment, developing their own networking code in
a hardware environment that is not governed by a single equipment manufacturer. This
approach also eases the modeling of equipment in a simulation environment as all of the
components of a hardware switch run the same compatible code in a software model. The
novel techniques in this paper exploit the main functions of a programmable switch to
create the desired effect from a telecommunication operator perspective to lower the costs
and govern the network in a comprehensive manner.

As stated before, the current demand in traffic growth puts a burden on the appli-
cations running in the application layer in the telecommunication world, although the
performance and capacities of DPI systems and Next-Generation Firewalls do not grow
with the demand of traffic growth; in addition, they cannot adapt themselves to the current
revolution which migrates the networks into SDN-based systems. This paper proposes a so-
lution using PISA switches with a DPI enabling application visibility (type identification) in
an outstanding performance. The proposed architecture processes the packets in a network
switch while selecting only necessary ones to the L7 based systems such as DPI and NGFW.
The proposed solution distributes a load of DPI/NGFW systems into PISA switches and

Sensors 2021, 21, 8010 3 of 20

DPI/NGFW systems. Using the proposed solution in a network allows the users to grow in
the Tbps scale as well as benefit from Network/Service Function chaining, which will also
remove the overhead of passing through all inspection systems for unnecessary traffic. The
simulation studies demonstrate that this approach increments the performance of NGFW
and DPI systems in the order of 40 times. Building such a flexible and scalable application
visibility system is challenging. This study also tries to give an answer to how network
operators should design their networks in order to benefit from such solution processing
packets in L7 knowledge with the performance of L4; in other words, they should figure
out how to scale out such system for a high volume of data in real time.

2. Background
2.1. Protocol Independent Switch Architecture (PISA)

The research on programmable switches led to the definition of a re-configurable
match-action table (RMT) [5] based hardware that can be programmed with a domain-
specific language. Protocol Independent Switch Architecture (PISA) is a special case of
RMT that supports the P4 language as the default domain-specific language [6].

A typical PISA switch consists of a programmable parser, ingres match-action table,
a queue, a set of registers to keep the state of variable, egres match-action table, and a
programmable deparse as shown in Figure 1.

Figure 1. PISA match-action table processing pipeline (Source: Adapted from [7]).

The parser and deparser are programmed for processing user-defined packet header
formats. The ingress and egress pipelines are the actual packet processing units that go
through match-action tables in stages. Match-action tables match the header based on
a set of rules that is controlled by control plane and performs the corresponding action
on the packet. Actions use primitives to modify the non-persistent resources (headers or
metadata) of each packet.

2.2. P4 Language

Although there are several studies developing and using programmable hardware [8–11],
the early use of programmable hardware is to make telemetry data easy to use. Telemetry
data are crucial for an automated future but generating telemetry data is not a trivial task.
Adding more hardware and software to the routing and switching systems makes the current
architecture more complex than ever. Since the telemetry data are generated at the packet level,
the most logical way of doing this seems to be arising from the packet generating software
at the hardware level, which leads us to P4, Programming protocol-independent Packet

Sensors 2021, 21, 8010 4 of 20

Processors, as it is referred to in the original paper defining it [12]. P4 is a domain-specific
programming language for packet-processing hardware such as a router, switch, network
interface cards, and network function related appliances that work and data plane based on
the decisions from the control plane as in Figure 2.

Figure 2. P4 Architecture (Source: Adapted from [9]).

In a typical PISA switch, execution of a P4 program is explained in Figure 3.

Figure 3. Pipeline execution in a P4-enabled switch (Source: Adapted from [13]).

1. The user develops a P4 program, which can be any type of network function, such as
router, firewall, load balancer, or packet inspection switch.

2. P4 compiler compiles the program as a JSON file and sends it to the switch, which
can be a physical switch or a software model of it.

3. The states of parser, match-parser, match-action tables, ingress, egress queue, and
deparser is controlled by P4 execution.

4. The states of match-action tables are additionally controlled by control-plane which
can change the behavior of the P4 code at run-time.

When the P4 compiler is placed between the program and the API, the P4 compiler
translates the domain-specific language P4 code into a JSON file, which acts as an executable
file for the PISA switch. The required CLI commands to configure to be switched are also
sent with this JSON file, which typically contains the newly added match-action table
names, ingress, and egress queue names to be created on the PISA switch. This JSON file is
actually a series of match-action table entries that acts as an executable for the switch to
change the state of its tables based on the incoming packet.

Sensors 2021, 21, 8010 5 of 20

The control plane commands contains the necessary table initialization based on the
packet processing actions. The implementation of P4 control plane commands may differ
from each other depending on the switch type (physical or virtual), vendor and the version
of P4 (P4-14, P4-16). The following commands are valid for Simple Switch Behavioral
Model V2, P4-16: [14]

• table_set_default <table_name> <action_name> <action_parameters>
is used to set the default action (i.e., the action executed when no match is found) of
a table.

• table_add <table_name> <action_name> <match_fields> =>
<action_parameters>
is used to set the action related to a specific match in a table.

• mirror_add <source> <destination>
is used to mirror a specific port internally.

P4 programs ease the development of a network equipment code to a level for which
only 128 lines are enough to build a simple IP switch with header validation [15]. Although
the language itself is simple, there are other tools that emit P4 language code from another
high-level language, such as the work done by the authors [13], P4HDL, which generates
P4 code from a pseudo-code.

2.3. In-Band Telemetry with Programmable Switches

The above three requirements to develop a programmable hardware are not the
only features addressed by P4. One of the most promising features of P4 arises in the
telemetry. In-band Network Telemetry (INT) is defined in P4 language as one of the main
applications [14]. Since P4 executes at the packet-processing level, it can rewrite every
segment of the packet header, including the custom headers. This type of modification
cannot be done in traditional statically programmed hardware-based network equipment.
P4 helps set up a data plane by using the packet headers appropriately to collect even more
information on the network’s status than what we can determine using conventional meth-
ods [16]. The idea behind INT is to collect telemetry metadata for each packet, including
routing paths for the packet, entry and exit timestamps, the packets’ latency, queue occu-
pancy in a given node, use of egress port connections, and the like. These measurements
can be produced by each network node and sent in the form of a report to the monitoring
system. Another way to embed them in packets is to delete them into allocated nodes
at any node on the packet visits and connect them to the monitoring system. In a recent
study, researchers used P4 INT experimental validation for telemetry based monitoring
applications on the multi-layer optical network switches [17]. Using the telemetry data and
the integrated software around it, semi-automatic congestion control over optical network
switches can be achieved with the currently available SDN/NFV systems.

Although telemetry data can be collected in any way that is defined by P4 code, there
are two types of telemetry that are defined in a standard P4 implementation [6]. As shown
in Figure 4, telemetry data can be either embedded within a packet, which is called INT-MD,
or extracted as a separate packet, called INT-XD. INT-MD is usually used by intermediate
routers (switches to identify any type of problem that might occur along the path, which
INT-XD is useful for external applications that do not need the payload of the original
packet. In this experiment, INT metadata are used to help to the measurement of a switch
internal state such as ingress/egress port ID, switch ID, queue occupancy, processing time,
etc. These metrics are application agnostic and help in application-layer processing.

Sensors 2021, 21, 8010 6 of 20

Figure 4. In-band network telemetry.

2.4. Real-Time Data Streaming

Real-time data streaming is shown to be beneficial for safety critical networks by
removing possible bottleneck situations at the data accumulation joints, such as the data
aggregator switches at the industrial networks [18]. In these networks, a possible delay in
data would cause disastrous events, and data-streaming is a very good candidate solution
as a remedy to this problem [19]. In the context of programmable switches, real-time
data streaming is combined with telemetry to add application analytics, visibility, and
troubleshooting features to a network stream. Apache Spark [20] and Apache Flink [21]
are two of the most prominent pieces of software that is being used in streaming network
telemetry data.

2.5. Deep Packet Inspection (DPI) and Application Layer Visibility

Deep Packet Inspection is important for telecommunication operators to gain more
insight about the network and subscribers for revenue generation as well as cyber-security.
A series of research [22,23] made in this area by the same author showed that subscriber
profiling based on application level classification is critical for operators to increase the
revenue and generate insight about the network. As the name implies, DPI inspects every
packet with respect to the source, destination, header information, payload, and any other
layer that is wrapped into it. Application layer visibility enable operators to distinguish
between their subscribers and offer them new subscription services accordingly. As the
video content is on the rise, operators can offer subscribers based on their use of online
video services, such as Netflix, Amazon Prime, or Hulu. In addition, DPI is a supportive
tool in employing Lawful Intercept or applying some appropriate filters to the Internet
access of children.

3. Application Layer Processing with P4 Switches

The transformation from legacy systems into software defined architectures triggered
the change in the hardware architectures. The demand for the change resulted in the
development of PISA switches. The current state of the art in a PISA switch can scale up to
12.8 Tbps with a single ASIC/FPGA interface running with the speed of 400 Gbps. After the
introduction of PISA switches into the production environment, the applications running
in L4 such as Load Balancers, Volumetric DDoS attack detection, and prevention systems,
port-based DNS applications are being ported into PISA switches. In this study, we aim to
extend the use of PISA switches into L7 applications by designing a proper architecture. In
the proposed architecture, by using PISA switches and its primary programming language
P4, an application-level traffic analyzing system is proposed in a software-based emulation
environment. It is basically combining L4 analytics of P4 architecture and L7 properties
of the current state of the art in DPI or similar application layer inspection systems. The
proposed architecture can be used to build a brand-new NGFW or DPI, by eliminating the
complexities arising from switch dependent code.

Sensors 2021, 21, 8010 7 of 20

3.1. Proposed System Architecture

The proposed system architecture in Figure 5 consists of five main components: PISA,
Stream Processor, Control Plane, and Data Plane Configuration.

PISA: Programmable Switch that can run multiple instances of different P4 codes.
Data Plane: The generated P4 code for specific monitoring/telemetry/DPI/NGFW

tasks. These P4 programs can be deployed according to specific task needs.
Control Plane: Programmable Switch related control plane engine to be placed. The

control plane is aware of Data plane drivers and can communicate with the underlying
switch according to the specific tasks. Although the proposed architecture supports any
application specific task, from now on, the architecture will be coupled with DPI use case
to make it easier to understand. This module is DPI-aware, which is fed from the specific
packet stream, so that any decision to be made on the switch can be controlled by examining
the specific packets.

Figure 5. Proposed system architecture.

Stream Processor: The stream processor to operate on the matching stream patterns
based on the decisions taken from data plane configuration. Specific telemetry tasks can be
offloaded to the stream processor to decrease the workload over the switch or vice versa.
Workload trade-off between the stream processor and the switch is based on the number of
streams that matches a specific monitoring task.

Application-Level Visibility: Application-level visibility is the component that actually
identifies the types of application based on their L4 to L7 properties, which is also called
DPI. In a typical DPI system, a server with network interfaces is running the DPI application.
There are two usage modes of DPI systems which are active and passive DPI systems. In
the passive mode, they are fed by a mirror of the traffic and processes it offline. On the
other hand, active DPI systems fall within the whole traffic and are supposed to process all
the traffic piece by piece in real time.

In the proposed architecture, the PISA switch processes the packets in the network
layer and can even process the flows in the transport layer and co-operates with the
stream processor to identify the applications. This is the point where the aggregation–
disaggregation of high performing PISA switch and application identification engines.

The PISA switch selects the minimal packets from the flows and forwards them to the
stream processor/DPI engine to identify the applications and generate the actions among
the predefined policies. The proposed architecture combines the power of PISA and L7
application inspection/classification/processing features by designing them together. The
simulation results indicate that in the near future most of the systems using application
awareness will re-design their systems running on top of PISA switches together with their
redesigned applications as a stream processor. The following algorithm shown in Listing 1
explains our approach:

Sensors 2021, 21, 8010 8 of 20

Listing 1: Pseudo Code proposed for the P4 switches.
While packet −> in ingres b u f f e r

E x t r a c t te lemetry headers
Put in Flow−Keys Telemetry Headers
I f Flow Not in Flow−Table

Create flow in Flow−Table
Else IF Flow−Packet −Count . < 2

Put Payload in Flow−Packets . . .
with Flow−Keys in Flow−Table

Continue
Else

Create te lemetry header with . . .
INT−XD options

Send Flow−Table in Flow−Keys . . .
to Externa l Telemetry

The accurate accounting of the flows can also be done with P4 language. The account-
ing of a flow should include the following information: Considering the definition of the
flow, for every flow, count number of packets, number of bytes, flow start time, flow end
time, in addition to that, for TCP flows, TCP flags.

The P4 code on a switch would combine the accounting information and send the rest
to the aggregator with a pseudo-code. Please see the Appendix A for the details of the
mentioned pseudo-code.This pseudo-code works as the preprocessor of the flow, extracts
the required fields and sends it to the stream processor for further processing.

Lastly, the traditional DPI systems has two operating modes:

• Inline
• Out-of-Band

In the inline mode, DPI systems are placed between the edge and core network, so
that the traffic is processed as the flow continues. This operating mode enables DPI to
apply policies directly on the flow, without requiring any other hardware. The biggest
disadvantage of this approach is that the DPI becomes the weakest link of the network,
it should be scaled at least as much as the aggregated sum of the traffic received from
the edges.

In out-of-band mode, DPI acts like a simple traffic analyzing tool; it received the traffic
passively from a mirror port of a network aggregation device, collecting all the traffic
information and applying policies accordingly. In this mode, the biggest challenge is policy
application, as the traffic is not directly passing through the DPI; it can only act on TCP
traffic by sending TCP-resets to the source addresses, for example, to apply a restricted
access policy to a particular destination address within the scope of the network. Other
types of policy applications, such as bandwidth restriction, quality-of-service changes, etc.,
require control plane integration with the underlying network device.

Our architecture also combines the benefits of inline DPI devices with the out-of-band
ones where the traffic is actively received on the switch, counted and reported on the
aggregated external devices and the policies are actively applied as the event triggers occur.

3.2. Simulation Environment

To simulate the proposed architecture, the following components are built as a devel-
opment and simulation environment:

P4 Simulation Environment: This is the default simulation target for BMV2 PISA
switches, as shown in Figure 6, which includes Mininet by default and handles virtual
NIC creating, switch port allocation, connecting the switch port to the host process, and
running the rest of the packet flow.

Virtual Machine: This is the default virtual machine, built in a programmatic way
with Vagrant, a developer friendly VM running environment, based on Ubuntu 14.04
(ubuntu/trusty64) and several other necessary components, as shown in Listing 2:

Sensors 2021, 21, 8010 9 of 20

Figure 6. Simulation environment.

Listing 2: Virtual machine set-up.
Simple_switch_bmv2 :
BMV2 software switch , based on Python2 . 7

m−veth −1: Ingres mininet Switch Port
m−veth −2: Egres mininet Switch Port
out −veth −1: I n g r e s t Server Host Port
out −veth −2: Egres Server Host Port

4. Experimental Study

In this experimental study, we have used a P4 simulation environment which was
discussed above and presented in Figure 6. The following items describe each component
of our experimental simulation environment in detail:

Flow Generation: This is the controlled flow generation tool, written in Go. Synthetic
flows are created with Python, while real-flow is taken from the Canadian Institute for
Cyber-Security [24].

DPI: Deep Packet Inspection module written in Go, based on nDPI [25].
Emitter: Flow emitter that reads from the mirroring port, extracts metadata header

information written by Data-Plane and sends the rest of the packet for stream processor.
This module is also Apache-Spark aware; the final result of the telemetry query is calculated
by the Emitter module.

Stream Processor: The streaming processor for the rest of the flows that match the
final criteria for the expected output. In this simulation, we used Apache-Spark as a stream
processor. The stream processor will be upgraded to Apache-Flink for better scalability.

Switch Script Control: This script controls the switch tables to update the relevant
switch tables under control.

The parameters for running the simulation are adjusted according to the following criteria:

• Session is TCP (Session has 3-way handshake);
• Session is UDP (Session has no 3-way handshake);
• Session is detected by nDPI;

Sensors 2021, 21, 8010 10 of 20

• Session is not detected by nDPI.

4.1. Experiment-1: Application Identification Performance Improvement DPI Application
Classification on Mixed Flow Captures

Our hypothesis is that, to identify an application in a packet, a few bytes in a flow
(one or two packets depending on the application) should be enough to determine the type
of application correctly. Keeping this in mind, we must first identify the session in a packet.
This use case demonstrates the performance improvement in DPI systems by eliminating
the number of packets by some factor.

In order to adjust the parameters of this identification, we first analyzed the packet
stream with nDPI, counting the number of identified protocols and the number of packets
that are included in each stream. We then start reducing the number of packets in each
stream and run the protocol identification with nDPI once again, comparing the results
of identification with the previous run. By reducing the number of packets each time, we
calculated the number of identified protocols in each reduced packet stream.

Session Identification in an IP flow is based on two different IP sessions:

4.1.1. TCP Session

SrcIP, DstI, SrcPort, DstPort, TCPSeqNum
TCP Session Identification is based Source IP, Destination IP, Source Port Destination Port
and the TCP Sequence Number. The TCP session is established after the 3-way handshake
as shown in Listing 3:

Listing 3: Pseudo Code proposed for the 3-way handshake.
−−−
Source −> Dest ina t ion (SYN+Seq #)
Des t ina t ion −> Source (SYN ACK+Seq #)
Source −> Dest ina t ion (ACK+Seq #)
−−−

After the last ACK of the source, Sequence Number is incremented for a flow in the
TCP session. Actually, it comes from the nature of TCP. It starts randomly and increments
by the amount of the data transferred in each packet. The same is valid for ACK number.

The packets that will be reduced should be the packets after this 3-way handshake
packet. To identify the flows, we will use the packet SYN ACK, and the response to the
third packet—in other words, the first two packets of the server (or destination to source).

4.1.2. UDP Session

SrcIP, DstI, SrcPort, DstPort
UDP is a connectionless protocol; there is no clear definition of a UDP session. Every packet
may create a flow independently. Basic identification for UDP flow consists of Source IP,
Destination IP, Source Port, and Destination Port. Since Source Port is randomly allocated
depending on the OS (which is called ephemeral ports), any flow that is using the same
source port is considered as the same UDP session.

4.2. Sample Packet Captures

To study the flow reduction, we used the sample captures from nDPI that is used for
verification of protocol identification. The capture files consist of 183 files, containing more
than one protocol in one capture file. Twenty-two files that are too small for reduction
(having packets less than 2) are excluded from study. One packet especially crafted for
testing invalid packet type is also excluded since we are interested in valid packets, leaving
us 160 packet captures.

To reduce the flow, the following pseudo-code is used as shown in Listing 4:

Sensors 2021, 21, 8010 11 of 20

Listing 4: Pseudo Code proposed for the reduced algorithm.
−−−
network_packets = rdpcap (i n f i l e)
s e s s i o n s = network_packets . s e s s i o n s ()

f o r key in s e s s i o n s :
pktCount=0
f o r pkt in s e s s i o n s [key] :

i f (pktCount < 2) :
wri te (pkt , o u t f i l e)
pktCount = pktCount + 1

−−−

In this code, sessions are extracted by the criteria of whether they are TCP or UDP
sessions. As mentioned earlier, for the TCP session, 3-way handshake packets are excluded
from the session, whereas, for a UDP session, there is no precondition to exclude the
packets. We use the second packets of the 3-way handshake as the first packet of the flow.

After the extraction of sessions, an nDPI sample classifier is used to classify the
application in each reduced capture by replaying the capture file on the switch.

The following Table 1 summarizes the results of the experiment:

Table 1. Rates for Test Captures.

µ REDUCTION RATIO 82%
µ REDUCTION FACTOR 5.5
µ DETECTION RATE 84%

The full data are available in Table A1.

4.3. Experiment-2: TCP-Based Application Identification Using Real-Life Data

In the second experiment, we used the real captures from [24], namely the files in the
dataset named PCAP-01-12_0750-0818.

There are 69 files located in this dataset, each containing a real world data capture that
contains data from a real DDoS attack along with different types of traffic.

To see the effect of TCP, we extracted the TCP streams and used the extracted streams
to send to the simulation.

For the sake of convenience to the readers, the results in Table A3 are summarized in
the following Table 2:

Table 2. Rates for real-life captures using only TCP streams.

µ REDUCTION RATIO 97.88%
µ REDUCTION FACTOR 47.16
µ DETECTION RATE 95%

4.4. Experiment-3: Application Identification in Full Stream Using Real-Life Data

In the final experiment, using the same capture files in Experiment-2, we treated the
streams as is, sending them directly to the switch. The following results in Table 3 are
achieved.

Table 3. Rates for real-life captures using full streams

µ REDUCTION RATIO 84.73%
µ REDUCTION FACTOR 6.5
µ DETECTION RATE 99.83%

Full results are given in Table A2.

Sensors 2021, 21, 8010 12 of 20

4.5. Results and Discussion of the Experiments

The experimental study on the packet captures showed us that 2-packet reduction of
a flow is accurate enough to identify a flow.

In Experiment 1, the decrease in detection rate is mostly caused by TLS encryption,
which shows us that further study is needed to identify encrypted flow as shown in Table 1.
An ML based approach would be implemented to success in application identification of
all flows. Based on the results from Table A1, 125 out of 160 packet captures are correctly
identified. Sixteen out of 160 packet captures could not be identified. Normally, 160 out
of 160 packets would be identified correctly. In addition, 125 files were identified correctly;
16 not identified at all (0 identification); 19 partially identified; 16 non-identified protocols
are completely encrypted protocols; 125 identified protocols, mixed partially TLS and plain
protocols; and 19 partially identified protocols are mixed partially TLS and plain protocols.
Detection Rate drops with the reduced flow. (i.e., as we reduce the flow, we also lose important
flow information that is needed for packet identification, short flows) The reason for not
identifying these packet captures are that they are mostly encrypted protocols, which require
more than two packets to identify. We will expand the experiments according to this. Since the
flows used in Experiment 1 are taken from nDPI’s test captures, they consist of an artificially
selected short flow containing all of the applications that nDPI can identify.

In Experiment 2, the results in Table 2 showed that it is possible to increase the
detection rate while the reduction rate is also increased. This is due to the fact that there
are only 17 protocols detected in TCP streams as indicated in Table A3, and most of
them are not TLS-based protocols, or can be identified without deep inspection of the
remaining payload.

In Experiment 3, the results in Table 3 indicated that, if we include UDP streams, the
accuracy goes even higher, but the reduction rate decreases. This behavior is expected since
the number of detected applications in Table A2 is 84, more than the number applications
detected in TCP streams, but the number of packets in UDP streams is lower than the
number of packets in TCP streams. This result is in line with results obtained from the
study in [26].

5. Conclusions

The results of this study indicate that the application layer data processing can be done
with PISA switches. We do not always need complex techniques to inspect the packets in
L7, and a simple flow-based packet reduction can achieve significant accuracy to identify
the flows and add application-level visibility over the network. Streaming processing
combined with switch-level applications helps us build strong networking applications.
In-band Network Telemetry is in the central position of a programmable switch that
distinguishes and separates them from the traditional switches. The proposed method
constructs a Network Processor with a specific task from each PISA-stream processor pair.
The simulation results indicate that using such PISA switches in the center of all network
traffic will increase the performance of such systems on the order of tens of folds. The use
of such (proposed) systems will solve the capacity problems experienced with applying
full network service chaining. In other words, by using a single PISA switch and tens of
stream processors with different features (DPI, NGFW, etc.) on different ports, it constructs
a big traffic exchange fabric with dynamically attached Network Processors of different
types with very low costs.

The results of this study demonstrate that the proposed system reduces the traffic load
of such systems by a factor of 5.5 to 47.0 times with acceptable application identification.
Applying some ML based approaches would increase the success rate as if all traffic is
going through legacy systems with the higher power of proposed systems. In addition,
real traffic scenarios indicate that the performance gain would reach up to a factor of 40 on
average by using the statistics in this study [26].

Sensors 2021, 21, 8010 13 of 20

The studies in the literature and our experimental studies demonstrated that PISA
switches are the glue for the SDN-NFV couple increasing the performance of such systems.
One of the major problems of the NFV based application layer processing systems were
the network packet processing performance bottleneck; however, the proposed solution
offering an architecture avoids the performance bottleneck of both PNF (Pyhsical Net-
work Function) and VNF (Virtual Network Function) systems by decreasing the network
packet load.

6. Future Study

DPI, NGFW (Next-Generation Firewall), and such application layer systems that have
quite a high cost per unit traffic volume and could not scale to a Tbps level can be combined
with PISA to overcome the cost and scalability issues. Practical applications are expected
to be available in the upcoming years, maybe even months.

Encrypted network traffic identification with P4 language is one of the main future
areas of study for this thesis. In-band Telemetry seems to be a good place to start this study,
as it tells us about the characteristics of a flow on a packet level. In this kind of an analysis,
AI/ML methods can provide a lot of help in defining the features of traffic. As stated above,
the use of PISA switches will allow the operators to collect in-band telemetry information,
which will also create the building ground for Zero Touch Networking (ZSM) once the
networks are utilized with the use of proposed systems. Once ZSM features are injected
into the infrastructures, operational costs and outage times will decrease dramatically.

Another area of interest based on this study could be Digital Twins in Telecom-
munication Networks. As PISA switches allow you to model the hardware in a software
environment, it would be straightforward to build a DT (Digital Twin) of a telecom network
and feed forward the actual data and commands towards the active network. Particularly,
the data center network can be modeled completely using the DTs of core and edge network
devices. Telcos can gain an advantage from this by running different scenarios on their DT
based on different types of network flows. These network flows can be adjusted to plan
the data center network topology according to the SLA of the customers.

Author Contributions: Conceptualization, K.O. and Y.K.T.; methodology, K.O. and Y.K.T.; software,
Y.K.T.; validation, Y.K.T., K.O. and I.B.; formal analysis, K.O. and Y.K.T.; investigation, K.O., Y.K.T.
and I.B.; resources, K.O., Y.K.T. and I.B.; data curation, K.O. and Y.K.T.; writing—original draft
preparation, K.O., Y.K.T. and I.B.; writing—review and editing, K.O., Y.K.T. and I.B.; visualization,
Y.K.T.; supervision, K.O.; project administration, K.O.; funding acquisition, I.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors would like to acknowledge helpful staff of the MDPI Sensors for their
endless help during the publication phase of our paper.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 8010 14 of 20

Appendix A

Code proposed for P4 switches is provided as follows in Listing A1:

Listing A1: Code proposed for P4 switches.
// Flow key r e g i s t e r s
r e g _ s r c _ i p = R e g i s t e r () ;
reg_dst_ ip = R e g i s t e r () ;
reg_proto = R e g i s t e r () ;
r eg _ l 4 = R e g i s t e r () ;

// Flow s t a t i s t i c s r e g i s t e r s
reg_pkt_count = R e g i s t e r () ;
reg_byte_count = R e g i s t e r () ;
r e g _ t i m e _ s t a r t = R e g i s t e r () ;
reg_time_end = R e g i s t e r () ;
r e g _ f l a g s = R e g i s t e r () ;
i n i t i a l i z e _ r e g i s t e r s (hdr : PacketHeader , index :
HashIndex , md: Metadata) :
r e g _ s r c _ i p [index] = hdr . s r c _ i p ;
reg_dst_ ip [index] = hdr . ds t_ ip ;
reg_proto [index] = hdr . proto ;
r eg _ l 4 [index] = hdr . l 4 ;
reg_pkt_count [index] = 1 ;
reg_byte_count [index] = length (hdr . e t h e r n e t) + hdr . ip_ len
r e g _ t i m e _ s t a r t [index] = md. timestamp ;
reg_time_end [index] = md. timestamp ;
r e g _ f l a g s [index] = hdr . t c p _ f l a g s ;

with pkt = i n g r e s s . next_packet () :
hdr = parse (pkt) ;
md = pkt . metadata ;
index = hash ({ hdr . src_ ip , hdr . dst_ip , hdr . proto , hdr .
l 4 }) ;
c o l l i s i o n =
hdr . s r c _ i p != r e g _ s r c _ i p [index]
|| hdr . ds t_ ip != reg_dst_ ip [index]
|| hdr . proto
!= reg_proto [index]
|| hdr . l 4
!= r eg _ l4 [index]
i f c o l l i s i o n :
// Export i n f o and keep t r a c k of new flow
flow_record = { r e g _ s r c _ i p [index] ,
reg_dst_ ip [index] ,
reg_proto [index] ,
r eg _ l 4 [index] ,
reg_pkt_count [index] ,
reg_byte_count [index] ,
r e g _ t i m e _ s t a r t [index] ,
reg_time_end [index] ,
r e g _ f l a g s [index] }
emit ({ hdr . e thernet , f low_record }) ;
i n i t i a l i z e _ r e g i s t e r s (hdr , index , md) ;
e l s e :
// Update s t a t i s t i c s of current flow
reg_pkt_count [index] += 1 ;
reg_byte_count [index] += length (hdr . e t h e r n e t)
+ hdr . ip_ len
reg_time_end [index] = md. timestamp ;
r e g _ f l a g s [index] ||= hdr . t c p _ f l a g s ;

Sensors 2021, 21, 8010 15 of 20

Table A1. Detected protocols from the capture files.

BYTES PACKETS DET.STAT. REDUCE RATE (%)

ORG RDC ORG RDC POS. NEG.
anydesk 2,962,572 767 6963 8 1 0 99.97
exe_download 734,335 328 703 4 1 0 99.96
exe_download_as 542,265 328 534 4 1 0 99.94
tor 3,106,096 3524 3859 42 4 0 99.89
whatsappfiles 467,113 760 620 8 1 0 99.84
wireguard 791,758 1576 2399 4 1 0 99.80
ps_vue 2,242,710 5184 1740 15 3 0 99.77
tls_long_cert 121,969 380 182 4 1 0 99.69
ftp 1,158,196 3805 1192 12 3 0 99.67
quic-mvfst 408,962 1414 353 2 1 0 99.65
git 76,165 376 90 4 1 0 99.51
netflix 6,323,017 32,776 6999 217 5 0 99.48
coap_mqtt 954,917 5505 8516 51 3 0 99.42
dns-tunnel 80,668 528 438 8 1 0 99.35
bitcoin 596,362 4816 637 24 1 0 99.19
wa_video 998,593 8587 1567 38 6 0 99.14
ssh 41,738 401 258 4 1 0 99.04
quic_t51 589,126 5664 642 4 1 0 99.04
quic-28 252,865 2782 253 4 1 0 98.90
bittorrent_ip 519,514 6512 479 8 1 0 98.75
skype-conf 44,487 616 200 4 1 0 98.62
dns_exfiltr 80,745 1149 300 4 1 0 98.58
instagram 3,009,247 47,580 3443 122 7 0 98.42
tls_verylong_ce 23,381 380 48 4 1 0 98.37
check_mk_new 22,594 391 98 4 1 0 98.27
quic-mvfst-22 300,063 5232 490 4 1 0 98.26
bad-dns-traffic 108,542 1934 382 12 1 0 98.22
capwap 108,037 2113 422 21 2 0 98.04
anyconnect-vpn 1,088,929 23,234 3001 166 17 0 97.87
openvpn 64,263 1392 298 12 1 0 97.83
webex 902,823 19,937 1580 223 6 0 97.79
bittorrent_utp 43,553 979 86 4 1 0 97.75
facebook 31,951 752 60 8 1 0 97.65
nintendo 357,057 9156 1000 66 3 0 97.44
simple-dnscrypt 47,340 1344 111 16 1 0 97.16
443-opvn 12,677 380 46 4 1 0 97.00
Oscar 11,090 352 71 4 1 0 96.83
google_ssl 9780 328 28 4 1 0 96.65
nest_log_sink 137,036 4806 1000 60 3 0 96.49
modbus 9129 358 102 4 1 0 96.08
quic046 93,697 3723 100 4 1 0 96.03
fix 145,778 5858 1261 48 1 0 95.98
weibo 279,507 11,287 498 104 6 0 95.96
tls_esni_sni_b 16,811 696 38 8 1 0 95.86
pps 2,307,979 104,799 2557 243 4 0 95.46
http-crash- 3544 168 9 2 1 0 95.26
smb_deletefile 33,172 1660 101 4 1 0 95.00
WebattackXSS 4,946,124 248,266 9374 2641 1 0 94.98
teams 1,554,287 78,248 2817 267 15 0 94.97
dnp3 51,786 2752 543 32 1 0 94.69
wechat 707,438 43,775 1672 287 15 0 93.81
s7comm 6580 408 55 4 1 0 93.80
telegram 374,409 25,197 1566 119 15 0 93.27
youtube_quic 198,575 13,389 289 12 2 0 93.26
1kxun 664,361 45,690 1439 297 16 0 93.12

Sensors 2021, 21, 8010 16 of 20

Table A1. Cont.

BYTES PACKETS DET.STAT. REDUCE RATE (%)

bittorrent 312,904 21,595 299 74 1 0 93.10
ja3_lots_of1 7614 528 27 4 1 0 93.07
ja3_lots_of2 5396 380 11 4 1 0 92.96
wa_voice 187,832 13,276 736 76 11 0 92.93
viber 157,311 12,098 424 81 9 0 92.31
youtubeupload 130,326 10,358 137 12 1 0 92.05
dropbox 110,884 9056 848 48 1 0 91.83
amqp 27,354 2284 160 12 1 0 91.65
iphone 232,616 21,922 500 138 12 0 90.58
skype 708,140 71,068 3284 639 13 0 89.96
WebattackSQLinj 32,264 3384 94 36 1 0 89.51
quic 360,998 37,893 518 34 4 0 89.50
hangout 3230 340 19 2 1 0 89.47
ssdp-m-search 1653 174 19 2 1 0 89.47
BGP_Cisco_hdlc 1305 144 14 2 1 0 88.97
dos_win98_smb_ 10,055 1130 220 9 3 0 88.76
skype_unknown 537,720 60,508 2146 537 13 0 88.75
netbios 30,922 3546 260 24 2 0 88.53
sip 51,847 5966 112 11 3 0 88.49
whatsapp_l_call 223,130 26,502 1253 187 11 0 88.12
rx 29,643 3641 132 18 1 0 87.72
6in4tunnel 43,341 5326 127 26 5 0 87.71
android 143,354 18,809 500 167 14 0 86.88
ajp 7414 1020 38 10 2 0 86.24
quic_q46 21,721 3028 20 4 1 0 86.06
quic_q50 20,914 3048 20 4 1 0 85.43
ethereum 264,111 39,317 2000 260 2 0 85.11
malware 8625 1347 26 10 4 0 84.38
teamspeak3 2223 354 13 2 1 0 84.08
quic_q39 25,625 4131 60 4 1 0 83.88
iec60780-5-104 12,561 2034 147 24 1 0 83.81
whatsapp_login 32,369 5963 93 19 7 0 81.58
whatsapp_voice_ 34,319 6492 261 52 3 0 81.08
quic-mvfst-exp 27,029 5272 30 4 1 0 80.50
netflowv9 14,128 2832 10 2 1 0 79.95
ftp_failed 2132 476 18 4 1 0 77.67
smpp_in_general 1552 347 17 4 1 0 77.64
EAQ 26,563 6732 197 82 2 0 74.66
upnp 10,248 2928 14 4 1 0 71.43
fuzz-2020-02 158,043 46,445 366 125 3 0 70.61
quic-29 9746 3011 15 4 1 0 69.11
quic-24 8360 3029 15 4 1 0 63.77
zabbix 955 376 10 4 1 0 60.63
4in4tunnel 970 388 5 2 1 0 60.00
quic-27 13,367 5664 20 4 1 0 57.63
quic-mvfst-27 13,367 5664 20 4 1 0 57.63
quic_q46_b 7500 3239 20 4 1 0 56.81
fuzzing 32,268 15,422 131 81 3 0 52.21
mongodb 3388 1648 27 16 2 0 51.36
mssql_tds 17,172 8728 38 20 1 0 49.17
malformed_dns 6004 3096 6 4 1 0 48.43
quic-23 7671 3956 20 4 1 0 48.43
fuzz-2006 99,986 53,930 691 399 9 0 46.06
dnscrypt-v2-doh 230,431 132,987 577 136 1 0 42.29
skype_udp 459 278 5 3 1 0 39.43
teredo 3150 1980 24 14 1 0 37.14
quic_t50 8708 5664 12 4 1 0 34.96

Sensors 2021, 21, 8010 17 of 20

Table A1. Cont.

BYTES PACKETS DET.STAT. REDUCE RATE (%)

smbv1 1365 895 7 4 1 0 34.43
diameter 2124 1488 6 4 1 0 29.94
websocket 561 428 5 4 1 0 23.71
steam 11,516 10,218 104 97 1 0 11.27
kerberos 30,139 29,412 77 75 4 0 2.41
encrypted_sni 2382 2382 3 3 1 0 0.00
tls-esni-fuzzed 2382 2382 3 3 1 0 0.00
4in6tunnel 2284 2284 4 4 1 0 0.00
mysql-8 463 463 4 4 1 0 0.00
ubntac2 1928 1928 8 8 1 0 0.00
filtered 21,595 21,595 74 74 1 0 0.00
dnscrypt-v1 321,274 321,274 608 564 2 0 0.00
WebattackRCE 210,131 210,131 797 797 2 0 0.00

Table A2. Application identification in full stream.

APPNAME REDUCED
BYTES ORIGINAL B. REDUCED

PACKET ORIGINAL P. REDUCTION %

AFP 75.888 142.848 136 256 46.88%
Amazon 222.810 3.539.200 1.892 10.959 93.70%
AmongUs 74.772 187.488 134 336 60.12%
Ayiya 70.308 167.400 126 300 58.00%
BitTorrent 264.492 566.928 474 1.016 53.35%
BJNP 110.484 223.200 198 400 50.50%
CAPWAP 110.484 225.432 198 404 50.99%
CiscoVPN 90.636 174.456 166 318 48.05%
Cloudflare 3.432 57.108 52 290 93.99%
COAP 205.344 429.660 368 770 52.21%
Collectd 94.860 180.792 170 324 47.53%
CPHA 149.544 305.784 268 548 51.09%
DHCP 188.802 575.730 355 1.259 67.21%
DHCPV6 6.178 238.728 42 1.624 97.41%
DNS 1.285.798 1.528.164 11.150 12.354 15.86%
Dropbox 118.296 232.128 212 416 49.04%
EAQ 162.936 363.816 292 652 55.21%
Facebook 78.980 83.836 804 848 5.79%
FTP_CONTROL 9.736 27.940 148 430 65.15%
Github 8.592 8.986 92 96 4.38%
GMail 20.928 704.538 192 4.458 97.03%
Google 2.274.505 44.542.510 23.970 142.071 94.89%
GoogleServices 115.472 2.215.516 964 9.062 94.79%
GTP 263.376 565.812 472 1.014 53.45%
H323 159.588 351.540 286 630 54.60%
HTTP 799.416 17.123.436 11.300 59.257 95.33%
HTTP_Proxy 3.132 3.252 52 54 3.69%
IAX 118.296 241.056 212 432 50.93%
ICMP 380.064 6.251.658 4.052 48.536 93.92%
ICMPV6 5.548 88.904 62 954 93.76%
Instagram 74.948 77.950 484 512 3.85%
IPsec 279.632 590.996 500 1.058 52.68%
IRC 95.976 213.156 172 382 54.97%
iSCSI 212.040 449.748 380 806 52.85%
Kerberos 48.228 124.116 90 226 61.14%
LDAP 94.860 249.984 170 448 62.05%
LinkedIn 15.346 17.774 144 168 13.66%
LISP 156.240 330.336 280 592 52.70%

Sensors 2021, 21, 8010 18 of 20

Table A2. Cont.

APPNAME REDUCED
BYTES ORIGINAL B. REDUCED

PACKET ORIGINAL P. REDUCTION %

LLMNR 149.644 304.968 282 588 50.93%
MDNS 213.722 678.891 416 2.023 68.52%
Megaco 46.872 103.788 84 186 54.84%
Memcached 8.052 15.864 18 32 49.24%
Microsoft 76.694 784.104 640 2.493 90.22%
Microsoft365 5.064 144.776 44 314 96.50%
MsSQL-TDS 2.640 3.600 44 60 26.67%
NetBIOS 134.656 300.524 248 582 55.19%
NFS 111.600 243.288 200 436 54.13%
NTP 54.684 112.716 98 202 51.49%
OpenVPN 105.024 224.436 190 404 53.21%
OSPF 21.368 880.742 228 9.307 97.57%
Playstation 75.012 167.760 138 306 55.29%
Radius 213.156 444.168 382 796 52.01%
RDP 110.964 221.568 206 406 49.92%
Reddit 9.332 10.292 88 96 9.33%
RemoteScan 190.836 379.440 342 680 49.71%
RTSP 45.756 100.440 82 180 54.44%
RX 8.928.188 25.862.372 16.002 46.350 65.48%
sFlow 131.688 280.116 236 502 52.99%
SIP 245.320 512.044 446 924 52.09%
SMBv1 1.458 16.524 6 68 91.18%
SMBv23 9.192 12.360 152 204 25.63%
SOCKS 64.092 141.096 122 260 54.58%
SOMEIP 386.136 850.392 692 1.524 54.59%
SSDP 169.968 230.160 418 766 26.15%
SSH 254.024 7.116.608 3.406 46.888 96.43%
Starcraft 90.396 196.416 162 352 53.98%
Syslog 128.340 262.260 230 470 51.06%
TeamViewer 116.064 247.752 208 444 53.15%
Telnet 7.080 8.520 118 142 16.90%
Teredo 107.136 234.360 192 420 54.29%
TFTP 51.336 109.368 92 196 53.06%
TINC 100.440 223.200 180 400 55.00%
TLS 229.370 16.020.578 2.900 35.105 98.57%
Twitter 12.500 12.828 132 136 2.56%
UBNTAC2 106.020 233.244 190 418 54.55%
UbuntuONE 7.114 3.997.352 80 3.252 99.82%
VHUA 80.352 181.908 144 326 55.83%
Viber 686.340 1.487.628 1.230 2.666 53.86%
VMware 217.620 501.084 390 898 56.57%
Wikipedia 24.352 26.832 280 296 9.24%
WireGuard 112.716 255.564 202 458 55.90%
Xbox 229.896 510.012 412 914 54.92%
XDMCP 100.440 213.156 180 382 52.88%
YouTube 14.960 15.360 92 96 2.60%

Sensors 2021, 21, 8010 19 of 20

Table A3. TCP-based Detection Applications and Reduction Rates.

APPNAME REDUCED
BYTES ORIGINAL B. REDUCED

PACKET ORIGINAL P. REDUCTION %

Amazon 49.814 3.358.944 752 9.755 98.52%
CiscoVPN 240 360 4 6 33.33%
Cloudflare 3.432 57.108 52 290 93.99%
FTP_CONTROL 9.612 27.816 146 428 65.44%
Google 556.515 42.745.086 7.630 124.991 98.70%
HTTP 796.644 17.120.664 11.256 59.213 95.35%
HTTP_Proxy 240 360 4 6 33.33%
ICMP 532 1.024 6 12 48.05%
Microsoft365 264 20.034 4 40 98.68%
MsSQL-TDS 2.640 3.600 44 60 26.67%
Playstation 240 360 4 6 33.33%
RDP 480 600 8 10 20.00%
SMBv23 8.700 11.868 144 196 26.69%
SSH 253.900 7.116.484 3.404 46.886 96.43%
Telnet 6.600 8.040 110 134 17.91%
TLS 223.754 16.014.962 2.808 35.013 98.60%
UbuntuONE 1.510 3.991.232 20 3.188 99.96%

References
1. Yazici, M.A.; Oztoprak, K. Policy broker-centric traffic classifier architecture for deep packet inspection systems with route asym-

metry. In Proceedings of the 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom),
Istanbul, Turkey, 5–8 June 2017, pp. 1–5. [CrossRef]

2. Sandvine Inc. Virtual ActiveLogic—Hyperscale Data Plane for Next, Generation Telco Networks. Available online:
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/Datasheets/Network%20Optimization/
Sandvine_DS_Virtual_ActiveLogic.pdf (accessed on 20 June 2021).

3. Lim, H.K.; Kim, J.B.; Heo, J.S.; Kim, K.; Hong, Y.G.; Han, Y.H. Packet-based network traffic classification using deep learning.
In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC),
Okinawa, Japan, 11–13 February 2019; pp. 046–051.

4. Zolotukhin, M.; Hämäläinen, T.; Kokkonen, T.; Siltanen, J. Increasing web service availability by detecting application-layer DDoS
attacks in encrypted traffic. In Proceedings of the 2016 23rd International Conference on Telecommunications (ICT), Thessaloniki,
Greec, 16–18 May 2016; pp. 1–6.

5. Bosshart, P.; Gibb, G.; Kim, H.S.; Varghese, G.; McKeown, N.; Izzard, M.; Mujica, F.; Horowitz, M. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 99–110.
[CrossRef]

6. Kim, C. Programming the Network Dataplane; ACM SIGCOMM: Florianopolis, Brazil, 2016.
7. Gupta, A.; Harrison, R.; Canini, M.; Feamster, N.; Rexford, J.; Willinger, W.; Sonata: Query-driven streaming network telemetry.

In Proceedings of the 2018 conference of the ACM special interest group on data communication, Budapest, Hungary, 20–25
August 2018; pp. 357–371.

8. Wang, S.Y.; Hu, H.W.; Lin, Y.B. Design and Implementation of TCP-Friendly Meters in P4 Switches. IEEE/ACM Trans. Netw. 2020,
28, 1885–1898. [CrossRef]

9. Yan, Y.; Beldachi, A.F.; Nejabati, R.; Simeonidou, D. P4-enabled Smart NIC: Enabling Sliceable and Service-Driven Optical Data
Centres. J. Light. Technol. 2020, 38, 2688–2694. [CrossRef]

10. Fernández, C.; Giménez, S.; Grasa, E.; Bunch, S. A P4-Enabled RINA Interior Router for Software-Defined Data Centers.
Computers 2020, 9, 70. [CrossRef]

11. Kundel, R.; Nobach, L.; Blendin, J.; Maas, W.; Zimber, A.; Kolbe, H.J.; Schyguda, G.; Gurevich, V.; Hark, R.; Koldehofe, B.;
et al. OpenBNG: Central office network functions on programmable data plane hardware. Int. J. Netw. Manag. 2021, 31, e2134.
[CrossRef]

12. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al.
P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]

13. Hang, Z.; Wen, M.; Shi, Y.; Zhang, C. Programming protocol-independent packet processors high-level programming (P4HLP):
Towards unified high-level programming for a commodity programmable switch. Electronics 2019, 8, 958. [CrossRef]

14. The P4.org Applications Working Group. In-Band Network Telemetry (INT) Data Plane Specification. Available online:
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf (accessed on 10 March 2021).

15. The P4 Language Consortium. Getting Started with P4 Language. Available online: https://p4.org/p4/getting-started-with-p4
.html (accessed on 15 March 2021).

http://doi.org/10.1109/BlackSeaCom.2017.8277681
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/Datasheets/Network%20Optimization/Sandvine_DS_Virtual_ActiveLogic.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/Datasheets/Network%20Optimization/Sandvine_DS_Virtual_ActiveLogic.pdf
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1109/TNET.2020.3002074
http://dx.doi.org/10.1109/JLT.2020.2966517
http://dx.doi.org/10.3390/computers9030070
http://dx.doi.org/10.1002/nem.2134
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.3390/electronics8090958
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://p4.org/p4/getting-started-with-p4.html
https://p4.org/p4/getting-started-with-p4.html

Sensors 2021, 21, 8010 20 of 20

16. Parol, P. P4 Network Programming Language—What Is It All About? Available online: https://codilime.com/p4-network-
programming-language-what-is-it-all-about/ (accessed on 21 March 2021).

17. Sgambelluri, A.; Paolucci, F.; Giorgetti, A.; Scano, D.; Cugini, F. Exploiting telemetry in multi-layer networks. In Proceedings of
the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–4.

18. Sari, A.; Lekidis, A.; Butun, I. Industrial networks and IIoT: Now and future trends. In Industrial IoT; Springer: Cham, Switzerland,
2020; pp. 3–55.

19. Butun, I.; Almgren, M.; Gulisano, V.; Papatriantafilou, M. Intrusion Detection in Industrial Networks via Data Streaming. In
Industrial IoT; Springer: Cham, Switzerland, 2020; pp. 213–238.

20. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

21. Apache Foundation. Apache Flink - Stateful Computations over Data Streams. Available online: https://flink.apache.org/
(accessed on 13 February 2021).

22. Oztoprak, K. Subscriber Profiling for Connection Service Providers by Considering Individuals and Different Timeframes. IEICE
Trans. Commun. 2016, E99.B, 1353–1361. [CrossRef]

23. Oztoprak, K. Profiling subscribers according to their internet usage characteristics and behaviors. In Proceedings of the 2015 IEEE
International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 1492–1499. [CrossRef]

24. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset
and Taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8.

25. Deri, L.; Martinelli, M.; Bujlow, T.; Cardigliano, A. ndpi: Open-source high-speed deep packet inspection. In Proceedings of the
2014 International Wireless Communications and Mobile Computing Conference (IWCMC), Nicosia, Cyprus, 4–8 August 2014;
pp. 617–622.

26. Jurkiewicz, P.; Rzym, G.; Boryło, P. Flow length and size distributions in campus Internet traffic. Comput. Commun. 2021,
167, 15–30. [CrossRef]

https://codilime.com/p4-network-programming-language-what-is-it-all-about/
https://codilime.com/p4-network-programming-language-what-is-it-all-about/
http://dx.doi.org/10.1145/2934664
https://flink.apache.org/
http://dx.doi.org/10.1587/transcom.2015EBP3467
http://dx.doi.org/10.1109/BigData.2015.7363912
http://dx.doi.org/10.1016/j.comcom.2020.12.016

	Introduction
	Background
	Protocol Independent Switch Architecture (PISA)
	P4 Language
	In-Band Telemetry with Programmable Switches
	Real-Time Data Streaming
	Deep Packet Inspection (DPI) and Application Layer Visibility

	Application Layer Processing with P4 Switches
	Proposed System Architecture
	Simulation Environment

	Experimental Study
	Experiment-1: Application Identification Performance Improvement DPI Application Classification on Mixed Flow Captures
	TCP Session
	UDP Session

	Sample Packet Captures
	Experiment-2: TCP-Based Application Identification Using Real-Life Data
	Experiment-3: Application Identification in Full Stream Using Real-Life Data
	Results and Discussion of the Experiments

	Conclusions
	Future Study
	
	References

