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Abstract

Background: Chemicals induce compound-specific changes in the transcriptome of an organism (toxicogenomic
fingerprints). This provides potential insights about the cellular or physiological responses to chemical exposure and
adverse effects, which is needed in assessment of chemical-related hazards or environmental health. In this regard,
comparison or connection of different experiments becomes important when interpreting toxicogenomic experiments.
Owing to lack of capturing response dynamics, comparability is often limited. In this study, we aim to overcome these
constraints. Results: We developed an experimental design and bioinformatic analysis strategy to infer time- and
concentration-resolved toxicogenomic fingerprints. We projected the fingerprints to a universal coordinate system
(toxicogenomic universe) based on a self-organizing map of toxicogenomic data retrieved from public databases. Genes
clustering together in regions of the map indicate functional relation due to co-expression under chemical exposure. To
allow for quantitative description and extrapolation of the gene expression responses we developed a time- and
concentration-dependent regression model. We applied the analysis strategy in a microarray case study exposing zebrafish
embryos to 3 selected model compounds including 2 cyclooxygenase inhibitors. After identification of key responses in the
transcriptome we could compare and characterize their association to developmental, toxicokinetic, and toxicodynamic
processes using the parameter estimates for affected gene clusters. Furthermore, we discuss an association of
toxicogenomic effects with measured internal concentrations. Conclusions: The design and analysis pipeline described
here could serve as a blueprint for creating comparable toxicogenomic fingerprints of chemicals. It integrates, aggregates,
and models time- and concentration-resolved toxicogenomic data.
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Key Points

i. Comparability between toxicogenomic experiments can be im-
proved with the help of:

• the zebrafish toxicogenomic universe – a self-organizing
map (SOM) of various toxicogenomic datasets providing a com-
mon reference frame for biological interpretation, and

• a regression model allowing quantitative characterisation
of biological responses and inference on a concentration and
time scale.
ii. In a case study the dynamics of key responses (related to e.g.
developmental delay, stress response and cyclooxygenase (COX)
inhibition) could be identified and discriminated.

Background

Chemical risk assessment and environmental monitoring are
challenged to find ways of accounting for a large variety and
quantity of chemicals [1], which are developed, used, and dis-
charged by modern societies [2], and to which wildlife [3] and
humans [4] are exposed during the course of their lifetimes.
Hence, methodological innovation for an improved and more
comprehensive characterization of human and environmental
exposures to chemicals [5] and their related effects [6] is sought.

Offering comprehensive response detection, toxicoge-
nomic methods are suggested for an improved assessment
of chemical-related hazards [7] or environmental health [8].
Because chemicals induce characteristic transcriptome changes
(toxicogenomic fingerprints) in tissues [9] and whole organisms
[10], ’omics approaches provide novel possibilities for expo-
sure and effect diagnosis for ill-characterized chemicals and
environmental samples [11, 12] and may extend the prediction
of toxicity on the basis of mechanistic information [13]. In
this regard, comparison or connection of different experi-
ments becomes crucial for the interpretation of toxicogenomic
observations [14].

When comparing gene expression profiles, the sheer amount
of signals in an ’omics dataset poses a quest for comparison
and extraction of relevant patterns [15]. The application of self-
organizing maps (SOMs), a machine learning method developed
by Kohonen [16], has been shown to be valuable for the compari-
son of transcriptome profiles of different tissues [15] and cancer
subtypes [17]. Here, we aimed at improving comparability of tox-
icogenomic fingerprints with the help of a SOM. This is not yet
an established approach in toxicogenomics.

Furthermore, comparability between toxicogenomic
datasets is typically limited owing to substantial differ-
ences in study designs, e.g. with respect to selected exposure
time and concentration [18]. In their pioneering studies in-
vestigating toxicogenomic fingerprints Hamadeh et al. [9] and
Yang et al. [10] showed that responses vary with exposure
time and concentration. This implies that comparative in-
terpretations of toxicogenomic fingerprints undergo a risk
of deriving ambiguous conclusions when the concentration
and time dependence of the reported responses is neglected.
Additionally, this severely limits the scope for interpretation or
prediction of effects for untested exposures in risk assessment
or monitoring efforts. Therefore, comparability would require
means for extrapolation. Studies that have analyzed time- or
concentration-resolved toxicogenomic fingerprints applied cor-
relation networks (e.g., [19]), unsupervised clustering (e.g., [20]),
or a set of different regression models (e.g., [21,22]) to describe
the responses. However, an integration of concentration and
time dependence in one model has not yet been achieved for

toxicogenomic responses. Therefore, in this study we strived
for establishing a regression model capturing the time and
concentration dependence of toxicogenomic responses.

Taken together we aimed to integrate, aggregate, and model
dynamic toxicogenomic responses in order to obtain aggregated
compound fingerprints, which can be extrapolated on the scale
of exposure duration and concentration, and which are compa-
rable between different compounds and studies.

To address the raised issues, we developed an analysis
pipeline combining the algorithm of SOMs with a concentration-
and time-dependent response model (CTR model). With the
SOM we integrated previously published toxicogenomic data to
a reference frame that we called ”toxicogenomic universe” and
aggregated toxicogenomic fingerprints from single compounds
to this reference frame to foster comparison between the finger-
prints. A regression model was built to derive quantitative pa-
rameters for comparing response dynamics and extending the
scope for inference.

To demonstrate the added value of the suggested approach,
we performed an experimental case study and applied the
pipeline on microarray data of the zebrafish embryo (ZFE) (Danio
rerio) after exposure to 3 selected environmentally relevant con-
taminants. The experimental design covered 6 different expo-
sure durations and 5 increasing compound concentrations. The
3 compounds were diclofenac and naproxen, 2 pharmaceuticals
known to inhibit the enzyme cyclooxygenase (COX) in humans,
and diuron, a herbicide known to target the arylhydrocarbon re-
ceptor (AHR) pathway in mammalian cells [23].

Besides gene expression we also measured the internal con-
centrations of all 3 compounds after the exposure. Together with
parameter estimates from the CTR model, this allowed us to sep-
arate toxicodynamic from toxicokinetic responses. Finally, we
discuss the suggested analysis pipeline for achieved progress in
inferential statements on compounds’ effects, and outline fur-
ther uses in the field of toxicogenomics.

Data description

In this study we integrated transcriptome data of the ZFE from
public databases with transcriptome data from our own ex-
posure experiments to infer a universal SOM. Based on this,
we performed a case study further investigating the time- and
concentration-resolved toxicogenomic fingerprints from our ex-
posure experiments. In this section we briefly describe the
dataset used for generating the SOM and explain the experimen-
tal design and selection of model compounds for the case study.

Dataset for generating the toxicogenomic universe

For the generation of a toxicogenomic universe for the ZFE we
used the toxicogenomic fingerprints of the model substances
measured in this study in combination with previously pub-
lished toxicogenomic fingerprints in the ZFE. Data were selected,
downloaded, and processed from Gene Expression Omnibus
(GEO) and ArrayExpress in a semi-automatic workflow, which
can be accessed via protocols.io [24]. A summary of datasets in-
cluded in our study is provided in Table S1. The included mi-
croarray platforms were annotated to the most recent zebrafish
genome (Genome Reference Consortium Zebrafish Build 11), and
Ensembl gene annotation (Ensembl database release 93 [25]).
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Case study

For our case study, investigating time- and concentration-
dependent toxicogenomic responses in the ZFE, we selected 3
environmentally relevant model compounds, namely, diuron,
diclofenac, and naproxen:

Diclofenac (CAS RN:15307-79-6) is used as a pharmaceutical
substance, often applied as a painkiller and to reduce inflamma-
tion. It belongs to the group of non-steroidal anti-inflammatory
drugs (NSAIDs) and is a known inhibitor of both variants of the
COX enyzme. COX produces prostaglandins, which act as in-
flammatory signalling molecules (reviewed in [26]). By inhibiting
COX an inflammatory response is repressed. As environmental
toxicant, diclofenac gained attention owing to its toxicity in vul-
tures, which has led to a significant decline in the vulture pop-
ulation in Pakistan [27]. Furthermore, it was identified as a pri-
ority pollutant in aquatic environments (e.g., [28]). Several tox-
icological studies were performed using aquatic organisms (re-
viewed in [29]). In fish, adverse effects of diclofenac exposure
on gill, liver, kidney, and the gastrointestinal tract, as well as re-
duced egg growth and delay in hatching, have been reported. Di-
clofenac has also been associated with drug-induced liver tox-
icity in response to the formation of reactive metabolites, mi-
tochondrial dysfunction, and impairment of ATP synthesis [30,
31].

Naproxen (CAS RN:26159-34-2), like diclofenac, is widely ap-
plied as a COX inhibitor of the NSAID group. It has been de-
tected in surface waters [32, 33, 28] and it was shown to lead
to histopathological liver damage and pericardial edema in ZFEs
[34].

The third compound used in this study was diuron (CAS
RN:330-54-1), a herbicide listed as a priority substance to be
monitored under the European Water Framework Directive [35].
In plants, it is known to specifically inhibit the electron trans-
fer from photosystem II. In mammalian cells, it was found to
bind to the AHR [23]. In the ZFE, diuron has been reported to
provoke sublethal effects on heartbeat and spontaneous move-
ments [36]. We thus expected diuron to act differently compared
with diclofenac and naproxen.

Experimental design
Exposure settings for our transcriptome measurements were
designed to meet several requirements: we intended to follow
compound-specific toxicodynamic processes but also account
for differences in toxicokinetics. Most importantly, results were
meant to be comparable among the different compounds.

The exposure for a standard ZFE toxicity test starts im-
mediately after fertilization [37]. However, because we expect
many unspecific effects when disturbing the first hours of de-
velopment, we opted for an exposure period between 24 and
96 hours post fertilization (hpf). Time points of RNA extraction
during the exposure were 3, 6, 12, 24, 48, and 72 hours post
exposure (hpe). The exposure concentrations were phenotypi-
cally anchored to the lethal concentration (LC) at 96 hpf/72 hpe.
The LC25, modelled from experimental observations (see Sup-
plementary Methods), served as highest and the LC0.5 as low-
est exposure concentration with 6 equal dilution steps in be-
tween, with dilution steps 1, 2, 4, and 6 chosen for exposure (see
Equations [1] and [2], Fig. S1). The selected concentrations for
transcriptome experiments can be found in the Supplementary
Methods file.

Dilution factor (df) = 6

√
LC25

LC0.5
, (1)

Exposure concentrations = LC25

df x
; x = 0, 1, 2, 4, 6. (2)

Data analyses and Results

Our analysis aimed at obtaining aggregated dynamic toxicoge-
nomic fingerprints from the measured transcriptome data. The
key parts of the analysis workflow (depicted in Fig. 1) are

� Integration of previously published and new toxicogenomic
datasets using an SOM into the Zebrafish Embryo Toxicoge-
nomic Universe (ZTU) (Fig. 2);

� Aggregation of compound toxicogenomic fingerprints by
projection onto the ZTU (Fig. 3);

� Modelling of time- and concentration-resolved responses
using a regression model (Fig. 4);

� Exploration of the analysis results with the help of an inter-
active toxicogenomic fingerprint browser (Fig. 5).

In the following, we describe the analysis steps and the re-
spective results in more detail. Subsequently, we report the re-
sults of a case study in which we applied the workflow.

Integration: the Zebrafish Embryo Toxicogenomic
Universe

A compiled dataset of published toxicogenomic data was com-
bined with data from our 3 single-compound exposures to infer
the ZTU based on all currently retrievable toxicogenomic ZFE
microarray data. All datasets were normalized against the re-
spective control of the same experiment. The resulting dataset
containing log2(fold change) (logFC) values from 342 different
treatments and for 29,046 unique genes was used to infer a
SOM (Fig. 2). This method organizes genes into groups of
co-regulated or co-expressed transcripts. Those groups are ar-
ranged on a 2D grid in a way that similar behaving (i.e., co-
expressed) groups end up in the same regions. Each coordinate
on the map gets assigned a distinct group of genes. Because the
ZTU is derived from toxicogenomic data we call this coordinate
”toxnode” with reference to the term ”node” used in general net-
work terminology (equivalent to the term ”metagene” in Wirth
et al. [15]). The outcome of this step is a 60 × 60 grid of 3,600 toxn-
odes. Each gene present in our dataset is permanently assigned
to a toxnode, while each node contains genes that behave sim-
ilarly across all exposure conditions. The number of genes per
toxnode ranges from 1 to 54, with a mean of 8 genes per node
(Fig. 2A).

To obtain an overview of the ZTU we grouped the 3,600 toxn-
odes into 118 clusters (which we determined to be among the op-
timal cluster sizes; see Supplementary Methods) with the help
of k-means clustering. To enable easy description of the clusters
a random name was assigned to each cluster of nodes. The clus-
tering is visualized in Fig. 2B and summarized in Table S2. The
resulting clusters contained between 3 and 93 toxnodes, with a
mean of 31.

The data integration and clustering with the help of the SOM
and subsequent k-means clustering may help in biological inter-
pretation of toxicogenomic responses in the ZFE. We performed
an over-representation analysis for functional annotation terms
from the databases ZFIN [38], InterPro [39], Reactome [40], and
Gene Ontology (GO) [41, 42]. Biological annotations of at least 1 of
the 4 databases are significantly enriched for 100 of 118 clusters
in the ZTU (Tables S3−S5). The clusters with the highest propor-
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Figure 1 Flowchart of analysis pipeline to obtain dynamic toxicogenomic fingerprints.
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Figure 2 Response integration: The Zebrafish Embryo Toxicogenomic Universe (ZTU) comprising 3,600 toxnodes. A, Number of genes per toxnode. B, 118 clusters of
toxnodes, each color representing a distinct cluster. For cluster assignments also compare Table S2.

tion of genes assigned to a common function in the 4 databases
are cluster ”Trae”, containing mainly a set of different crystallin
genes (InterPro domain: β/γ crystallin in 37 of 52 genes, enriched
with an adjusted P-value of 3 × 10−89; ZFIN: solid lens vesicle,
15 of 52 genes, adjusted P-value 5 × 10−11); the cluster ”Dakota”,
containing different vitellogenin genes (GO: lipid transporter ac-
tivity, 5 of 10 genes, adjusted P-value 7 × 10−11; ZFIN: unfertil-

ized egg, 3 of 10 genes, adjusted P-value 6 × 10−6; interpro: vitel-
logenin, open β-sheet, 6 of 10 genes, adjusted P-value 9 × 10−19);
and cluster ”Vincent”, containing genes enriched for the up-
stream regulator RUNX1 as well as for oxygen transport (Reac-
tome: RUNX1 regulates transcription of genes involved in dif-
ferentiation of keratinocytes, 9 of 42 genes, adjusted P-value
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Figure 3 Response aggregation: Toxicodynamic fingerprint of naproxen projecting the responses of 30,000 transcripts on 3,600 nodes in the toxicogenomic universe.

Shown is a grid of the mean logFC fingerprints for each sampled time point/exposure concentration. df: dilution factor (1.15 for naproxen); LC25: exposure concentration
at which 25% of embryos show lethal effects after 72 hours of exposure (309 μmol/L for naproxen).

2 × 10−21; GO: oxygen transport, 5 of 42 genes, adjusted P-value
9 × 10−11).

Examples of further functional enrichments for toxnode
clusters, which are affected and explained in detail later on in
our case study, are cluster ”John”, containing a set of genes ex-
pressed in the pancreas (ZFIN: pancreas, 14 of 87 genes, adjusted
P-value 1 × 10−10); cluster ”Karan”, containing genes associated
with cell death (GO: regulation of cell death, 10 of 56 genes, ad-
justed P-value 7 × 10−5); cluster ”Pauline”, containing genes as-
sociated with phase II biotransformation (Reactome: Danio rerio:
phase II—conjugation of compounds, 10 of 56 genes, adjusted P-
value 3 × 10−12); and cluster ”Taamira”, containing genes asso-
ciated with the arachidonic acid (AA) pathway (GO: arachidonic
acid metabolic process, 3 of 23 genes, adjusted P-value 2 × 10−5).

Aggregation: compound fingerprints projected on the
ZTU

The ZTU retrieved in the previous step can be used as a uni-
versal coordinate system to project any exposure-specific finger-
print. In Fig. 3 this is exemplarily shown for the treatment with
naproxen (see Figs S2 and S3 for diuron and diclofenac treat-
ments, respectively). Here, the mean logFC of each toxnode for
the different exposure settings is shown. This allows us to ob-
tain an impression of the response to exposure to a compound
for the defined conditions.

We observe that the fingerprints show regulation in both di-
rections (up- and down-regulation). It also becomes obvious that
fingerprints differ between exposure compound, duration, and
concentration but also show some commonalities. Contrary to
expectation, diclofenac and naproxen—both known to inhibit
the same enzyme—show distinctly different patterns in their
toxicogenomic fingerprints.

These observations can already give some insight about the
toxicogenomic responses, yet they only allow for anecdotal in-
terpretations. For a more generalizable exploration, a modelling
approach was deemed helpful and followed in the next step.

Modelling: regression models for time- and
concentration-dependent toxicogenomic responses

The analysis up to this step allows the consideration of findings
for each exposure setting in isolation. To arrive at a more gen-
eral and transferable response characterization, which allows
more than qualitative extrapolation and comparison between
substances, we strived for a quantitative description of the mea-
sured transcriptional changes. Therefore, we implemented a re-
gression model, capturing the toxicogenomic responses over
concentration and time for different substances.

The CTR model describes concentration dependence in a
monophasic and time dependence in a biphasic manner. There-
fore, we call it ”mobi-CTR model” here. It is based on the Hill
equation, a 3-parameter non-linear model, originally describing
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Figure 4 Response modelling: Model fit for response of toxnode No. 1119—containing the gene for nfe2l2b—towards model compound exposure. The regression model
allows a 3D interpolation of time and concentration dependence. Shaded areas indicate a 95% confidence interval; dashed lines indicate 2.5%/97.5% quantile of the
respective controls.

the binding of oxygen to haemoglobin as dependent on oxygen
saturation [43]. Due to its flexibility on the one hand and physio-
logical meaningfulness on the other hand, it was later on used in
many applications (reviewed in [44]) and also proposed for phar-
macological dose response modelling [45]. One representation of
the Hill equation is provided in Equation (3). It is defined by the
parameters logFCmax, slope, and X50. The parameter logFCmax is
the maximum logarithmic fold change observed for the respec-
tive transcript or toxnode, the slope defines the steepness of the
curve, and X50 defines the concentration, for which the response
(i.e., logFC) reaches half-maximum.

The progression of the response over time can be captured
by a time-dependent description of the parameter X50 in Equa-
tion (3). Empirically, we discovered that the dynamics of the re-
ciprocal of X50 is in many cases accurately captured by the log-
arithmic Gaussian function (Equation 4). We call the recipro-
cal of X50 ”sensitivity” because a large value indicates a sen-
sitive response. When inserting Equation (4) into Equation (3),
we obtain a complete regression model describing the time-
and concentration-dependent logFC after compound exposure
(Equation 5):

logFC(c) = logFCmax

1 + exp [−slope ∗ (log(c) − log(X50))]
, (3)

sensitivity(t) = 1
X50(t)

= Smax ∗ exp

[
−0.5 ∗

(
log(t) − log(tmax)

Sdur

)2
]

,

(4)

logFC(c, t) = logFCmax

1 + exp

⎡
⎢⎢⎣−slope ∗

⎛
⎜⎜⎝log(c) − log

⎛
⎜⎜⎝ 1

Smax∗exp

(
−0.5∗

(
log(t)−log(tmax)

Sdur

)2
)

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎤
⎥⎥⎦

+ ε, ε ∼ N (0, σ2), (5)

where logFCmax corresponds to the maximum fold change of the
respective node across all conditions, Smax is the maximum sen-
sitivity (1/EC50) of the gene, tmax is the point in time with max-
imum sensitivity, and Sdur represents a measure of duration of
the sensitivity interval.

An exemplary model fit is shown in Fig. 4 for toxnode No.
1119. This node is sensitive in response to the exposure to all 3
substances. The different dynamics are reflected in the param-
eter estimates. For example, tmax is substantially smaller for di-
uron (8.8 hpe) than for diclofenac (41.3 hpe) and naproxen (50.6
hpe), reflecting an earlier response for the former. The smaller
values of Sdur for diclofenac (0.42) and naproxen (0.35) in com-
parison to diuron (0.8) indicate a shorter time frame of sensi-
tivity for this toxnode regarding both of the COX inhibitors. The
values of Smax indicate that the toxnode responds much more
sensitively to diclofenac exposure in comparison with the other
2 compounds.

The mobi-CTR model was fitted to the measured responses
(i.e, logFC) of each toxnode, arriving at a quantitative aggrega-
tion of time- and concentration-dependent toxicogenomic re-
sponses. In contrast to Figs 3, S2, and S3, we can now aggregate
the response information to a single fingerprint, and accordingly
a single plot, per substance, by projecting the estimates for a pa-
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Figure 5 Response exploration: Screenshot of interactive toxicogenomic fingerprint browser (available via https://webapp.ufz.de/itox/tfpbrowser). This online tool
provides access to visualizations of toxicogenomic fingerprints, model fits, and detailed investigation of single toxnodes.

rameter on the ZTU. These aggregated fingerprints then allow a
systematic analysis as we demonstrate in the case study below.

Quality of data description by fitted model
The model-fitting algorithm converged for all nodes and thus
provided viable parameter estimates. There is no trivial mea-
sure for goodness of fit for non-linear models (such as R2 for lin-
ear models; cf. [46]). Therefore, the quality of data description by
the model was determined using the small-sample Akaike in-
formation criterion (AICC)-weight compared to a null model. In
the vast majority of cases the regression models are preferred
over the null model (Fig. S4A−C). When comparing the regres-
sion models to the more flexible spline fit (Fig. S4D−F), which
is assumed to offer the optimal data description here, there are
(as could be expected) many toxnodes for which the spline pro-
vides better data description. However, for ∼20% of the nodes
the mobi-CTR models are even preferred over a spline fit, thus
indicating a good description of the data by the model fit. In con-
trast to the CTR model the spline fit does not offer much scope
for inference. The major advantage of the CTR model is that the
parameters can be interpreted in a biological context.

Selection of significantly affected toxnodes
Typically, we only expect a small fraction of the toxnodes to
show a statistically significant response after exposure to a spe-
cific compound. To judge whether a node shows a significant
regulation in our exposure scenario, we compared the 95% con-
fidence interval for the regression model fits with the 2.5% and
97.5% quantiles of control measurements. We selected those

nodes with a sum of differences between these curves above
or below zero (see Fig. S5A for visualization). This resulted in a
total number of 432 significantly affected nodes, with 60 nodes
for diuron, 73 nodes for diclofenac, and 353 nodes for naproxen
exposure meeting this criterion (Tables S7−S9). Eight nodes are
regulated in both diuron and diclofenac exposures (1 in differ-
ent directions), 22 nodes in diuron and naproxen (6 in different
directions), and 18 nodes in diclofenac and naproxen exposures
(3 in different directions); 3 nodes are regulated in exposures to
all 3 compounds (Fig. S5B).

Exploration: toxicogenomic fingerprint browser

To ease the exploration of the toxicogenomic fingerprints in the
context of the ZTU, we created an online fingerprint browser
[47]. A screenshot of the browser is shown in Fig. 5. The browser
allows visualization of fingerprints of different exposure condi-
tions and provides details about toxnode responses and genes
that are assigned to the respective nodes. It is possible to se-
lect different substances and exposure conditions (Fig. 5A) or to
search for genes in the universe (Fig. 5B). After treatment selec-
tion the respective fingerprint is shown (Fig. 5C). When select-
ing a toxnode on the fingerprint or searching for a specific gene
name, the CTR model fit is shown (Fig. 5D). Furthermore, the
member genes and some functional annotation are displayed
(Fig. 5E).

https://webapp.ufz.de/itox/tfpbrowser
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Case study: investigation of toxicogenomic fingerprints
of 3 model compounds

In order to demonstrate the added value of our approach, we
conducted a case study and applied the described pipeline
to toxicogenomic data of the 3 model compounds diuron, di-
clofenac, and naproxen. By applying a combination of finger-
print projection on the ZTU and regression modelling, as de-
scribed above, we received quantitative, dynamic toxicogenomic
fingerprints of the 3 compounds. This is exemplarily shown in
Fig. 6, where generalized representations of the 3 dynamic fin-
gerprints are visualized by a projection of parameter estimates
for tmax on the ZTU. In the figure each significantly affected toxn-
ode is coloured according to the estimated tmax. The size of each
dot indicates the extent of regulation for the measured condi-
tions. Furthermore, some node clusters are highlighted, which
we discuss below.

The figure shows that naproxen exposure affects consider-
ably more toxnodes in the ZTU than exposures to diuron or di-
clofenac. We can identify commonly and differentially affected
toxnodes and clusters on the map, e.g., cluster ”John”, compris-
ing many toxnodes affected late during exposure to diuron and
naproxen, cluster ”Trae” affected early by diuron and diclofenac,
or cluster ”Roman” only induced by diuron, as we discuss in
more detail below.

Generally, there are 2 kinds of information we can deduce
from the dynamic toxicogenomic fingerprints: first, the cluster-
ing of genes into the same toxnode or region of the ZTU may
indicate a common upstream regulator or common cellular pro-
cess that the genes are involved in. Thus, the member genes of
toxnodes affected by a compound exposure may provide qual-
itative functional information about the response. Second, the
estimated model parameters provide quantitative information
about the dynamics (i.e., tmax, Sdur) and the concentration depen-
dence (i.e., Smax, slope) of the effects. Additionally, the ratio of
min(EC50)morphological/min(EC50)toxnode (ratiom/t) indicates the con-
centration range that lies between effects on toxnode regulation
and morphological effects observable under the microscope.

In this regard, we inspected the toxicogenomic fingerprints
retrieved by the pipeline (lists of significantly affected toxnodes
can be found in supplementary Tables S7−S9). We explored the
affected nodes and their model parameters in the fingerprint
of diuron and compared this with the fingerprints of diclofenac
and naproxen. In doing so, we specifically focussed on effects
that could be linked to an exposure to COX inhibitors.

Diuron
We found 60 toxnodes in 35 clusters to be significantly affected
in the fingerprint of diuron (Fig. 6A, Table S7). Here we focus on
the effects in clusters ”Roman”, ”Nikkii”, ”Trae”, and ”John”.

Roman The most prominently affected node in the fingerprint
of diuron is No. 818 in cluster ”Roman”. It comprises genes for
phase I biotransformation enzymes of the cytochrome P450 fam-
ily Cyp1 (Cyp1a, Cyp1c1,Cyp1c2). The tmax was fitted to 18.4 hpe.
With an Sdur of 0.8 it belongs to the toxnodes with the most sus-
tained response after diuron exposure. Diuron is known to bind
to the AHR in mammalian cells [23], which is an upstream regu-
lator of CYP1 genes. The strong induction of these genes in the
toxicogenomic fingerprint indicates a persistent interaction of
diuron with the AHR in ZFE.

Nikkii Additionally, we observed toxnodes 2223 and 2283 to be
up-regulated in the fingerprint. These nodes are assigned to

John
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Taamira Deisy

Roman

Nikkii
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Figure 6 Case study: fitted parameter values for time point of maximum sensi-
tivity (tmax) of all significant toxnodes projected on toxicogenomic universe. Dot
size represents significant effect level (sumCI; cf. Fig. S5A). Selected clusters are
highlighted in the plots and are discussed in the text.
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cluster ”Nikkii”, which is enriched for genes involved in the pho-
totransduction pathway (Table S5). Both toxnodes were induced
early (tmax 3.3 and 3.8 hpe, respectively) with a high sensitivity
compared to other nodes (ratiom/t > 10). Similar parameter esti-
mates were found for the 3 significantly induced nodes of clus-
ter ”Robert” (Nos. 3431, 3550, 3549) and ”Tiana” (Nos. 3310, 3370,
3371), which are enriched for the retinal photoreceptor layer and
the neuronal system (tmax between 1.5 and 3.8 hpe, ratiom/t > 10).
This early induction of the phototransduction pathway was not
observed with the other 2 compounds and may be connected to
an observed increase of locomotor response after diuron expo-
sure [36, 48]. Some of these nodes as well as some other nodes
of the clusters ”Nikki” and ”Robert” were found to be down-
regulated with naproxen, though significantly later and less sen-
sitively, with a tmax between 57 and 75 hpe and a ratiom/t < 1.5
(see also Fig. 6).

Trae Toxnodes 3551, 3552, and 3553 belong to cluster ”Trae” and
were down-regulated early after diuron exposure (tmax = 8 hpe
for all 3 nodes). The same was observed with diclofenac, where 6
nodes of cluster ”Trae” were down-regulated with similar values
for tmax between 6.1 and 7.3 hpe (Fig. 6). This cluster did not seem
to be affected in the naproxen fingerprint. As already mentioned
above, cluster ”Trae” is highly enriched for crystallin genes (Ta-
ble S4).

John In contrast to this early regulation, we found toxnodes 1151,
1328, 1149, 1211, 1092, and 1387, all belonging to cluster ”John”,
to be down-regulated with diuron exposure, with a tmax between
62 and 74 hpe, indicating a late response. This cluster is signif-
icantly enriched for pancreatic enzymes (Table S6). We also ob-
served these, as well as 6 additional nodes of the same cluster, to
be down-regulated in the fingerprint of naproxen, with similar
values for tmax estimated between 53 and 75 hpe (Fig. 6).

Diclofenac and Naproxen
By comparing the fingerprints of the 3 compounds we found 15
toxnodes to be significantly up- or down-regulated in the same
direction in response to the 2 known COX inhibitors, naproxen
and diclofenac, without showing a significant regulation in re-
sponse to diuron. A selection of estimated CTR model param-
eters for these nodes are summarized in Table 1. Similarly as
for diuron, the most prominently affected nodes after diclofenac
and naproxen exposure contain genes for biotransformation en-
zymes (cf. Tables S8 and S9). Yet, the specific enzymes were in
part different from the ones up-regulated with diuron exposure
and were mainly located in the clusters ”Taamira” and ”Pauline”
in the ZTU as opposed to cluster ”Roman” under diuron expo-
sure.

Taamira Cluster ”Taamira” is, among others, enriched for genes
annotated with phase I functionalization and AA metabolism
(Table S5). It contains 2 toxnodes, which are specifically induced
by the COX inhibitors: node No. 1179 is most prominently af-
fected with both diclofenac and naproxen exposures and con-
tains the gene cyp2k18, coding for a phase I metabolic enzyme
of the cytochrome P450 family, which was shown to be induced
by different known hepatotoxicants in [49]; the neighbouring
node No. 1118 contains a gene coding for Cyp2c9 (a paralogous
enzyme of Cyp2k18) and the genes abcc2 and abcb5 coding for
ABC transporter proteins. The membrane transporter Abcc2 is
known to eliminate especially phase II biotransformation prod-
ucts including conjugated drugs from the cells [50]. The affected
nodes in cluster ”Taamira” have a fitted tmax between 44 and 54

hpe for diclofenac, which is ∼25 hours later compared to the reg-
ulation of biotransformation induced by diuron. For naproxen
the fitted tmax of these nodes is falling between 69 and 75 hpe,
and therefore another 15 hours later compared with diclofenac
(cf. Table 1). The sensitivity of the nodes is comparably high for
both compounds but higher for naproxen, with a ratiol/t of 6.1
compared with 2.3 for diclofenac.

Pauline In cluster ”Pauline”, which is enriched, among others,
for phase II biotransformation, glutathione transferase activ-
ity, and detoxification of reactive oxygen species (Tables S3 and
S5), toxnode 2985 is specifically up-regulated by diclofenac and
naproxen. It contains genes coding for metabolic enzymes such
as carbonyl reductase 1−like enzyme (cbr1l), dehydrogenase/reductase
SDR family member 13−like 1 (dhrs13l1), persulfide dioxygenase
(ethe1), microsomal glutathione S-transferase (mgst3b), and a sul-
fotransferase (sult6b1). With a tmax of 52.6 hpe (diclofenac) and
53.7 hpe (naproxen) it belongs to the earliest regulated toxnodes
appearing in the fingerprints of both diclofenac and naproxen.
Other toxnodes of this cluster, such as No. 3045, are as well in-
duced with both COX inhibitors, even though not significantly
with diclofenac, and contain genes such as peroxiredoxin 1 (prdx1)
or glutathione S-transferases (gsta2, gstp1) and reductases (gsr).
Most of these enzymes belong to the group of oxidoreductases,
and the results of the over-representation analyses indicate
their involvement in response to oxidative stress.

Deisy Two of the most prominently induced toxnodes in di-
clofenac and naproxen fingerprints belong to cluster ”Deisy”:
toxnode No. 1062 is up-regulated with a tmax of 46 hpe with di-
clofenac and 72 hpe with naproxen. It contains the genes for the
2 hormones leptin α (lepa) and parathyroid hormone 1a (pth1a);
toxnode 1241 contains different variants of the heat-shock pro-
tein Hsp70 and is induced with tmax values of 62 and 64 hpe for
diclofenac and naproxen, respectively. The induction of HSP70
by NSAIDs has been shown before (e.g., [51]). Also, a change in
leptin levels after diclofenac exposure has been reported [30].
The induction of lepa might be linked to the AA pathway [52],
which is disturbed by the inhibition of COX [53]. Additionally,
leptin levels are related to the state of energy metabolism [54],
which indicates that the COX inhibitors might induce a change
in energy metabolism in the ZFE. This is further corroborated
by the induction of toxnode 1120 in the same cluster (not sig-
nificant with diclofenac), containing the genes for cocaine- and
amphetamine-regulated transcript 3 (cart3) and apoptosis facilita-
tor Bcl-2-like protein 14 (CABZ01020840.1). Up-regulation of cart3
has been associated with anorexigenic effects in response to
stress in adult zebrafish [55], while the BCL2 family of proteins
is known to regulate stress-induced apoptosis [56].

Karan/Farajallah Further COX inhibitor−specific toxnodes (Ta-
ble 1) belong, among others, to cluster ”Karan” (Nos. 3100, 3101,
3039, 3040) and the cluster ”Farajallah” (Nos. 3161, 1000). Cluster
”Karan” is significantly enriched for MAP-kinase phosphatase
activity (Tables S3−S5; e.g., gene dusp1), transcription factors of
the AP1 family, and the toll-like receptor cascade (Tables S4 and
S5; e.g., genes fosab, jdp2d, atf3, junab, nfkbiaa), as well as the reg-
ulation of cell death and cell cycle (Table S3; e.g., genes cyr61,
gadd45ba, junba). Additionally, it is enriched for an inflammatory
response to biotic stimulus, which is also true for cluster ”Fara-
jallah”, which is, in line with that, also enriched for the com-
plement cascade (Tables S3 and S5). Furthermore, toxnodes con-
taining genes known to be involved in immune response are part
of cluster ”Karan” but only found to be affected by naproxen. For
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example, this is toxnode 3041, containing COX2b (here ptgs2b),
serum/glucocorticoid regulated kinase 1 (sgk1), CCAAT enhancer bind-
ing protein β (cebpb), which all have been shown to be involved in
inflammation [57, 58].

Regulation of Karan/Farajallah by Deisy Several genes and path-
ways observed to be up-regulated in cluster ”Karan” have been
reported to be regulated by leptin, which is induced compar-
atively early within the cluster ”Deisy” (see above). For exam-
ple, Leptin is known to induce mitogen-activated protein kinase
(MAPK) cascades as well as the JAK/STAT signaling pathway (re-
viewed in [59]) and stimulate the expression of SOCS3 as feed-
back regulator as well as TIMP1 (reviewied in [60]). The stimula-
tion of c-FOS genes by leptin mediated via the STAT3 pathway
was also reported before [61]. Furthermore, leptin and parathy-
roid hormone (PTH) were shown to regulate COX-2 messenger
RNA expression [62–64]. Therefore, we hypothesize that leptin
is one of the key regulators of the responses in cluster ”Karan”,
which are induced later than Deisy, with a tmax of 54−55 hpe with
diclofenac exposure and 73−75 hpe with naproxen exposure.

The tmax values of the cluster ”Farajallah” (64−72 hpe with
diclofenac exposure, 75 hpe with naproxen exposure) indicate
an even more downstream response induced after the induction
of ”Karan”. With a ratiol/t between 0.9 and 1.5 (diclofenac) and 1.8
and 2.9 (naproxen) the sensitivity of responses in ”Karan” and
”Farajallah” is lower in comparison to the nodes in ”Taamira” or
”Deisy”.

Common responses in all 3 compound fingerprints
With our analysis pipeline we identified 3 toxnodes as signif-
icantly induced with all 3 compounds, namely, node No. 2986
(cluster ”Pauline”), containing 1 gene coding for the phase II en-
zyme Ugt1a; its potential regulator Nfe2l2b in node 1119 (clus-
ter ”Taamira”); and node 998 (cluster ”Farajallah”) containing an
orthologue gene for Cathepsin S. The early induction of nfe2l2b
(alias NRF2B), a master regulator of oxidative stress [65, 66], and
the induction of its potential target gene ugt1a [67], hint to the in-
duction of the oxidative stress response cascade in the ZFE. Fur-
thermore, the dynamics of this induction (e.g., see Fig. 4) is dif-
ferent between the compounds and seems to follow the chem-
ical uptake dynamics of the compounds, which we discuss in
more detail below. Further nodes of these 3 clusters were in-
duced with all 3 compounds.

Global sensitivity dynamics
We observed above that the sensitivity dynamics of selected
toxnodes substantially differs between the investigated com-
pounds. We analyzed whether there are global differences in
sensitivity dynamics between the compounds by examining the
distributions of parameter estimates for tmax and Smax.

Diuron exhibits the most distinct early regulation of the 3 in-
vestigated compounds. This is also reflected in the distribution
of estimates for tmax (Fig. 7A), showing 2 peaks at ∼1.5 and 75 hpe
for all significantly affected toxnodes. The Smax of some affected
nodes is calculated to be up to 2 orders of magnitude higher than
the sensitivity for lethality (no morphological sublethal effects
were observed for diuron exposure). The median ratio between
morphological and toxicogenomic sensitivity of all significantly
affected toxnodes is 2.8.

The response to diclofenac exposure shows 2 peaks at 7 and
50 hpe (Fig. 7B), which is 4 and 47 hours later, respectively, than
the first peak of responses with diuron exposure. There are only
a few toxnodes with a tmax later than 60 hpe. For diclofenac the

ratio between morphological sensitivity and toxnode Smax is not
>2.3 for any of the affected toxnodes. The median ratio is 1.4.

Naproxen clearly shows the latest response of the 3 sub-
stances, reflected by the distribution of tmax showing a small
peak at ∼60 hpe and a high peak at the latest time point at 75
hpe. The ratiom/t shows a maximum of 6 for some of the toxn-
odes. The median ratio is 3.2.

Internal concentrations
The observed dynamics of transcriptional responses seems to
be partially linked with the temporal pattern of internal chem-
ical concentrations. Fig. 7 D−F depicts the increase of internal
chemical concentration for the 3 compounds. It demonstrates
different kinetics of chemical uptake in the ZFE. Whereas the
highest internal dose of diuron is reached before 20 hpe (Fig. 7D),
this peak is observed between 40 and 60 hpe with diclofenac
(Fig. 7E) and not before the last observed time point at 72 hpe
with naproxen (Fig. 7F). This matches with the observation that
most affected toxnodes show a tmax < 20 hpe for diuron (Fig. 7A),
between 40 and 60 hpe for diclofenac (Fig. 7B), and not before the
last time point at 75 hpe for naproxen (Fig. 7C).

By comparing the CTR model fit depicted in Fig. 4 for the ox-
idative stress response marker nfe2l2b with the internal concen-
trations dynamics, we see a correlation of these results with tmax

values of 8 hpe for diuron, 41 hpe for diclofenac, and 51 hpe for
naproxen (cf. Figs 4 and 7D−F).

Overall, this shows that toxicogenomic sensitivity can be
strongly influenced by toxicokinetic properties of the respec-
tive substances. The comparison of parameter values of the
CTR model such as the tmax with additional information such
as the internal dose dynamics also led to the identification of
stage-specific, toxicokinetic-independent responses such as the
down-regulation of the clusters ”Trae” and ”John”.

Discussion

The objective of this study was to improve comparability of toxi-
cogenomic datasets by advancing the scope of inference for tox-
icogenomic fingerprints. Therefore, we developed and tested an
experimental and data analysis pipeline for creating dynamic
toxicogenomic fingerprints of chemicals. Here, we discuss the
suggested approach as to the aspired comparability and scope
for inference, as well as the added value with regard to the elu-
cidation of molecular, cellular, or physiological effects of chem-
icals.

Approach: map and model toxicogenomic responses

Our pipeline tackles 2 major challenges with regard to toxicoge-
nomic analyses: first, to integrate and aggregate toxicogenomic
datasets; and second, to integrate time and concentration de-
pendence.

Integration and aggregation of toxicogenomic responses
A wealth of gene expression signatures is publicly available (e.g.,
GEO containing ∼2.7 million samples in October 2018), and ef-
forts are increasing for gaining new insights by integrating large
numbers of datasets. For example, the connectivity map ap-
proach, establishing links between similar gene expression pro-
files [14], was applied by Wang et al. [68] to explore similari-
ties between toxicogenomic fingerprints in fish. This method
can serve as a relatively simple and easily scalable approach to
find similar profiles in a toxicogenomic database. However, the
pairwise linking is based on qualitative lists of differentially ex-
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Figure 7 Sensitivity dynamics and toxicokinetics. A−C, Distribution of fitted parameter values among significantly regulated nodes for tmax; D−F, measured internal
concentration (mean ± standard error).

pressed genes only, no explicit inclusion of time and concentra-
tion resolution is considered, and the outcome does not imme-
diately aid in aggregating the responses of a single experiment;
i.e., aggregation takes place on the level of metadata only.

Another approach for integrating toxicogenomic datasets is
the inference of gene networks based on correlation or mutual
information. These networks can be analyzed for modularity
and interrogated for specific changes in nodes or edges after
chemical perturbation. This was applied by Perkins et al. [13], for
example, to reverse engineer adverse outcome pathways (AOPs)
from mutual information networks, or by Woo et al. [69] to iden-
tify drug targets by analysing altered network interactions. How-
ever, comparability and integration of dependent variables such
as time or concentration are still limited with these approaches.

A specific, more rigid network form is the SOM. The algo-
rithm was developed by Kohonen [16]. It was first applied to gene
expression data by Törönen et al. [70] and Tamayo et al. [71] and
has been further developed and tested for aggregating tissue ex-
pression profiles [15, 72]. While SOMs have mainly been used to
aggregate information from single datasets, we applied SOMs to
integrate an extensive compilation of toxicogenomic datasets,
and use the resulting grid afterwards to aggregate the finger-
prints of single substances. A SOM shows limitations in captur-
ing complex interactions compared to the more ”flexible” net-
works in the aforementioned studies (i.e., connections between
nodes are only formed between direct neighbours on the map).
Therefore, some relevant interactions between transcriptomic
units might get lost with the SOM. Additionally, co-expression
of genes is not necessarily consistent across different perturba-

tions. For example, when a compound binds to a transcription
factor and thereby modulates its activity, co-expression with its
target genes will significantly decrease [69]. This would not be
captured in the dynamic toxicogenomic fingerprints as shown
here. However, SOMs have the advantage of enabling visual-
ization, interpretation, and comparing treatments on a whole-
transcriptome scale, as well as reducing the number of analyzed
entities. In our approach we could reduce the analysis space
from ∼30,000 transcripts to 3,600 toxnodes or 118 clusters. Alto-
gether, this allowed us to comprehensively analyse commonly
and differentially regulated toxnodes and clusters in the ZTU
and to derive functional hypotheses from this (see below). A
common functionality of genes within some of the identified
clusters was confirmed in our over-representation analysis (e.g.,
the clustering of crystallin or pancreas genes). Such a ”recovery
of the known” demonstrates the viability of the approach [14].

With the help of the SOM we can retrieve information about
co-expression of genes from publicly available toxicogenomic
datasets and include this information into our analysis. This
way we can make use of these heterogeneous data and gain in-
formation for clustering the genes irrespective of differing ex-
perimental designs and occurrence of missing data. While the
projection of toxicogenomic fingerprints on the ZTU increases
accessibility and comparability of past findings (cf. Fig. S8) one
should be aware of the limitations of such comparisons due to
differences in experimental factors as discussed by Schüttler et
al. [18]. Here, we show how the application of regression models
could foster comparisons between studies with different expo-
sure concentrations and time frames (see below).
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In this context, the clustering of genes into toxnodes allows
the combination of data aggregation with modelling of time
and concentration dependence. The aggregation also improves
model quality because data from several genes can be used for
estimating a single parameter set (see below). The projection
of toxicogenomic responses on a universal map fosters com-
parison between different profiles, which can be compared vi-
sually and quantitatively with the help of model parameters,
as discussed below. While in our study the analysis focused
on microarray data, the approach is not limited to microarray
data and could also be applied to RNA sequencing data. This is
also demonstrated in Fig. S8B, showing RNA sequencing data
projected on the toxicogenomic universe. The supplementary
methods file (supplementary methods.html) demonstrates how
to use our supplied R package toxprofileR and the toxicogenomic
universe to infer toxicogenomic fingerprints of additional com-
pounds.

Modelling of time and concentration dependence
A couple of studies have been published that investigated tox-
icogenomic fingerprints at varying exposure settings. Among
those, only a few studies investigated the dynamics of re-
sponses. One example is the study by Alexeyenko et al. [19], who
studied effect propagation at several time points after dioxin ex-
posure in ZFEs and found changes in gene-gene interactions be-
tween different points in time. The application of several con-
centrations in toxicogenomic experiments is reported more fre-
quently (e.g., [62, 73, 74]). Yet, all of the mentioned studies an-
alyzed the different exposure conditions in isolation, thus only
allowing qualitative statements about time- or concentration-
dependent changes. In a study by Hermsen et al. [20] genes were
clustered according to their concentration dependence across 7
different concentrations. Although this approach acknowledged
concentration as a continuous variable, the description of con-
centration dependence remains observational in this study, also.

This was advanced in studies by Thomas et al. [21] and
Smetanová et al. [22] that showed that concentration depen-
dence of toxicogenomic responses can be captured by using re-
gression modelling on significant responses applying a selection
of different models. The individual description of responses us-
ing different regression models, however, limited the compara-
bility.

In contrast to these studies ([21, 22]), we fitted a uniform
CTR model to all toxnodes in the toxicogenomic universe in or-
der to derive node-specific parameter estimates. Subsequently,
we used the confidence intervals of the fitted model for detec-
tion of statistical significance. This approach might have the
limitation that we cannot capture each response as accurately
as the aforementioned studies. For example, toxnodes show-
ing a biphasic response on the concentration scale would not
be accurately captured. Biphasic responses of gene expression
have been reported to commonly occur in response to chemi-
cal exposure [22]. Especially the activation of steroid hormone
receptors favors a biphasic response in gene expression [75].
This might limit the applicability of our model for endocrine-
acting substances. Yet, our approach implicates advancements
regarding comparability in several ways: first, there is a unique
set of model parameters, whose estimates can be compared
across different transcripts, toxnodes, or compound exposures.
Second, model parameters are fitted independently from the
statistical significance of changes between treatment and con-
trol; i.e., no preselection of genes is necessary. Therefore, model
parameters can be compared between significantly and non-
significantly regulated toxnodes. Moreover, significance of reg-
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Figure 8 Predicted toxicogenomic fingerprints for diuron exposure at the envi-

ronmentally relevant concentration 0.86 μmol/L. A, 16 hpe; B, 80 hpe. Both con-
centration and time point are outside the measured range in our case study.

ulation is rather determined by a mechanistically motivated
model (i.e., an adaptation of the Hill model), adding biological
significance to a mere statistical treatment vs control compar-
ison. Additionally, the aggregation of the responses of several
transcripts into toxnodes enhanced the robustness of the model
fits and implies that varying responses of single transcripts have
a reduced impact on the aggregated outcome of a toxnode in the
toxicogenomic fingerprint.

Furthermore, the time dependence of responses is not con-
sidered in previous approaches [21, 22]. The mobi-CTR model
adapted in our study captures both concentration and time de-
pendence of the responses. In this way, the model allows infer-
ence of a 3D, time- and concentration-resolved response pattern
as shown in Fig. 4.

The application of the mobi-CTR model in the analysis
of toxicogenomic responses has implications for the experi-
mental design. Because response information is not based on
pairwise comparisons (treatment vs control) but on time- and
concentration-resolved response characteristics, we can use a
dense sampling design with a few replicates only. This is in ac-
cordance with a study by Sefer et al. [76], which showed that
in high-throughput testing dense sampling should be preferred
over replicate sampling. Our findings reveal that the measure-
ment of only 1 time point or a single concentration would not
have been sufficient to identify toxnodes as being commonly
regulated by all 3 substances as illustrated in Fig. 4.

Because it is not conceivable that the concentrations selected
and measured in experiments will ever cover the whole range of
concentrations relevant for estimating or interpreting environ-
mental effects, measures for extrapolation become relevant. In
this regard, the CTR model allows hypotheses and predictions
to be built about toxicogenomic effects at conditions not mea-
sured. For example, with the help of the model we can predict for
each toxnode in the ZTU which response we would expect for an
environmentally relevant concentration of 0.86 μmol/L of diuron
(concentration measured in [77]). This falls outside the concen-
tration range measured in our study. In Fig. 8 the expected logFC
values for 16 and 80 hpe are projected on the ZTU. Without in-
vestigating the profiles in detail, we can observe that the pre-
dictions show distinctly different profiles. A prominently down-
regulated cluster can be seen in the early time point (blue spot
bottom left, Fig. 8A) and a prominently up-regulated cluster in
the late time point (red spot upper left, Fig. 8B). This demon-
strates once more that one substance may induce distinctly dif-
ferent effect profiles depending on time and concentration. Fur-
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thermore, if such profiles were indeed measured in an environ-
mental sample, we would only be able to link these profiles to
a diuron exposure with dynamic and concentration-dependent
information as supplied by the CTR model.

Certainly, regression models as they are used in our study
also have clear limitations. So far the regression model describes
responses for a specific exposure setting. Other experimental
settings may require refining the model. When, e.g., temporal
variation in exposure regimes becomes relevant for extrapola-
tion, the development of models explicitly integrating kinetic
and dynamic processes would be desirable (e.g., [78,79]). Data
demands regarding time- and dose-resolved observations have
restricted their application so far. We see our approach with re-
gard to experimental design and analytical pipeline, therefore,
as a step on the avenue to advanced dynamic modelling, which
could further progress towards mechanistic models.

Finally, the improved comparability that we discuss here
eases consistent interpretation in a toxicological context. As
demonstrated for the response of toxnode 1119 in Fig. 4, toxn-
ode responses cannot only be described qualitatively (”is regu-
lated significantly after exposure to substance X”) but also quan-
titatively with the help of estimated parameter values like Smax

or tmax describing the concentration- or time-related response.
This allows, for the first time, toxicogenomic processes to be
linked with toxicokinetic measurements (as shown in Fig. 7),
thus separating toxicokinetic from toxicodynamic processes. In
our case study we found a significant impact of toxicokinetic
properties of the substances on the dynamics of various toxi-
cogenomic responses, which is discussed below in more detail.
It also helped to identify those responses that seem to be inde-
pendent of toxicokinetics and rather related to the developmen-
tal stage (e.g., regulation of clusters ”Trae” or ”John”).

Case study: compound effects in the zebrafish
toxicogenomic universe

We found that different compounds with a known identical
molecular target still show individual toxicogenomic response
patterns on the ZFE transcriptome. This goes in line with ear-
lier studies investigating toxicogenomic fingerprints, e.g., in rat
liver tissues [9] or ZFEs [10], which reported toxicogenomic pro-
files to turn out specific for compound, concentration and expo-
sure duration. Advancing from the compound and treatment-
specific response barcodes for a few selected transcripts [10],
we obtained concentration- and time-resolved, transcriptome-
wide toxicogenomic fingerprints for each compound, which can
be comprehensively compared between substances.

The clustering of genes into common toxnodes and clusters
of the ZTU as illustrated above is indicative for jointly regu-
lated processes, functionally related proteins, or tissue/cell type
specificity of genes in the ZFE. Simultaneously, we obtain infor-
mation about the compound-specific characteristics of the re-
sponse from the estimated model parameters. In order to illus-
trate the added value of the approach, we discuss some of the
insights we gained about unspecific toxicogenomic responses in
the ZFE and common key responses induced by the 2 COX in-
hibitors.

Unspecific key responses
By combining information on model parameter values with
functional information on nodes and clusters we can distinguish
between specific and unspecific effects. For example, we identi-
fied cluster ”Trae” and cluster ”John” to be related to lens and
pancreas development, respectively. While ”Trae” is regulated

early with diclofenac and diuron exposure, ”John” is regulated
late with diuron and naproxen exposure. The tmax for the signif-
icantly down-regulated nodes in these clusters were identical
for the respective 2 compounds and independent from the dif-
ferent chemical uptake kinetics. This is in contrast to responses
for which tmax was in line with internal substance kinetics (e.g.,
the induction of the transcription factor nfe2l2b). The tmax val-
ues of cluster ”Trae” were estimated at ∼6−8 hpe, which equals
30−32 hpf. Cluster ”Trae” contains >20 genes coding for crys-
tallin protein subunits that are important for lens development
in ZFE, which happens between 16 and 96 hpf [80, 81]. Those
transcripts were found to be commonly down-regulated in re-
sponse to various chemical exposures in earlier studies [18, 82],
as well. Cluster ”John” is down-regulated at 72 hpe and contains
genes coding for different proteolytic enzymes of the pancreas.
Indeed, the pancreas development in ZFE starts rather late, be-
tween 36 and 72 hpf [83], and a disruption of pancreas develop-
ment in ZFE by exposures to different chemicals has also been
reported in several studies before (e.g., [65, 84, 85]).

By comparing our raw data of treatments and controls for
these 2 clusters we found that assuming a delay or inhibition
of development due to the chemical treatment may explain the
down-regulation of transcriptional activity (Fig. S7). The combi-
nation of comparing our model parameters between the differ-
ent exposures, the enrichment of genes in the ZTU, as well as
the confirmation by available reports on down-regulation due
to chemical exposures let us conclude that these effects on
pancreas and lens development are potentially independent of
the compound, indicating a developmental delay due to gen-
eral stress. Whether these delays manifest in adverse outcome is
potentially rather a matter of exposure concentration and time
than of the specific mode of action of a compound.

Key responses induced by COX inhibitors
Two of the investigated model compounds, diclofenac and
naproxen, are known to affect the same molecular target,
namely, COX. In order to identify key responses of this com-
pound group we studied the patterns commonly evoked by these
compounds. We discuss the identified key responses in the con-
text of known molecular effects of COX inhibitors. Our findings
and hypothesized molecular key responses are summarized and
illustrated in Fig. 9.

Metabolism and biotransformation A predominant response in the
fingerprints of diclofenac and naproxen is the up-regulation of
metabolic enzymes mainly in cluster ”Taamira”. For example,
we observed an early and strong induction of cyp2c9 and cyp2k18
with a tmax of 48 hpe for diclofenac and 69 hpe for naproxen.
We assume that these enzymes are involved in the phase I bio-
transformation (BTF1) of diclofenac and naproxen. This may
lead to an increased production of reactive metabolites leading
to liver injury [30]. Additionally, we hypothesize that an inhibi-
tion of COX, which transforms AA to prostaglandins [53], leads
to an accumulation of AA. This might induce COX-independent
branches of the AA pathway, e.g., the production of epoxye-
icosatrienoic acids (EETs) [86]. This reaction is known to be cat-
alyzed, among others, by enzymes of the CYP2C family [87].
Therefore, Cyp2c9 and Cyp2k18 may be involved in the biotrans-
formation of the COX inhibitors diclofenac and naproxen them-
selves, but also in the production of EETs from AA being accu-
mulated due to COX inhibition.

Besides induction of BTF1, glucuronosyltransferases ugt1 and
ugt5 were induced earlier than many other significant responses
in our study. These enzymes were shown to be involved in the
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Figure 9 Hypothesized key responses of COX inhibitors in the toxicogenomic

fingerprint of diclofenac. Putative causal connections between responses are
indicated by dashed arrows; solid arrows indicate transformation reactions,
and array color represents estimated tmax for diclofenac. AA: arachidonic acid;
BTF: biotransformation (phase I/II); EETs: epoxyeicosatrienoic acids; NSAID: non-

steroidal antiinflammatory drug; ROS detox: detoxification of reactive oxygen
species. Note: the plot shows a simplified/idealized version of the toxicogenomic
fingerprint, the indentified responses, and their connections.

phase II biotransformation (BTF2) of diclofenac in humans [88]
and fish [89]. Additionally, they can lead to accumulation of acyl
glucuronides and subsequent formation of protein adducts [90].
Together with an increase in reactive metabolites from BTF1 this
is discussed to be a molecular key event in the AOP of COX in-
hibitors, leading to mitochondrial dysfunction, impairment of
ATP synthesis, apoptosis, and tissue damage, and eventually
causing liver and cardiovascular diseases (reviewed in [30]). The
occurrence of the initial key events of biotransformation is indi-
cated by the affected genes and toxnodes in our study. The ob-
servation of biotransformation being among the first observed
key responses in time might indicate that later observed re-
sponses are mediated by metabolites instead of the parent com-
pounds or by secondary effects such as an accumulation of AA.

Oxidative stress response Next to biotransformation, glucurono-
syltransferases are also associated with an oxidative stress re-
sponse, which is another key response in the fingerprints of
the COX inhibitors in our study. Genes associated with oxida-
tive stress are mainly found in cluster ”Pauline” and are poten-
tially induced by the transcription factor NRF2, whose zebrafish
orthologue nfe2l2b is induced early within cluster ”Taamira” [65,
66]. AA-induced NRF2-dependent gene transcription has been
reported in brain cells [91] whereas the induction of NRF2 has
been shown to prevent toxicity of AA in human liver cells [92].
Next to ugt1, several genes for oxidoreductases and glutathione
metabolism were specifically induced with the COX inhibitors in
cluster ”Pauline”.

We confirmed the assignment of cluster ”Pauline” to oxida-
tive stress response with a dataset from the background data
of the ZTU. Paraquat, a herbicide known to induce oxidative
stress [93], was investigated using the ZFE by Driessen et al. [94].
We plotted the transcriptome response on the ZTU (Fig. S8A)
and found cluster ”Pauline” induced as well as 1 node in clus-
ter ”Bradley”. Cluster ”Bradley” is enriched for respiratory elec-
tron transport (Table S5). The induction of these clusters with
paraquat exposure confirms the biological meaningfulness of
the ZTU. However, it only provides a snapshot without evidence
on potentially related nodes and clusters or any possibility of ex-
trapolation. Nevertheless, it gives a strong indication of a key re-
sponse of oxidative stress induced by diclofenac and naproxen.
Indeed, oxidative stress has been discussed as an adverse effect
of diclofenac and other NSAIDs before [95, 96].

Induction of regulatory hormones Another key response in the COX
inhibitor fingerprints was the up-regulation of the regulatory
hormones Leptin α and Pth1a in cluster ”Deisy”. The induction
of leptin together with cart3 in the same cluster might be due to
a stress-related change in energy metabolism [55] or due to AA
accumulation [52]. Leptin induces a MAPK pathway (JAK/STAT),
which is an activator of NF-κB [59, 97]. Furthermore, PTH was
shown to regulate the ligand of NF-κB in mammalian osteo-
cytes [98, 99]. Indeed, we identified the genes and nodes of the
subsequently induced clusters ”Karan” and ”Farajallah” to be
targets of these pathways [100] (also see Results section and
Fig. 9). The interaction of COX inhibitors with these pathways as
cyclooxygenase−independent effects was reported by Tegeder
et al. [101]. Indeed, little is known about the molecular interac-
tions of AA, leptin, and PTH. A role of AA in leptin signalling
and hepatic energy metabolism has been described before [102].
Furthermore, it has been reported that leptin can induce the se-
cretion of PTH (e.g., [103]). However, a strong co-expression of
the 2 hormones as observed in our study has not been reported
before and indicates a joint action in response to chemicals or
stress in ZFE.

Interestingly, when projecting the toxicogenomic fingerprint
of BDE-47, measured by Xu et al. [104], on the ZTU, we see a
similar fingerprint as with naproxen and diclofenac (Fig. S8B).
We find, among others, toxnode 1062 containing lepa and pth1a,
as well as some other toxnodes of the clusters ”Taamira” and
”Karan” up-regulated with BDE-47. A study by [105] showed
that polybrominated diphenyl ethers as well as polychlorinated
biphenyls cause a release of AA in rat neurons. This might in-
dicate that the obtained phenotypes, which were similar with
BDE-47 exposure [106] to the ones we observed with the 2 COX
inhibitors (Fig. S2), show that tail malformations, spinal curva-
ture, small eyes, and edema are related or initially caused by a
disturbance of the AA metabolic pathway.

In summary, using a comparative analysis of the knowledge
gained from the ZTU combined with compound-specific param-
eter values from the CTR model, we could identify and charac-
terize key responses to diuron, diclofenac, and naproxen expo-
sures in the ZFE. Furthermore testable hypotheses about the se-
quence of key responses and their connections to toxicokinetic,
toxicodynamic, or developmental processes were generated as
illustrated in Fig. 9.

Summary and Implications

With our experimental design and analysis pipeline we de-
rived dynamic toxicogenomic fingerprints. The applied regres-
sion model allows inference on the concentration as well as the
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time scale to conditions not measured. It also proves helpful
in separating toxicokinetic from toxicodynamic processes. The
ZTU introduced here allows toxicogenomic fingerprints to be ag-
gregated on a map. Taken together, this novel approach facil-
itates comparison between different fingerprints and different
studies as well as between the responses in a single fingerprint.
We see several implications that may arise from these results.

The toxicogenomic universe as source for biological hypothesis build-
ing and gene selection for high-throughput approaches
We demonstrate in this study that the clustering of genes in
the toxicogenomic universe can be used to derive biological hy-
potheses about co-expressed genes. Furthermore, the toxicoge-
nomic universe can be used to support gene selection for re-
duced transcriptome approaches. There have been efforts to
use reduced transcriptome arrays, implying much lower costs,
which allows more extensive datasets to be obtained. A reduced
mouse transcriptome array was recently used to measure per-
turbation profiles of >20,000 substances in different cell lines
[107], generally demonstrating the power of high-throughput
molecular approaches for large-scale assessments. Recently, a
reduced array for the zebrafish transcriptome was also sug-
gested [108] including selected genes to represent a range of bio-
logical pathways. This selection, however, was not based on ze-
brafish experimental data but focused on orthologues of genes
known to be important in mammalian toxicology. Therefore, an
alternative approach to design a reduced zebrafish array could
comprise the selection of a representative gene for each toxnode
of the ZTU or the selection of genes within a specific region of
interest in the ZTU.

The CTR model to enhance molecular databases
The scope of functional annotation databases could substan-
tially improve with the inclusion of quantitative exposure and
effect information, e.g., as derived from concentration response
relationships as shown in our study. We demonstrated that it is
possible to quantitatively describe a majority of toxicogenomic
responses with a universal regression model. This could be used
to enhance annotation databases, such as GO [41], Molecular
Signatures Database (MSigDB) [109], or Comparative Toxicoge-
nomics Database [110], which, so far, focus on qualitative infor-
mation about responses.

Dynamic toxicogenomic fingerprints for read-across and elucidation
of adverse outcome pathway(s)
The dynamic toxicogenomic fingerprints foster read-across ap-
proaches between chemicals by providing enhanced compara-
bility. This could improve application in chemical hazard as-
sessment and effect-based environmental monitoring. The in-
ference and comparison of toxicogenomic universes for differ-
ent species could furthermore aid in cross-species extrapola-
tion.

The fingerprints can also help in elucidating key events of an
AOP. For this we can use previously derived functional knowl-
edge about responding toxnodes or clusters to draw conclusions
about the effects of other substances, as shown in Fig. S8. In this
study we have shown the identification and comparative charac-
terization of key responses for 2 COX inhibitors. We see this as a
helpful starting point for informing the development of AOPs. In
this regard, our approach might also help in mechanism-based
risk assessment.

Molecular mixture toxicology
Finally, mixture assessment relevant in environmental monitor-
ing becomes possible with the help of the suggested CTR model.
In the context of environmental monitoring of substances, tox-
icogenomic fingerprints of environmental samples should in
principle be suitable to be compared with fingerprints of sin-
gle substances. However, it remains to be clarified whether (i)
individual toxicogenomic fingerprints can also be recovered in a
mixture context and (ii) how fingerprints of different substances
combine in a qualitative and quantitative way. Existing mixture
concepts such as concentration addition or independent action
could guide the evaluation of mixture responses and the identi-
fication of additive or non-additive behaviour [111]. The dynamic
fingerprints inferred here lend themselves for such hypothesis-
based experimentation.

Methods

We briefly outline the experimental procedure and analysis
steps performed in our study. We additionally prepared an ex-
tensive supplementary Methods file containing detailed infor-
mation about the experimental procedure (exposure, RNA ex-
traction, measurement of toxicokinetics) and the data analy-
sis pipeline (data import, quality control, creating the toxicoge-
nomic universe, regression modelling). It also includes the R
code used for generating the results shown in this study. The re-
sults have (in part) been computed at a high-performance com-
puting cluster at the Helmholtz Centre for Environmental Re-
search.

Exposure of ZFEs to 3 model compounds

ZFEs were exposed to diuron, diclofenac sodium salt, and
naproxen sodium salt in 5 different concentrations between
LC0.5 and LC25 from 24 hpf. At 6 time points between 3 and 72 hpe
RNA was extracted and the transcriptome was measured using
Oaklabs (Berlin, Germany) Zebrafish XS Microarrays.

Import, quality control, and preprocessing of data

The median fluorescence for each array spot was extracted by
the Agilent Feature Extraction Software (Version 11.5.1.1). All fur-
ther analysis was performed in R (Version 3.4.3 [112]).

Quality control was performed by checking density distri-
butions and Euclidean distance between samples. Similar to
the procedure recommended by Kauffmann and Huber [113] we
checked 4 quality metrics: Kolmogorov-Smirnov test statistics,
sum of all expression values per array, interquartile range (IQR),
and Euclidean distance. Samples with 1 of the metrics outside
of a range between 25% and 75% quantile ± 3 × IQR (1 × IQR
for Euclidean distance) were removed from further analysis. Pro-
cessed intensity values were normalized using the ”cyclic loess”
method.

After normalization all data were transformed by log2. Subse-
quently, the median expression values of replicate probes were
calculated. If replicates of a probe were present on the array,
only replicates that had not been flagged for poor quality dur-
ing the feature extraction process (due to inhomogeneous spots
or background) were considered. Laboratory batch effects in the
diclofenac experiment were removed using the R package sva
[114].

Transcript abundance changes drastically for many tran-
scripts during the course of embryo development, even without
exposure to a chemical (cf. Fig. S9). At this point the effect of
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Table 2. Properties of SOM learning

Parameter Value

Learning rate 0.8–0.005
Neighborhood radius 40 to –40
Neighborhood function Gaussian
Epochs 1,000
Distance function Manhattan distance

the chemical was of main interest. Therefore, the developmen-
tal effect on the transcriptome was removed by normalizing all
transcript-level values against the control of the respective time
point. This resulted in logFC data for all experimental condi-
tions.

Inferring the toxicogenomic universe

The spline-smoothed logFC data from our experiments were
combined with the logFC data from previously published ZFE mi-
croarray data. Data from public databases were selected, down-
loaded, and processed in a semi-automatic workflow, which is
accessible via protocols.io [24]. All included microarray plat-
forms were annotated to the most recent zebrafish genome
(GRCz11), and Ensembl database Version 93 [25].

The Grubb’s test ([115], implemented in R package outliers)
was used iteratively to remove outliers from the group of data
points of each probe (points were removed until P ≥ 0.001). This
resulted in 0.2−0.3% of measurements being removed for each
substance. Then, a thin plate spline was fitted to the treatment
conditions of each probe using the R package mgcv [116] and
logFC values for each measurement condition were extracted.
The R package kohonen [117] was used to train the SOM on a 60
× 60 rectangular grid. The initial learning rate was set compara-
bly high in order to make the node codes quickly adjust to the
assigned transcript behaviour. The properties of the map and
the learning algorithm are summarized in Table 2.

The outcome of this step is a 60 × 60 grid of 3,600 toxn-
odes. Each gene present in our dataset is permanently assigned
to 1 toxnode, while each toxnode contains genes that behave
similarly across all exposure conditions. We used the R pack-
age mclust [118] to determine an optimal cluster number for
subgrouping (see supplementary Methods for more details). The
package randomNames [119] was used to automatically name
the clusters.

For identification of over-represented annotations within the
clusters, we used the package clusterProfiler [120] together with
annotation from the databases ZFIN [38], InterPro [39], Reactome
[40], and GO [41, 42]. We applied correction for multiple testing
with the Benjamini-Hochberg method and a P-value cut-off of
0.05.

Parameter estimation of mobi-CTR model

Normalized logFC data (not the spline fit) were used as input
data for parameter estimation. Measured data from all probes
assigned to one node of the SOM were used to estimate one
parameter set for each node and substance (i.e., experimental
replicates and transcriptional replicates/groups of transcripts
were treated as belonging to a single distribution here). The
Grubb’s test ([115], implemented in R package ”outliers”) was
used iteratively to remove outliers from the group of data points
(points are removed until P ≥ 0.001) in one node. This resulted

in removal of 0.1−0.2% of data points for each substance. The
extreme values across all samples and experimental conditions
were determined for each node. Then, the dataset for each node
was used to estimate parameters for the mobi-CTR using the
shuffled complex evolution algorithm assuming up-regulation.
This estimation procedure was repeated 3 times with 3 different
random seeds and 10 complexes each. The best model was af-
terwards selected using AICC. The same procedure was repeated
assuming down-regulation. The best up-regulation model and
the best down-regulation model were again compared using
AICC and the best-fit model subsequently used for a quantita-
tive description of the node. We used the R implementation of
the algorithm shuffled complex evolution (described in [121]) in
the package hydromad [122]. For a global parameter estimation
method like shuffled complex evolution, parameter boundaries
should be defined carefully. To limit the fitted parameter values
to a range that makes sense in the context of the experiment,
boundaries were set as described in the supplementary Meth-
ods file.

Fingerprint browser

To ease the exploration of the toxicogenomic fingerprints in the
context of the toxicogenomic universe, we created an online ap-
plication [47]. The app was created using R in combination with
the package shiny [123].

Supplementary Methods

A supplementary Methods file was compiled containing exten-
sive documentation about experimental and data analysis work-
flow including all R code needed to reproduce the results. The file
was created with the help of knitR [124].

Availability of source code and requirements

Functions used for the analysis were compiled into the R pack-
age toxprofileR, which is available via a git repository:

� Project name: toxprofileR
� Project home page: https://git.ufz.de/itox/toxprofileR
� Operating system(s): Platform independent
� Programming language: R (>3.4.3)
� License: GNU GPL Version 3
� RRID: SCR 017027

Furthermore, we provide an interactive online tool for explo-
ration of the datasets obtained in our study:

� Project name: Toxicogenomic Fingerprint Browser
� Project home page: https://webapp.ufz.de/itox/tfpbrowser/
� Operating system(s): Platform independent
� Programming language: R (>3.4.3)
� License: GNU GPL Version 3
� RRID: SCR 017028

Availability of supporting data and materials

The microarray data of this study have been deposited in
NCBI’s GEO [125] and are accessible through GEO Series acces-
sion No. GSE109496 (https://www.ncbi.nlm.nih.gov/geo/query/a
cc.cgi?acc=GSE109496). The functions used for analyses and fig-
ures have been compiled in the R-package toxprofileR, which is
available via (https://git.ufz.de/itox/toxprofileR/).

https://git.ufz.de/itox/toxprofileR
https://webapp.ufz.de/itox/tfpbrowser/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109496
https://git.ufz.de/itox/toxprofileR/
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An interactive online tool for exploration of the datasets ob-
tained in our study can be accessed via https://webapp.ufz.de/it
ox/tfpbrowser/.

Additional supporting data is available in the GigaDB reposi-
tory [126]

Additional files

Supplementary data are available at GigaScience online.
Supplementary Methods. Extensive documentation about

experimental and data analysis workflow including all R code
needed to reproduce the results. Source files (R markdown) are
provided in the GigaDB repository.

Figure S1. Experimental design for transcriptome experi-
ments applied in our study

Figure S2. Toxicodynamic fingerprint for diuron projected on
the toxicogenomic universe

Figure S3. Toxicodynamic fingerprint for diclofenac projected
on the toxicogenomic universe

Figure S4. Histogram of AICC weights of fitted mobi-CTR
model in comparison with null model (A: diuron; B: diclofenac;
C: naproxen) and spline fit (D: diuron, E: diclofenac, F: naproxen)

Figure S5. A: Demonstration of significant effect level calcu-
lation for a toxnode

Figure S6. Morphological effects of ZFE exposure to A: diuron
(29.44 μM), B: diclofenac (7.36 μM), C: naproxen (309.14 μM) for 3
different treatment periods (24−48, 24−72, 24−96 hpf).

Figure S7. Regulation of genes in the pancreas cluster ”John”
(A−C) and crystallin cluster ”Trae”

Figure S8. Toxicogenomic fingerprints projected on the toxi-
cogenomic universe

Figure S9. Multidimensional scaling plot of all transcriptome
samples for diuron, diclofenac, and naproxen exposure between
24 and 96 hpf

Table S1. Table of datasets included in the toxicogenomic uni-
verse

Table S2. Toxnode and cluster assignment in the toxicoge-
nomic universe

Table S3. Enriched GO annotation for toxnode clusters
Table S4. Enriched Interpro annotation for toxnode clusters
Table S5. Enriched Reactome annotation for toxnode clusters
Table S6. Enriched ZFIN annotation for toxnode clusters
Table S7. Significantly affected toxnode with diuron exposure
Table S8. Significantly affected toxnode with diclofenac ex-

posure
Table S9. Significantly affected toxnode with naproxen expo-

sure
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feedback on the manuscript, and Jana Schor for an introduc-
tion into Rmarkdown. We would like to thank the administra-
tion and support staff of EVE and WOMBAT, Thomas Schnicke,
Ben Langenberg, Christian Krause, Sven Petruschke, Martin Ab-
brent, Michael Garbe, and Martin Sand, for keeping everything
running, supporting us with our scientific computing needs, and
setting up the online access of the Fingerprint Browser. Further-
more, we thank the reviewers for their helpful comments.

References

1. Birnbaum LS, Burke TA, Jones JJ. Informing 21st-century risk
assessments with 21st-century science. Environ Health Per-
spect 2016;124(4):A60–3.

2. Hendriks AJ. How to deal with 100,000+ substances, sites,
and species: overarching principles in environmental risk
assessment. Environ Sci Technol 2013;47(8):3546–47.

3. Miller TH, Bury NR, Owen SF, et al.. A review of the pharma-
ceutical exposome in aquatic fauna. Environmental Pollut
2018;239:129–46.

4. Jiang C, Wang X, Li X, et al. Dynamic human environmen-
tal exposome revealed by longitudinal personal monitoring.
Cell 2018;175(1):277–91.e31.

https://webapp.ufz.de/itox/tfpbrowser/
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giz034#supplementary-data
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