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Abstract: In the application of a bridge weigh-in-motion (WIM) system, the collected data may be
temporarily or permanently lost due to sensor failure or system transmission failure. The high data
loss rate weakens the distribution characteristics of the collected data and the ability of the monitoring
system to conduct assessments on bridge condition. A deep learning-based model, or generative
adversarial network (GAN), is proposed to reconstruct the missing data in the bridge WIM systems.
The proposed GAN in this study can model the collected dataset and predict the missing data. Firstly,
the data from stable measurements before the data loss are provided, and then the generator is trained
to extract the retained features from the dataset and the data lost in the process are collected by using
only the responses of the remaining functional sensors. The discriminator feeds back the recognition
results to the generator in order to improve its reconstruction accuracy. In the model training, two
loss functions, generation loss and confrontation loss, are used, and the general outline and potential
distribution characteristics of the signal are well processed by the model. Finally, by applying the
engineering data of the Hangzhou Jiangdong Bridge to the GAN model, this paper verifies the
effectiveness of the proposed method. The results show that the final reconstructed dataset is in good
agreement with the actual dataset in terms of total vehicle weight and axle weight. Furthermore, the
approximate contour and potential distribution characteristics of the original dataset are reproduced.
It is suggested that the proposed method can be used in real-life applications. This research can
provide a promising method for the data reconstruction of bridge monitoring systems.

Keywords: bridge weigh-in-motion system; data loss; data reconstruction; generative adversarial
network; convolutional neural network; deep learning

1. Introduction
1.1. Background

In recent years, weigh-in-motion (WIM) systems have been increasingly used in bridge
structural health monitoring (SHM) [1,2]. There are two main types of WIM that are applied
to bridges: pavement WIM systems and bridge weigh-in-motion (B-WIM) systems [3]. The
pavement WIM system embeds sensors in the pavements of bridges and detects the axle
and vehicle weights by measuring the generated responses when the vehicle passes through
the pavement with the embedded sensors. The system consists of a set of sensors and
electronic instruments containing software. B-WIM uses the entire bridge as a scale to
measure the weights of vehicles, inferring the axle and vehicle weights by measuring the
responses of certain points on the bridge. As B-WIM requires a system that is tailored to
the specific conditions of the bridge [4–6], it is difficult for it to be widely implemented
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on a large proportion of bridges. The traditional pavement WIM system has been widely
implemented in bridge WIM practices. Bridge WIM systems measure the emergence time
of a moving vehicle and its dynamic tire forces. They can obtain vehicle weight, axle
weight, speed, arrival time, lane, and other vehicle parameters, such as vehicle type and
display and storage, without affecting the regular operation of the vehicle or displaying and
storing them. Bridge WIM systems can accurately measure the static parameters (e.g., gross
vehicle weight, axle weight, and vehicle type) and monitor the dynamic parameters (e.g.,
vehicle arrival time, travel speed, acceleration, and lane information). The bridge WIM can
directly identify overloaded vehicles and collect data for traffic planning and economic
surveys [7]. The data obtained from this system consist of two main components: a variation
characteristic of the bridge, usually strain, and axle data [8]. To perform data conversion
calculations, the conventional commercial systems measure the response induced by the
vehicle passing through sensors that are attached under the structure to obtain axle data, etc.
The information provided by these components (i.e., measured strain) is then converted into
axle load by applying an algorithm. Jia et al. proposed the application of a neural network
that identifies the ideal sample that is obtained from the load sensor closest to the tire–road
contact area [9]. More recently, moving force identification (MFI) technology has been
applied to measure signals and improve the accuracy of axle weight measurements [10].
Chatterjee et al. used the concept of continuous wavelet transform to accurately identify
the axles of moving vehicles in the time domain [11]. Zhao et al. improved the accuracy
of bridge WIM by filtering the strain signals corresponding to dynamic load, boundary
conditions, and the vibration of trucks [12].

During the operation of the bridge WIM system, measured data may be temporarily
or permanently lost due to sensor failure or transmission failure. The loss of measurement
data can have serious consequences. Fan et al. pointed out that the impact of a loss of
0.5–2.5% of the dataset on subsequent data analysis is similar to that brought about by 10%
observation noise [13]. Pei et al. [14] measured the extent and amount of data loss for different
wireless sensors operating in unlicensed industrial, scientific, and medical (ISM) bands in
various structural monitoring applications. Kurata et al. [15] identified data loss in building
risk monitoring that uses wireless sensor networks. Meyer et al. [16] also assessed data loss
associated with using wireless sensors to measure temperature data over several periods. For
example, in excitation tests using smart wireless sensors mounted on steel bridges in Austria,
data losses were up to 40% [17]. Linderman et al. when referring to the Imote2 platform, stated
that radio interference was the main reason for wireless smart sensor data loss [18]. Further
examples of interference include other devices running on the same frequency, weather issues
such as rain and lightning, poor installation and antenna orientation, long transmission
distance, and hardware issues. Nagayama et al. studied these effects through simulations and
experiments. Their results showed that 0.5% data loss and 5% noise addition have similar
effects on power spectral density (PSD) estimates [19,20].

Replacing faulty sensors is currently a standard method of solving this problem;
however, finding and resolving sensor failures is labor-intensive and time-consuming.
In addition, the embedded sensors cannot be replaced. Therefore, finding a method for
completing or reconstructing a dataset in the case of missing data has become one of the
current needs.

Grakovski and Pilipovec et al. reconstructed the weight data of each wheel in a vehicle
dynamic weighing measurement by a fiber optic sensor (FOS), based on the function of the
change of the optical signal parameters caused by the deformation of the fiber under the
action of the weight of the traversing vehicle [21]. This sensor is compact and sensitive but
requires special optical fibers and is also costly; therefore, it is not widely used. The missing
data complementation methods that are often used at this stage include the time-regularized
matrix decomposition and spectral regularization algorithms. Yu et al. proposed the time
regularized matrix decomposition (TRMF) framework to solve the time series forecasting
problem for modern applications, such as climatology and demand forecasting [22]. This
method is well suited for high-dimensional time series data that has many missing val-
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ues. Stekhoven et al. proposed and evaluated an iterative interpolation method based
on random forests (MissForest) [23]. They used the method in the biological domain and
MissForest could successfully handle missing values when the artificially introduced miss-
ing values were between 10% and 30%. Mazumder et al. proposed a simple and efficient
algorithm to minimize the reconstruction error with bounded kernel parametrization [24].
The algorithm iteratively replaces the missing elements with elements obtained from the
soft threshold singular value decomposition (SVD) to provide a series of regularized low-
rank solutions for large-scale matrix completion problems. Hapfelmeier et al. compared
random forest algorithms and multiple interpolation methods within the context of missing
database problems in the field of liver surgery [25]. It was found that random forests are
usually suitable for data from datasets that had not been preprocessed. In contrast, multiple
interpolation methods performed better in complementing preprocessed datasets.

With the development of deep learning in recent years, new approaches to solving
the above problems have emerged. Among all deep learning frameworks, convolutional
neural networks (CNNs) can adaptively learn high-level features and potential distribution
patterns of data by scanning local regions of many data matrices with convolutional
kernels [26]. Conventional data reconstruction using CNNs generally uses an encoder–
decoder structure, i.e., convolution–deconvolution. The encoder uses a convolution kernel
to perform several compressions and feature extractions on a vast dataset. This results
in a smaller multichannel matrix, which is then reconstructed using a decoder as the
input. This feature is well suited for time series data compression and reconstruction.
Li et al. proposed a deep learning-based framework for the estimation of multimodal
imaging data [27]. The framework takes the form of a convolutional neural network
and when trained on subjects with all modalities, the network can estimate the output
modality provided by the input modality (where the input and output modalities are
magnetic resonance imaging (MRI) and positron emission tomography (PET) images,
respectively). Zahavy et al. constructed a supervised neural network with convolutional
and fully connected layers and used a deep neural network to reconstruct ultrashort
pulses that were capable of diagnosing very faint pulses [28]. Cong et al. proposed a
deep learning-based computed tomography (CT) image reconstruction method that solves
the mismatch between computational and physical models [29]. The method utilizes a
nonlinear transformation from big data to projection data in order to precisely match
the linear integral model to achieve monochromatic imaging, effectively overcoming the
beam hardening problem in this field. Zhang et al. utilized two fully connected neural
networks that were trained using simulated data and Gaussian noise [30]. The method
used MR fingerprinting arterial spin labeling (MRF-ASL) data from healthy subjects and
patients with moyamoya disease. The results demonstrated that reconstructing MRF-ASL
with fully connected neural networks is faster and more reproducible than traditional
DM methods. Glisic and Kim et al. proposed a structural response recovery method
that was based on convolutional neural networks [31]. The method aimed to recover
missing structural strain response communication errors when the structural response
was not collected due to sensor failure, data loss or other reasons. Fan et al. used an
autoencoder to reconstruct incomplete vibration measurement data that had a high loss
rate [32]. The time series structural acceleration data in raw form were set as the input and
the output of the autoencoder. According to their study, modal identification achieved good
agreement between the original and reconstructed data. Ni et al. proposed a new method
for data compression and reconstruction using autoencoders [33]. The multisource data
obtained from actual measurements could be stored with very low compression ratios and
restored to the standard data with high accuracy in the time and frequency domains. Wang
and Cha proposed an unsupervised deep learning method to detect impairment using
autoencoders by reconstructing the data and comparing it with the impaired response [34].
This unsupervised deep learning approach provided a stable and robust damage detection
performance using acceleration measurements that were collected from the intact structure.
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A generative adversarial network (GAN) is an unsupervised learning technique that
uses two competing neural networks (a generator and a discriminator) to generate new
datasets. The generator generates the data while the discriminator discriminates them
for veracity. Chandak et al. used a generative adversarial network structure for image
complementation, generating coarse blocks to fill in missing regions in distorted images [35].
The network also used the residual learning process to refine the generated images further,
thus providing better complete images for computer vision applications. Xiong and Chen
used a GAN to generate all types of human evoked loads, including walking, jumping, and
bouncing loads [36]. In this method, the model was trained using experimentally collected
human loads. The trained generator could reconstruct high-quality signals in both the
time and frequency domains that were similar to the actual data. Kim et al. proposed
the use of a GAN to reconstruct multiple lost structural signals [37]. The model was first
trained with actual signals to determine the optimal convolutional kernel weights, laying
the foundation for the reconstruction of the lost data. The reconstructed lost signals were
within the acceptable range of reconstruction error. Lei and Sun used a GAN to reconstruct
the lost data of a structural health monitoring system [38]. The reconstruction of the faulty
sensor data was investigated in both the time and frequency domains using the responses
of the remaining functional sensors. The results showed that the final reconstructed signal
matched the actual signal in both the time and frequency domains. A considerable number
of implied features and distribution patterns exist in the measured time series dataset. With
the help of generators and discriminators, a GAN can correctly reconstruct the missing
parts of the time signal. The generator is responsible for capturing the overall structure
of the signal and the distribution patterns. On the other hand, the discriminator tries to
optimize the generator by discriminating the generated data to make the reconstruction
look realistic.

1.2. Objective and Scope

However, most of the applications and experiments in past studies have been carried
out in ideal measurement environments to ensure adequate accuracy. In addition, when
the validation experiments of these new methods have been carried out, the measurement
time span was generally short, thereby avoiding most of the disadvantages that affect the
measurement accuracy and stability. However, when conducting experiments to deploy
a real-world system, adverse contingencies may affect the quality of the measurements.
Therefore, it is very necessary to reconstruct the dataset over a long time span.

This study proposes a novel deep convolutional GAN to reconstruct the lost vehicle
weight data in a bridge WIM system. The proposed generative adversarial network
methodology is described in detail in Section 2. In that section, we describe the overall
GAN-based architecture, including the selected layer combinations and activation functions
that were used in the network. The generative and discriminative loss functions that were
used to accurately reconstruct the lost dataset are also presented. In Section 3, the field
applicability of the proposed GAN model is verified using the vehicle weight–time data
that were measured by the bridge WIM system of the Hangzhou Jiangdong Bridge. Finally,
appropriate conclusions are drawn in the “Conclusion” section. This research can provide
a promising method for the data reconstruction of bridge monitoring systems.

2. Proposed Data Loss Reconstruction Method Using a GAN
2.1. Architecture

A generative adversarial network comprises two parts: a generator (G) and a discrim-
inator (D). A new dataset that is similar to the actual dataset is generated by processing
several convolution layers and several layers of deconvolution in G. D is just a classifier; it
takes actual or generated data as input and tries to distinguish them as true or false. Then,
the classification results are transformed into reconstruction loss and antagonistic loss to
update G and D. The task of D is to distinguish the samples that were generated by G from
the training data. Moreover, G is confounded by generating samples whose distribution is
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close to the training data distribution. The operation flow of a GAN is shown in Figure 1.
In this paper, both the generator and discriminator were constructed using a CNN. In the
present study, the inputs for G and D were vehicle weight datasets that were composed
of collected time series data, i.e., the vehicle weight data and axle load data of all vehicles
crossing the bridge within a certain period.
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2.1.1. Generated Network

The generated network is constructed using a basic framework of convolution–
deconvolution. The first half is a convolutional neural network comprising several layers
and the second half is a deconvolutional neural network comprising several layers. The
convolutional layers have the role of extracting features in-depth at different scales [39].

In order to improve the training efficiency, the method of training the network with
small batches, rather than large datasets, was used. Therefore, a batch normalization
(BN) layer was added after the convolutional layer in order to improve the stability of
the training [40]. In addition, an activation function needs to be introduced after each
convolutional layer in order to cope with the needs of nonlinear problems. In this paper,
ReLU and Leaky ReLU were selected as the activation functions of the generator [41]. After
the last convolution operation in the convolution part, a multichannel matrix of size 11 is
generated. The multichannel matrix contains the potential features of the existing data and
the distribution pattern between the missing data and the existing data.

The second half of the generator is divided into several layers of deconvolution layers,
whose function is to expand the multichannel matrix that is obtained by convolution into a
single-channel dataset matrix. The structure is similar to that of the convolutional layers,
where each deconvolutional layer is followed by BN and activation function layers.

2.1.2. Discriminative Network

In this paper, the discriminative network consisted of several convolutional layers
and a BN layer with an activation function. First, the discriminator received the actual or
reconstructed dataset (generated by the generator). Then, a multichannel matrix of 1 × 1
was obtained through the convolution step of the discriminator. Note that in the last layer
of the discriminator, the activation function was a sigmoid function instead of the ReLU or
Leaky ReLU function. This was useful because the sigmoid function could map an actual
number to the range (0, 1) and could be used to perform the binary classification task, thus
satisfying the needs of the discriminator as a classifier.

2.2. Loss Function

When reconstructing lost data, it is necessary to examine both the underlying fea-
tures and the data distribution patterns. The total training loss that is obtained from the
discriminator is very complex and it is not easy to update the whole network. Therefore,
the method of dividing the total loss into generator loss and discriminator loss is usually
used [42]. A good model should weigh both losses to make them optimal at the same time.
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2.2.1. Generator Loss

The generator loss mainly captures the instinctive structure of the existing dataset and
the missing part of the dataset and its correlation. At this stage, L1 and L2 paradigms are
often used to measure the distance between actual and false data [43]. Considering that the
L2 parametric can prevent overfitting and improve the generalization ability of the model
to obtain better training efficiency and stability, the normalized L2 parametric was used as
the reconstruction loss function in this paper, as shown in the following equation:

Lrec(x) =
∣∣∣∣M̂ �

(
χ−G

((
1− M̂

)
� χ

))∣∣∣∣2 (1)

where χ denotes the actual dataset; G denotes the output data of the generator; M̂ denotes
the binary mask corresponding to the missing part of the data, which has a value of 1 when
the data are missing and 0 for the existing data; � denotes the pixel-level multiplication;
and ‖ ‖ denotes the Euclidean parametrization.

2.2.2. Discriminator Loss

The discriminator loss is a vital part of the training process, which updates the dis-
criminator to instruct the generator to add latent features to the fuzzy rough outline. The
discriminator tries to detect the maximum difference between the real data and the re-
constructed data, while the generator tries to create more realistic reconstructed data to
minimize the difference between them. By combining the two loss functions, the optimiza-
tion becomes as follows:

min
G

max
D

E[log(D(x))] + E[log(1−D(G(x)))] (2)

In practice, the stochastic gradient descent algorithm is used to alternately optimize
the generator and the discriminator [44]. The adversarial loss can be expressed as:

Ladv = max
D

E
[
log(D(x)) + log

(
1−D

(
G
(
(1− M̂ )� x

)))]
(3)

2.3. Precision Measurement Parameters

The reconstruction error is expressed in the form of the root mean square error (RMSE)
and the coefficient of determination (R2). RMSE is the standard deviation of the residuals,
which is a measure of the distance between the reconstructed data and the real data. R2 is a
statistical measure that is used to analyze the similarity between two signals and ranges
from 0 to 1. A good model should have a low RSME value and a high R2 value. The RSME
and R2 are given by:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷl)
2 (4)

R2 = 1− ∑m
i=1(yi − ŷl)

2

∑m
i=1(yi − y )2 (5)

where m denotes the number of data; yi denotes the data in the real dataset; ŷl denotes the
data in the reconstructed dataset; and yl denotes the average value of the real dataset.

3. Experimental Verification
3.1. Engineering Background

This paper took the Hangzhou Jiangdong Bridge as the research object and selected
the data that were collected by the automatic weighing system of this bridge from June to
December 2020 for analysis. The Jiangdong Bridge (Qianjiang Nine Bridges) is located in
the northeastern corner of Hangzhou city, starting from Xiasha in the west and connecting
to Xiaoshan in the east. The bridge is 4.33 km long, of which the bridge range is 3552.66 m,
the bridge across the river is 2253 m, and the approach bridge on both sides is 1299.66 m.
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The main road is a two-way 8-lane road with a 2-m wide sidewalk on each side. The design
speed is v = 80 km/h, which is normal for an urban expressway. The main bridge structure
consists of two self-anchored suspension bridges, a prestressed concrete rigid bridge, and a
non-navigable hole in the river for the prestressed concrete continuous beam bridge. The
WIM uses a BGK-4000 strain gauge, installed at 80 m and 27 m away from the main bridge
span. After the measured strain data are converted to stress, the vehicle weight and axle
load data are obtained. The SHM system of the Jiangdong Bridge focuses on the deflection
system of the main bridge, the static alignment monitoring, and the deflection of the main
tower, and the stress of the key parts is monitored comprehensively.

3.2. Statistical Overview

The collected data from the bridge WIM system were organized by month and pro-
cessed using the method described in the previous section. The data for each Tuesday in
August 2020 were analyzed in detail and the results are shown in Figure 2.
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Figure 2. The Jiangdong Bridge traffic flow in August 2020.

From the graph, the data from the first week to the third week of August 2020 are
1360 to 1450. However, at 6 a.m. on the Tuesday of the fourth week, the traffic flow is only
12 and these data do not match the actual situation. This phenomenon indicates that the
traffic flow data collected at 6:00 a.m. on the Tuesday of the fourth week contained missing
data. In this paper, we verified our proposed method with the example of reconstructing
the traffic flow data from 6:00 a.m. on the Tuesday of the fourth week of August 2020.

3.3. Detailed Network Parameter Setting
3.3.1. Combination of Hidden Layers for Generating and Discriminating Networks

In building the network, the number of layers of the generative network should be
twice that of the discriminative network. This is because the generative network contains
convolutional and deconvolutional steps, while the discriminative network contains only
convolutional steps. In the experimental stage, the vehicle weight data of June, July, Septem-
ber, November, and December were used in the dataset. Therefore, before reconstructing
the signal using the proposed GAN model, this paper investigated the optimal structure
using two types of data, May and a random array, and trained all models under the same
conditions. The results are shown in Figure 3. As shown in Figure 3a, it can be clearly seen
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that the combination of 10 + 5 layers is the best structure. In Figure 3b, the R2 values are
very close, but we can still conclude that the combination of 10 + 5 is the best structure
by comparing the RMSE values. The proposed GAN used a combination of 10 + 5 layers
to build the network, i.e., a generator containing 10 hidden layers and a discriminator
with 5 hidden layers. In the training step, both the discriminator and the generator were
optimized using RMS with a learning rate of 0.0001 [45]. These hyperparameters were opti-
mal values that were determined by the trial-and-error method after several experiments.
In each training step, the discriminator was optimized five times and the generator was
optimized once.
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3.3.2. Final Network Configuration

In order to make the GAN better adapted to the engineering status of the Jiangdong
Bridge, the structure of the data reconstruction network underwent some minor changes.
The convolutional kernel, step, and the sizes were slightly adjusted to match the input and
output data size. In contrast, the whole network architecture, the type of layers, and the
activation function remained unchanged. We were inspired by the network proposed by
Lei et al. for the purpose of reducing training parameters and improving efficiency [38].
Therefore, the BN layer was added to the first layer of the generative network, as well as
to the first and last layers of the discriminative network, based on the original network.
As shown in Table 1, the second-dimensional design sizes of the input and output sizes
of the generator were 9 and 3, which were consistent with the existing and missing data.
Tables 1 and 2 show the detailed structure of the generator (containing 10 hidden layers)
and discriminator (containing 5 hidden layers). This distinguished whether the input data
of size 1536 × 3 × 1 were actual data or not, and the model errors were backpropagated
to update the hyperparameters in the neural network. These models were built and
implemented on TensorFlow (GPU), an open-source machine learning library in python
3.7 [46]. The computer used to train this network was composed of a GTX 960 graphics
card, an i78700K CPU, and 16 GB of RAM.

Table 1. The hidden layers of the generator.

Layers Input Size Output Size Number of
Convolution Kernels

Convolution
Kernel Size

Convolution
Step Activation

Conv + BN 1536 × 9 128 × 7 32 12 × 3 12 × 1 leaky_relu
Conv + BN 128 × 7 32 × 5 64 4 × 3 4 × 1 leaky_relu
Conv + BN 32 × 5 8 × 3 128 4 × 3 4 × 1 leaky_relu
Conv + BN 8 × 3 3 × 2 256 4 × 2 2 × 1 leaky_relu
Conv + BN 3 × 2 1 × 1 512 3 × 2 1 × 1 leaky_relu

UConv + BN 1 × 1 4 × 1 256 4 × 1 1 × 1 relu
UConv + BN 4 × 1 8 × 1 128 2 × 1 2 × 1 relu
UConv + BN 8 × 1 32 × 1 64 4 × 1 4 × 1 relu
UConv + BN 32 × 1 128 × 2 32 4 × 2 4 × 1 relu

UConv 128 × 2 1536 × 3 1 12 × 2 12 × 1 tanh

Table 2. The hidden layers of the discriminator.

Layers Input Size Output Size Number of
Convolution Kernels

Convolution
Kernel Size

Convolution
Step Activation

Conv 1536 × 3 128 × 2 32 12 × 2 12 × 1 leaky_relu
Conv + BN 128 × 2 32 × 1 64 4 × 2 4 × 1 leaky_relu
Conv + BN 32 × 1 8 × 1 128 4 × 1 4 × 1 leaky_relu
Conv + BN 8 × 1 3 × 1 256 4 × 1 2 × 1 leaky_relu
Conv + BN 3 × 1 1 × 1 512 3 × 1 1 × 1 sigmoid

3.4. Experimental Steps

To reconstruct the traffic flow data from 6:00 a.m. on the Tuesday of the fourth week of
August 2020, this paper selected the traffic flow data from 6:00 a.m. on the Tuesday of each
week in June, July, September, November, and December 2020 to use for training the neural
network. After the training was completed, it was used to reconstruct the traffic flow data
from 6:00 a.m. on the Tuesday of the fourth week of August. It is worth noting that the
October traffic data were not used in the experiment because people travel significantly
more during the Chinese National Day holiday in October.

3.5. Data Pre-Processing

Before the formal calculation, the data collected by the WIM system needed to be
preprocessed. The form of data processing was as follows:
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(1) The collected data were sliced and processed, and each day’s data were divided into
24 parts, with each part containing one hour of data;

(2) The time period that was missing was selected, along with the traffic data for that time
period for the remaining three weeks of the month to which the time period belonged;

(3) The selected three weeks of traffic data were combined into a matrix X.

After the statistics found that the hourly traffic flow was not greater than 1536, a matrix
of 1536 × 9 was constructed. It is worth noting that more than 90% of the data collected
were from small cars with only two axles. Therefore, the first and second axle weights
were selected as part of the dataset. In addition, considering the damage that large heavy
vehicles with more than two axles can cause to bridges, the total weight data were also
used to represent large heavy vehicles in this paper. In the X matrix, columns 1, 2, and 3
were the total vehicle weight, first axle weight, and second axle weight of the selected first
week, respectively. Columns 4, 5, and 6 were the total vehicle weight, first axle weight, and
second axle weight of the selected second week, respectively. Columns 7, 8, and 9 were the
total vehicle weight, first axle weight, and second axle weight of the selected third week,
respectively. If there were less than 1536 datasets for a particular week, then the X matrix
was filled with zeros to the size of 1536 × 9. The X matrix was used as the input training
set for the generator, and the reconstructed data of the Y matrix of size 1536 × 3 was the
output. The Y matrix was the requested missing dataset.

In the experimental phase, the month with no missing data was selected as the experi-
mental subject. As mentioned above, the data for a random three weeks of each month for
a certain period were selected as the input for the generator and the data for that period for
the remaining week was used as the input for the discriminator. Since the purpose of the
adversarial discriminator is to distinguish the authenticity of the output data of the genera-
tor, the size of the data matrix of the input discriminator was 1536 × 3, representing the
total weight, first axle weight, and second axle weight of the vehicles passing the automatic
weighing system during that period. The output size of the last layer was designed to be
1 × 1 × 1, and this was the result of the discriminator’s determination. The experimental
process is shown in Figure 4.
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Figure 4. The experimental procedure.

3.6. Selection of Number of Training

In this structure, the number of training counts is a crucial parameter to reconstruct
the data correctly. Five different training counts were compared in this paper. Five training
times of 100,000, 300,000, 500,000, 700,000, and 900,000 times were performed on the data
from 6 a.m. on every Tuesday in June, July, September, November, and December of 2020,
respectively. The RMSE values and R2 values were calculated separately for the obtained
reconstructed dataset, and the results are shown in Figure 5.
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Figure 5. The data reconstruction results.

The above reconstruction results show that, according to the principle of ensuring that
the RMSE value is small enough while guaranteeing a larger R2 value, the more appropriate
number of training times is 700,000 times.

3.7. Data Reconstruction Results

Based on the training results, the scatter plots of the traffic flow data that were gener-
ated by the generator of the GAN after 700,000 training sessions for June, July, September,
November, and December 2020 were plotted, as shown in Figure 6.
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Figure 6. The comparison of the gross vehicle weight data.

In Figure 6, the horizontal and vertical coordinates represent the actual data and the re-
constructed data, respectively, and the scatter points in the figure are uniformly distributed
over the image of y = x for two weeks, which demonstrates that the proposed model
reconstructed the gross vehicle weight data adequately. Furthermore, there is a good agree-
ment between the actual data and the reconstructed data. Thus, the proposed GAN could
accurately capture and reconstruct the trained dataset’s potential features and distribution
patterns. Figure 7 shows the results of the training loss of the generator network.
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Figure 7. The training error for the generator network.

To better represent the usability of the GAN, this paper used the reconstruction meth-
ods described in the introduction to reconstruct the traffic flow data from the Hangzhou
Jiangdong Bridge and compared the RMSE values of the datasets that were generated by
the GAN model using these methods. These methods were selected because they can be
used for the reconstruction of time series data, which is similar to the goal of the completion
of the time series dataset for the bridge WIM system in this paper. The results are presented
in Table 3.

Table 3. The comparison of the RMSE values of several methods.

Method June July September November December

GAN 25.8 23.7 23.6 22.8 22.9
TRMF 40.0 38.2 27.2 29.1 32.3

MissForest 37.9 43.2 27.9 31.7 28.7
SVD 35.6 40.0 31.5 28.6 35.0

Multiple Interpolation 51.8 47.1 44.2 45.3 41.1

Due to the lack of uniform parameters among the different methods, the traditional
RMSE comparison was still used in this paper. Table 3 shows that the GAN had a better
performance in generating the missing traffic flow data by comparing the RMSE values of
the dataset that was generated by the GAN with those generated by other methods.

4. Conclusions

In this study, a new deep convolution-based GAN method was proposed to recon-
struct missing data in the case of data transmission failure or sensor failure in automatic
bridge weighing systems. The whole deep learning method, including data preprocessing,
network structure, and loss function, was introduced. Then, the dataset reconstruction
was performed by inputting the processed missing dataset into the GAN. Finally, the
reconstructed data were compared to the actual data. The computational results were
validated using the engineering example of the Hangzhou Jiangdong Bridge to verify the
method’s effectiveness. The main conclusions of the study are as follows:

1. The traffic flow data that were collected by the automatic weighing system of the
Hangzhou Jiangdong Bridge were selected for the experiments. Then, the training of
the generating network G and the discriminating network D was carried out. After
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the experiments, the generated dataset that was obtained by the generator was found
to be the closest to the actual dataset when the training number was 700,000 times.

2. The traffic flow data that were collected by the automatic weighing system of the
Hangzhou Jiangdong Bridge were selected for the experiments. The training of the
generating network G and the discriminating network D was carried out. The experi-
ments showed that when the combination of network layers was 10 + 5, the generated
dataset that was obtained by the generator was the closest to the actual dataset.

3. The GAN model that was proposed in this paper could reconstruct the field-measured
vehicle weight and axle weight data well. The decomposition of the reconstructed
dataset helped load identification and safety assessment. Using the data from the
automatic weighing system installed on the Hangzhou Jiangdong Bridge, the data
for June, July, September, November, and December were tested. The results were
compared to the actual values. The results verified the applicability of the proposed
GAN model in practical engineering. The proposed GAN model could accurately
capture and reconstruct the overall features and specific details of the actual dataset.
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