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Abstract

To understand the effect of attention on neuronal dynamics, we propose a multi-module net-

work, with each module consisting of fully interconnected groups of excitatory and inhibitory

neurons. This network shows transitive dynamics among quasi-attractors as its typical

dynamics. When the release of acetylcholine onto the network is simulated by attention, the

transitive dynamics change into stable dynamics in which the system converges to an

attractor. We found that this network can reproduce three experimentally observed proper-

ties of attention-dependent response modulation, namely an increase in the firing rate, a

decrease in the Fano factor of the firing rate, and a decrease in the correlation coefficients

between the firing rates of pairs of neurons. Moreover, we also showed theoretically that the

release of acetylcholine increases the sensitivity to bottom-up inputs by changing the

response function.

Introduction

A large body of research demonstrates that neuromodulators play a major role in attention [1].

The role of acetylcholine (ACh), in particular, has attracted a great deal of attention.

Cholinergic cells in the nucleus basalis of Meynert (NBM) release ACh transiently to the

cerebral cortex, and loss of these neurons is known to be associated with Lewy body dementia,

the most salient symptom of which is recurrent complex visual hallucinations [2].

An auditory tone learning task showed that the strengths of synaptic currents in the audi-

tory cortex of adult rats changed greatly when the tones were paired with activation of the

NBM [3]. This result indicates that synaptic plasticity in the cortex is influenced by the ACh

level.

When a cued appetitive response task was performed, in which rats were required to

remember a light cue for several seconds to obtain reward, the concentration of ACh in the

medial prefrontal cortex was observed to be increased while the rat maintained the cue in
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memory [4]. This result suggests that the concentration of ACh in the cortex increases when

attention-demanding tasks are performed.

However, to our knowledge, no theories exist based on the dynamics of neural networks

that account for the observed results of experiments of this type.

One of the most successful models of attention is the normalization model of attention [5–

9]. In the normalization theory, responses of a neuron to sensory stimuli are divided by the

summed activity of a pool of neurons; therefore, the response to a test stimulus often decreases

when the contrast of another mask stimulus is increased. Attention works through this nor-

malization mechanism and explains how the responses of a neuron to stimuli are modulated

by attention.

The normalization model of attention is a powerful tool to understand the role of attention

in visual recognition, but the mechanism of normalization is derived phenomenologically. We

hope to understand the role of attention based on the nonlinear dynamics of networks com-

posed of spiking neuronal models.

In this study, to understand the role of ACh released by attention, we examine the dynamics

of a multi-module network, with each module consisting of fully interconnected groups of

excitatory and inhibitory neurons. This model is based on a network model that we proposed

in Kanamaru et al. [10].

When the network is in an attended state, ACh is released to it. The effects of ACh in the

brain are controversial, and it is known to depend on several factors, such as the cortical depth

and cell types [11]. Among the possibilities that have been described, we adopt the disinhibi-

tion of inhibitory synapses projecting onto excitatory neurons [12, 13].

We found that this model reproduces the results of the attention-dependent response mod-

ulation described by Mitchell et al. [14, 15]; while recording single-unit neural activity in V4 of

macaques, they provided a visual stimulus in the receptive field of the observed neuron, and

examined the differences between the response of the neuron to attended stimulation and that

to unattended stimulation. The differences are summarized as follows.

1. The firing rate of a target neuron increased when the visual stimulus entered its receptive

field. The firing rate increased further when the visual stimulus was attended than when it

was unattended. The firing rates of inhibitory neurons were three times larger than those of

the excitatory neurons [14].

2. The Fano factor of the firing rate decreased further when the visual stimulus was attended

than when it was unattended. That is, the reproducibility of activity across trials increased

for attended stimuli [15].

3. The correlation between the firing rates of pairs of neurons decreased further when the

visual stimulus was attended than when it was unattended [15].

As for the effect of ACh, Linster and Hasselmo [16] examined the dynamics of a network

composed of excitatory neurons and inhibitory neurons. They found that ACh enhances the

response to sensory inputs by modulating excitatory synapses and inhibitory synapses [17].

Similarly, Deco and Thiele [18] also examined the dynamics of a network composed of excit-

atory neurons and inhibitory neurons. They introduced four effects of ACh into the network,

i.e., a reduction in firing rate adaptation, an increase in thalamocortical synaptic efficacy, a

reduction in lateral interactions, and an increase in inhibitory drive. They found that ACh

modulates the difference of responses between attended states and unattended states. Their

results explain the ACh-induced modulation of the firing rates of neurons.

Moreover, Deco and Hugues [19] proposed a neural network composed of excitatory neu-

rons and inhibitory neurons to reproduce the decrease of the Fano factor using attention.

Acetylcholine-mediated top-down attention improves the response to bottom-up inputs
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In addition to the attention-dependent response modulation, our model also reproduces

the “contrast gain change” of the response function to external inputs, i.e., the leftward shift of

the response function [1, 5–9]. Attention increases sensitivity of V4 neurons of monkeys by

modulating the stimulus-response function in several ways [5, 6]. A change in the slope of the

response curve is known as response gain change. An increase in the responses by a leftward

shift of the nearly same response function is known as contrast gain change. These results are

well-described by the normalized model of attention [5, 6].

In our network, we found that ACh increases the sensitivity of the network to external

inputs by the contrast gain change, thereby providing a new interpretation of the contrast gain

change from a viewpoint of nonlinear dynamics of neural networks.

The above results are consistent with the literature of the theory of attractors in nonlinear

dynamics. With baseline levels of ACh, our previous network model exhibits transitive dynam-

ics among quasi-attractors [10]. A quasi-attractor is a Milnor attractor in that there are posi-

tive-measure orbits approaching and temporarily persisting in state space [20]. However, a

quasi-attractor may simultaneously possess repelling orbits. When the concentration of ACh

in the network increases, each quasi-attractor is stabilized and the network converges to one of

the stable conventional attractors. We called the arrangement of such attractors an attractor

landscape, and we referred to the ACh-controlled deformation of the attractor landscape

associated with attention as the “quasi-attractor hypothesis”. This network model was also

intended to model experimental results for spontaneous activity in V2 of anesthetized cats

with both eyes closed, reported by Kenet et al. [21]. Similar to the experiments of Kenet et al.

[21], our previous model [10] did not have external inputs.

In the study of Thiele and Bellgrove [1], an attentional state, in which attention is focused

on a target, is associated with a stable attractor and a less-focused state is associated with a tran-

sition among unstable attractors. If ACh can be assumed to control the attentional state, their

view coincides with our quasi-attractor hypothesis [10].

In this study, we show that attention-dependent response modulation and change in

response function can be reproduced by adding external inputs to our previous model. We

also show that our results are consistent with both the quasi-attractor hypothesis [10] and the

attention-dependent control of attractor states [1].

Results

Network structure

In this study, we examine a network composed of excitatory pyramidal neurons and inhibitory

interneurons located in layer 2/3 of the cerebral cortex, as shown in Fig 1A.

There are three types of inputs in this model. First, cholinergic projections arise from the

NBM [3, 22]. Second, glutamatergic spike volleys project to layer 1 from higher cortical areas

and the thalamic matrix circuit [23, 24]. We regard these two inputs as top-down attentional

inputs.

The third input is a bottom-up external input injected via layer 4 from lower cortical areas.

This input corresponds to the input to the receptive field of the target neuron in the task that

evokes attention-dependent response modulation [14, 15] or change in response function [1,

5–9].

In the following paragraphs, we examine the responses of the network to both top-down

and bottom-up inputs.

We consider a multi-module network as a model of the network in layer 2/3 of the cortex

[10]. A module is composed of NE excitatory neurons and NI inhibitory neurons. We regard

this module as a model of a small network such as a pyramidal cell module [24] or a
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Fig 1. Network structure. (A) Layer structure of the cortex. There are three types of inputs in this model, i.e., cholinergic projections from

the NBM, glutamatergic spike volleys from higher cortical areas and the thalamic matrix circuit, and a bottom-up external input injected

via layer 4 from lower cortical areas. (B) M-module structure of a model. (C) There are four types of intra-module connections and three

types of inter-module connections.

https://doi.org/10.1371/journal.pone.0223592.g001
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minicolumn [25]. In this type of module, various dynamic features such as stationary states,

aperiodic firing, periodic synchronization, and chaotic synchronization can be observed [26].

Using module models, we defined a network composed of M modules located in layer 2/3,

as shown in Fig 1B. We consider four types of intra-module connections, E! E, E! I, I! E,

and I! I, and three types of inter-module connections, E! E, E! I, and I! E, as shown in

Fig 1C, where E and I show groups of excitatory and inhibitory neurons, respectively. The

detailed definition of connections is shown in the Methods section.

When the system is in an attended state, ACh is released to the cortex from the NBM. As

stated in the Introduction section, we adopted the disinhibition of inhibitory synapses project-

ing onto excitatory neurons as an essential effect of ACh [12, 13]. We replaced the intra-mod-

ule connection strength gEI and the inter-module connection strength hEI as shown in Fig 1C

with REIgEI and REIhEI, respectively, and we changed the degree of attention by regulating the

inhibition rate REI in the range 0< REI� 1. Small REI corresponds to a strongly attended state.

In this study, we set M = 16, and the following three patterns are embedded in the connec-

tion weights of the network using the modified Hebbian rule [10]. Although we set the number

M of modules and the number of patterns as small to reduce the computational time, a larger

number of modules and patterns could be used as well in principle.

Z1
i ¼

1; if i � M=2;

0; otherwise;

(

ð1Þ

Z2
i ¼

(
1; if M=4 < i � 3M=4;

0; otherwise;
ð2Þ

Z3
i ¼

(
1; if i mod 2 ¼ 1;

0; otherwise:
ð3Þ

Response of the network to top-down ACh

In this section, we analyze dynamics of a network of 16 modules with NE = 1000 and NI = 250.

The total number of neurons is (1000 + 250) × 16 = 20000. The change in dynamics under the

control of ACh as shown in Fig 2A, 2B, 2C and 2D is a typical example of the quasi-attractor

hypothesis [10], and we explain this in detail in the following paragraphs.

The instantaneous firing rates rE and rI for excitatory and inhibitory ensembles in each

module were calculated, and only rE for 16 modules are shown in Fig 2A and 2C.

Fig 2A shows that each rE has burst-like oscillations. Furthermore, the network reveals tran-

sitive dynamics among three patterns, which are shown in the right margin of Fig 2A. Both the

oscillation of each module [26] and the global transitive dynamics [27] are chaotic. We regard

such transitive dynamics as a resting or default-mode state [28] of the network.

A schematic diagram of this dynamics is shown in Fig 2B. The three stored patterns are

shown as downward convex shallow potentials. Each potential is unstable, and the system can

reach each pattern transiently and successively. Typical dynamics in this attractor landscape

are shown as red arrows in Fig 2B. These unstable attractors were referred to as quasi-attrac-

tors in Kanamaru et al. [10].

Note that the degree of attention of the network is regulated by decreasing the inhibition

rate REI from 1. The dynamics shown in Fig 2A were obtained with REI = 1; namely, the net-

work is not in an attended state.
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Fig 2. Relationship between network dynamics and deformation of the attractor landscape. (A-D) ACh-controlled deformation of

the attractor landscape. When ACh is released, the inhibition rate REI decreases because of disinhibition of inhibitory synapses

projecting onto excitatory neurons. (A, C) Dynamics of the network with 16 modules with NE = 1000 and NI = 250 for (A) REI = 1.00

and (C) REI = 0.94. (B, D) The corresponding attractor landscapes. The red arrows show the typical transitive dynamics. The green

arrows show the influence caused by the glutamatergic spike volleys with strength IT. (E-H) Deformation of the attractor landscape

caused by the bottom-up external inputs with strength IB. (E, G) Dynamics of the network with 16 modules with NE = 1000 and NI =

250 for (E) IB = 0.002 and (G) IB = 0.006. (F, H) Corresponding attractor landscapes. The red arrows show the typical transitive

dynamics.

https://doi.org/10.1371/journal.pone.0223592.g002
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The attractors are stabilized as a result of the disinhibition. The dynamics for REI = 0.94 are

shown in Fig 2C. The stability of each quasi-attractor increases and transitions among the pat-

terns do not occur, as shown in Fig 2C. The corresponding attractor landscape is shown in Fig

2D, which also reveals that all of the attractors are stable. Note that the dynamics in each mod-

ule are chaotic even when each attractor is stable as shown in Kanamaru et al. [10].

Note also that the attractor to which the system converges is not determined only by ACh.

Fig 2C shows that the system converges to pattern owing to the initial state of the system.

Therefore, a method is required that controls the system so that it can converge to the target

attractor.

In Kanamaru et al. [10], to make the system converge to the target attractor, glutamatergic

spike volleys projecting onto layer 1 from higher cortical areas and the thalamic matrix circuit

were introduced to the model by adding constant inputs to the excitatory ensembles of mod-

ules corresponding to the target attractor with replacing the parameter sE that determines the

possibility of firing with sE + IT. These are represented as the top-down pathway in Fig 1A and

1B. These top-down inputs cause the system to jump to other attractors along the green arrows

shown in Fig 2B and 2D, and the system can converge to any attractor targeted when attention

is strong enough.

As shown above, the quasi-attractor hypothesis is realized by the stabilization of attractors

with ACh and the target attractor is selected by glutamatergic spike volleys [10].

Response of the network to bottom-up inputs

In Kanamaru et al. [10], only the top-down inputs were composed of ACh, and the glutamater-

gic spike volleys were considered. In this section, we add bottom-up inputs to the network,

and examine their effects.

As bottom-up inputs, we add constant inputs to the excitatory ensembles of modules i =

1, . . ., 8 by replacing the parameter sE with sE + IB. Note that in pattern 1, for example, the

modules with 1� i� 8 store “1”; therefore, the stability of pattern 1 would increase with posi-

tive IB.

The change in dynamics with the bottom-up inputs added is shown in Fig 2E, 2F, 2G and

2H.

While the release of ACh stabilized all the patterns, as shown in Fig 2D, the bottom-up

inputs stabilize only pattern 1 as shown in Fig 2F and 2H, because the inputs are injected only

to the modules with 1� i� 8.

In Fig 1, we introduced three inputs to the network: the cholinergic inputs, the glutamater-

gic spike volleys, and the bottom-up inputs. In this study, the cholinergic inputs are globally

applied to all the modules, and the glutamatergic spike volleys and the bottom-up inputs are

locally applied only to some of the modules. Using these inputs, we reproduced the phenome-

non of attention-dependent response modulation [14, 15] and the change of response function

[1, 5–9].

Response of the network to top-down and bottom-up inputs

In this section, we define inputs composed of top-down and bottom-up ones and we show typ-

ical responses of the network to the inputs.

Numerical experiments were performed for 0� t� 6000, and the three inputs shown in

Fig 3A and 3B were injected into the network. Note that the inputs associated with attention

were injected only during the period 2000� t� 4000, and, during the remaining periods, the

values of the parameters of the networks were identical to those used in Fig 2A.

Acetylcholine-mediated top-down attention improves the response to bottom-up inputs
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In Fig 3A, two types of top-down inputs associated with attention are shown. First, the

inputs associated with the release of ACh were applied to all 16 modules by decreasing REI

from 1. With this input, the stabilities of all the patterns would increase as shown in Fig 2B and

2D.

Fig 3. Responses of the network to inputs. (A, B) Inputs to the network. (A) Top-down attentional inputs composed of disinhibition of synapses

caused by ACh and the glutamatergic spike volleys, which are controlled by REI and IT, respectively. (B) Bottom-up inputs are controlled by IB. (C-E)

Attention-dependent changes in dynamics of the network. (C) Dynamics only with the bottom-up inputs for REI = 1, IT = 0, and IB = 0.002. (D, E)

Dynamics with both the top-down attentional inputs and the bottom-up inputs for (D) REI = 0.98, IT = 0.02, and IB = 0.002 and (E) REI = 0.94, IT =

0.02, and IB = 0.002.

https://doi.org/10.1371/journal.pone.0223592.g003
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Second, the top-down glutamatergic spike volleys were injected during the period 2000�

t� 2100 only. Positive pulses with strength IT were applied to the excitatory neurons in the

modules 1� i� 8, and negative pulses with strength −IT were applied to the excitatory neu-

rons in the remaining modules. The negative pulses can be created by decreasing the total

number of spikes arriving at the neurons during this short period. These inputs caused the sys-

tem to transit to pattern 1 along the green arrows shown in Fig 2B and 2D.

Note that we can simulate a network without attention when we set REI = 1 and IT = 0.

The bottom-up inputs are shown in Fig 3B. Positive inputs were injected only to the excit-

atory neurons in the modules 1� i� 8. These inputs correspond to stimulation inside the

receptive field in attention-related tasks. These inputs stabilize only pattern 1, as shown in Fig

2F and 2H.

The dynamics of the network with the inputs shown in Fig 3A and 3B is displayed in Fig

3C, 3D and 3E.

The dynamics of the network only with bottom-up inputs, i.e., REI = 1, IT = 0, and IB =

0.002 is shown in Fig 3C. Note that there are no top-down inputs for attention in the network

because REI = 1 and IT = 0, while the bottom-up inputs with IB = 0.002 exist.

The time spent in pattern 1 was long for 2000� t< 4000, because of the positive IB during

this period. However, pattern 1 was still unstable. In other words, only the bottom-up inputs

cannot stabilize pattern 1 completely. This dynamics corresponds to that shown in Fig 2F

schematically.

The changes in the dynamics when the top-down inputs were added to this network are

shown in Fig 3D and 3E.

The dynamics of the network with REI = 0.98, IT = 0.020, and IB = 0.002 is shown in Fig 3D.

The system always transits to pattern 1 at t = 2000 because of the top-down glutamatergic

spike volleys with IT = 0.020. Pattern 1 is almost maintained during the period 2000�

t< 4000 because of the inputs, but the pattern is still not fully stabilized. This dynamics also

corresponds to that shown in Fig 2F.

The dynamics of the network with REI = 0.94, IT = 0.020, and IB = 0.002 is shown in Fig 3E.

With these parameter values, pattern 1 is stabilized. This dynamics corresponds to that shown

in Fig 2H.

In summary, the results in Fig 3C, 3D and 3E show that the top-down attentional inputs

support the bottom-up inputs to stabilize a pattern.

Statistics of firings of each neuron

Fig 3C, 3D and 3E show the temporal changes in instantaneous firing rates calculated from the

firing times of all the excitatory neurons.

In this section, we obtain statistical data from the firing times of the neurons to compare

the results with those of attention-dependent response modulation [14, 15].

First, in Fig 4A, we show a raster plot of the spike activity obtained from the data used in

Fig 3D. To reduce the volume of data, only the data of 320 randomly chosen excitatory neu-

rons and 80 randomly chosen inhibitory neurons are shown.

In the following, we examine only the activity of the neurons in the second module, because

the second module stores “1” for pattern 1 and it stores “0” for patterns 2 and 3.

We performed 100 simulated trials, each of which yielded a raster plot similar to Fig

4A. We aligned the spikes of an excitatory neuron and an inhibitory neuron from the sec-

ond module as shown in Fig 4B and 4C. It is evident that the firing times differ across trials,

and the firing rates become large during the period 2000 � t � 4000 consistently over the

trials.
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Using data from 100 trials, we calculated the mean and the Fano factor of the firing count.

First, we divided the time axis into bins with a period Δt = 100. Using the number μi(j) of fir-

ings in the jth bin for the ith trial, the mean firing count in the jth bin is defined as

�mðjÞ ¼
1

N

XN

i¼1

miðjÞ; ð4Þ

where N = 100. The variance of the firing count is defined as

s2ðjÞ ¼
1

N

XN

i¼1

ðmiðjÞ � �mðjÞÞ2: ð5Þ

The Fano factor in the jth bin is then defined as

FðjÞ ¼
s2ðjÞ
�mðjÞ

: ð6Þ

Fig 4. Spike activity of the neurons. (A) Raster plot of spike activity obtained from the dynamics for REI = 0.98 shown in Fig 3D. To reduce the

volume of data, we show only the firings of 20 randomly chosen excitatory neurons and 5 randomly chosen inhibitory neurons in each module.

(B) Spikes of a typical excitatory neuron in the second module for 100 simulated trials. (C) Spikes of a typical inhibitory neuron in the second

module for 100 simulated trials.

https://doi.org/10.1371/journal.pone.0223592.g004
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Attention-dependent response modulation caused by ACh

The mean �mðjÞ and the Fano factor F(j) for an excitatory neuron and an inhibitory neuron in

the second module are shown in Fig 5, where the horizontal axis shows t = jΔt.
As in Fig 3C, 3D and 3E, the simulations were performed for REI = 1, 0.98, and 0.94. The

bottom-up inputs with IB = 0.002 are injected for all the simulations in this section. The top-

down glutamatergic spike volleys with IT = 0.020 are injected only when REI< 1. When REI =

1, we set IT = 0. Therefore, the results for REI = 1 show the responses of the network to the

unattended bottom-up inputs. When REI< 1, the bottom-up inputs are attended.

The temporal changes in mean firing count �mðjÞ for an excitatory neuron and an inhibitory

neuron are shown in Fig 5A and 5B, respectively. The mean firing count increased during the

period 2000� t� 4000, when ACh and the external signal were applied. This can also be seen

in Fig 4B and 4C.

In addition, the mean firing count increases with the increase of ACh, i.e., and with the

decrease of REI. This happened because the probability of staying at pattern 1 becomes large

when ACh is released, as shown in Fig 3C, 3D and 3E. Moreover, the firing count of the inhibi-

tory neuron was larger than that of the excitatory neuron, as shown in Fig 5B.

Fig 5. The mean firing count and its Fano factor. (A, B) Temporal changes in the mean �mðjÞ of the firing count of an excitatory neuron

and an inhibitory neuron in the second module. With the release of ACh, i.e., with the decrease in REI, the firing rate increases. (C, D)

Temporal changes in the Fano factor F(j) of the firing count of an excitatory neuron and an inhibitory neuron in the second module. With

the release of ACh, the Fano factor decreases.

https://doi.org/10.1371/journal.pone.0223592.g005
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Therefore, our results in Fig 5A and 5B reproduce the first property of the attention-depen-

dent response modulation described in Introduction, i.e., the increase of the firing rate with

the attended bottom-up inputs.

In our model, the firing count increases immediately at t = 2000 because the top-down glu-

tamatergic spike volleys force the system to transit to pattern 1 along the green arrows in Fig

2B and 2D. However, in the experimental study, such an immediate increase of the firing

count was not observed [14]. Therefore, in actual networks, there would be more gradual tran-

sitions of the system to other patterns.

In the theory of stochastic processes, it is known that the time scale of transitions among

patterns is determined by the depth of the potential, in other words, the height of the potential

barrier [29]. The release of ACh (the decrease of REI) and the injection of bottom-up inputs

deform the shape of the attractor landscape as shown in Fig 2. At t = 2000, the depths of all the

potentials increase, and the deepest one is that of pattern 1. Therefore, the rate of transitions

among patterns decreases. To cancel this effect, we used the top-down glutamatergic spike vol-

leys with strong short pulses that do not change the shape of the attractor landscape, and they

forcibly move the system to pattern 1. In order to realize the gradual transitions to pattern 1,

the potentials of pattern 2 and pattern 3 should not be deepened. There would be two candi-

dates for the gradual transitions to pattern 1: First, the top-down glutamatergic spike volleys

with weak but longer pulses that would shallow the potentials of pattern 2 and pattern 3 in this

period of pulses; and second, local ACh given only to the modules 1� i� 8. Such local ACh

would not deepen the potentials of pattern 2 and pattern 3. Details of applying such top-down

inputs would be resolved in future studies.

The Fano factor F(j) decreased during the period 2000� t� 4000, as shown in Fig 5C and

5D, and F(j) tended to decrease with increases in ACh, i.e., with decreases of REI. This means

that our results shown in Fig 5C and 5D reproduce the second property of the attention-

dependent response modulation described in Introduction.

A small Fano factor means that the reproducibility of the activity across trials is high. This

is related to the fact that the dynamics for REI = 1 is chaotically transitive. The transitive

dynamics among patterns makes each module transit between burst-like activity and a nearly-

silent state, as shown in Figs 3D and 4A. These transitions make the Fano factor large. In con-

trast, when ACh is released, the staying time at pattern 1 becomes longer, and the probability

of occurrence of transitions among patterns becomes small; therefore, the Fano factor becomes

small.

When pattern 1 is completely stabilized for REI = 0.94, the Fano factor takes a small constant

value during the period 2000� t� 4000, as shown in Fig 5C and 5D. However, in Mitchell

et al. [14, 15], such major decreases of the Fano factor were not observed. Therefore, the pat-

tern would not be completely stabilized in the experimental situations.

Finally, we examined the correlation between firing counts of pairs of neurons. Two neu-

rons from the excitatory ensemble or the inhibitory ensembles in the second module were ran-

domly chosen, and the correlation coefficient of their binned firing counts was analyzed. The

temporal changes in the correlation coefficients are shown in Fig 6A and 6B. The correlation

coefficients decreased when ACh was released, that is, when REI decreased during the period

2000� t� 4000.

This result might be counterintuitive, because when ACh is released, pattern 1 is stabilized

and the spikes of neurons in the module might tend to chaotically synchronize with each

other. However, we can understand the result by observing the distributions of firing counts of

the two neurons.

The distribution of the firing counts of excitatory neurons at t = 3000 for REI = 0.94 is

shown in Fig 6C. The dynamics of the network in this case shows chaotic synchronization in
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pattern 1, similar to the dynamics shown in Fig 3E around t = 3000. Therefore, the firing

counts distribute in a small range, as shown in Fig 6C.

The distribution of the firing counts for unattended inputs, that is, for REI = 1, is shown at

t = 3000 in Fig 6D. In this case, the second module shows transitive dynamics between burst-

like firing and a nearly-silent state, as shown in Fig 3C. Therefore, the firing counts distribute

in a wide range with a positive slope, as shown in Fig 6D, and a large correlation coefficient is

obtained.

Therefore, the correlation coefficients decrease with an increase in the degree of attention.

This result reproduces the third property of the attention-dependent response modulation

described in Introduction.

Comparison with Poisson spike train with inactive period

In the previous section, we found that the three properties of the attention-dependent response

modulation are reproduced when transitive dynamics of the network disappears and a stored

Fig 6. The correlation coefficients between the firing counts of pairs of neurons. (A, B) Temporal changes in the correlation coefficients

of firing counts in the excitatory ensemble and the inhibitory ensemble in the second module. Two neurons were randomly chosen from

each ensemble, and the correlation coefficient was calculated from data for 100 trials. (C, D) Distribution of the firing counts of two

neurons, for (C) REI = 0.94 and (D) REI = 1.

https://doi.org/10.1371/journal.pone.0223592.g006
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pattern is stabilized. In this section, we confirm that such properties are not obtained from sto-

chastic firings based on the Poisson process.

A sequence of firing times {ti} (i = 0, 1, 2, . . .) of a Poisson spike train is obtained by calcu-

lating a difference equation

tiþ1 ¼ ti þ Ti; ð7Þ

where the inter-spike interval Ti obeys exponential distribution:

f ðTÞ ¼ l exp ð� lTÞ; ð8Þ

with a firing rate λ.

We introduce an inactive period Tr to this sequence as

tiþ1 ¼

( ti þ Tr; if Ti < Tr;

ti þ Ti; otherwise:
ð9Þ

The inactive period Tr is the minimum length of the inter-spike interval. Typically, Tr

is determined by a sum of the spike width and the refractory period of a neuron, i.e., Tr = 7

in our model. Moreover, when a neuron belongs to a module that shows synchronized

oscillations, Tr tends to take larger values. For example, when a module shows a periodic

synchronization, Tr is the period of such oscillation. Therefore, we also treat a case with

Tr = 12.

Similar to Figs 5 and 6, we generate the sequences for 0� t� 6000. In all the simulations,

the firing rate is set to λ = λ1 = 0.02 during the periods 0� t� 2000 and 4000� t� 6000. Dur-

ing the period 2000� t� 4000, we set λ = λ2, and λ2 is regulated to reproduce the firing rates

in Fig 5A.

By generating 100 independent Poisson spike trains, we can calculate the firing counts and

the Fano factors. By generating 100 pairs of independent Poisson trains, we can also calculate

the correlation coefficients.

In Fig 7A and 7B, the mean firing counts are shown for Tr = 7 and Tr = 12, respectively. The

values of λ2 are chosen to reproduce the results in Fig 5A. Both results reproduce the results of

Fig 5A well.

In Fig 7C and 7D, the Fano factors of the firing counts are shown for Tr = 7 and Tr = 12,

respectively. When Tr is small (Tr = 7), the decrease of the Fano factor during the period 2000

� t� 4000 is small. When Tr = 12, the Fano factor decreases nearly to 0 for λ2 = 0.2. This result

is similar to that of Fig 5C.

Therefore, we can conclude that the decrease of the Fano factor can be reproduced by intro-

ducing the inactive period Tr to the Poisson spike train. However, as shown in Fig 7E and 7F,

the decrease of the correlation coefficient cannot be reproduced by the Poisson spike trains

with Tr.

Therefore, we propose that the three properties of the attention-dependent response modu-

lation are caused by nonlinear dynamics in our network.

Change of response function caused by ACh

In our network, the top-down ACh and the bottom-up inputs control the dynamical state of

the network, i.e., they can deform the attractor landscape of the network as shown in Fig 2.

In the previous section, it was found that the top-down ACh causes the attention-depen-

dent response modulation. In this section, we examine the role of the bottom-up inputs in the

network. The inputs shown in Fig 3A and 3B are applied to the network.
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Fig 7. The mean firing count, the Fano factor, and the correlation coefficient of the Poisson spike trains with inactive period Tr. (A, B)

Temporal changes in the mean �mðjÞ of the firing count for (A) Tr = 7 and (B) Tr = 12. The values of λ2 are chosen to reproduce the results in

Fig 5A. (C, D) Temporal changes in the Fano factor F(j) of the firing count for (C) Tr = 7 and (D) Tr = 12. (E, F) Temporal changes in the

correlation coefficient of the firing counts for (E) Tr = 7 and (F) Tr = 12.

https://doi.org/10.1371/journal.pone.0223592.g007
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The dependences of the mean firing count, the Fano factor, and the correlation coefficient

on the strength IB of the bottom-up input are shown in Fig 8. Note that IB can be interpreted

as the contrast of visual stimuli.

The time-averaged statistics for 3000� t� 4000 are calculated to discard transient dynam-

ics for 2000� t� 3000, and they are shown only for modules 2 and 4 because they store “1”

for the pattern 1.

The dependences of the firing count on IB shown in Fig 8A and 8B represent the response

functions to the bottom-up input. Therefore, to observe the effect of ACh on the response

function clearly, we performed simulations even for negative IB. Top-down attention increases

the response to the bottom-up inputs by a leftward shift of the response function. In other

words, top-down ACh in our model improves the sensitivity to the bottom-up inputs by the

contrast gain change [1, 5–9]. Therefore, the top-down attention can be used as a support for

the bottom-up inputs when the latter are not strong enough.

Note that our network shows some firing counts even when IB = 0 as shown in Fig 8A and

8B. This is because we regard transitive dynamics shown in Fig 2A and 2B as a default-mode

resting state of the network for IB = 0.

Fig 8C, 8D, 8E and 8F show the dependences of the Fano factor and the correlation coeffi-

cient on IB. Similar to that of the top-down attention shown in Figs 5C, 5D, 6A and 6B, they

decrease with the increase of IB when IB> 0. In addition, they decrease with the decrease of IB
in the range IB< 0. In this range of IB, only the patterns 2 and 3 were stabilized.

Discussion

In this study, we proposed a multi-module network that can reproduce the properties of the

attention-dependent response modulation and change of response functions.

A module is composed of excitatory neurons and inhibitory neurons, and shows chaotic

synchronization as its typical dynamics. After constructing a multi-module network as a

model of the cortex, we embedded three patterns in the network and found transitive dynam-

ics among quasi-attractors as the typical dynamics. To model the effects of ACh associated

with attention, we adopted the disinhibition of inhibitory synapses projecting onto excitatory

neurons. This disinhibition changes the dynamics of the network from the transitive regime to

a stable regime in which the system converges to an attractor with a corresponding pattern. In

addition to ACh, we used top-down glutamatergic spike volleys and bottom-up external

inputs.

We found that this network could reproduce the three properties of the attention-depen-

dent response modulation described in the Introduction [14, 15]. First, attention-dependent

increases in firing rates are caused by an increase in the probability that the system stays in a

stored pattern. Second, attention-dependent decreases in the Fano factors of the firing rates

are caused by an increase in the reproducibility of the firing count with the stabilization of a

stored pattern. Finally, attention-dependent decreases in correlation coefficients of firing rates

are caused by shrinkage of the distribution of the firing counts into a narrow range. All these

properties were caused by the change from transitive dynamics among patterns to stable

dynamics in which the system converges to an attractor of a stored pattern, which was caused

by the attention-dependent release of ACh.

Thus, these results indicate that the attention-dependent response modulation can be

explained by the disinhibition of inhibitory synapses caused by the release of ACh. The top-

down glutamatergic spike volleys and the bottom-up external inputs are used to specify the tar-

get pattern.
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Fig 8. Responses of the network to the bottom-up input. The dependences of (A, B) the mean firing count, (C, D) the Fano factor, and (E, F) the

correlation coefficient on the bottom-up input IB. The inputs shown in Fig 3A and 3B are applied to the network. The time-averaged statistics for

3000� t� 4000 are calculated to discard transient dynamics for 2000� t� 3000, and they are shown only for modules 2 and 4 because they store

“1” for the pattern 1. The dependences of the firing count on IB shown in (A) and (B) represent the response functions to the bottom-up input.

https://doi.org/10.1371/journal.pone.0223592.g008
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Moreover, we also found that our model reproduces the change in the response function of

bottom-up inputs [1, 5–9]. The type of change in our model was the contrast gain change [1, 5,

6]. Reynolds and Heeger [8] found that attention with spatial dependence can yield various

types of gain change. Conversely, ACh-mediated attention in our model was globally provided

to the network. Thus, future studies should examine the spatial dependence of attention in our

model.

In summary, top-down ACh in our model improves the sensitivity to the bottom-up inputs

by increasing the firing rates and the contrast gain change of the response function. In other

words, top-down attention can be used to support bottom-up inputs when they are not strong

enough. This result is consistent with previous results of the normalized model of attention

[5–9] and those of neural networks [16–18]. Moreover, our results suggest that such improve-

ment in the response is accompanied by a decrease in the Fano factor and the correlation coef-

ficient. The three properties of the attention-dependent response modulation and the contrast

gain change of the response function are different aspects of a common phenomenon, i.e.,
change in the network dynamics from transitive dynamics among patterns to stable dynamics

in which the system converges to an attractor of a stored pattern. Therefore, it is important to

understand attentional phenomena from a standpoint of nonlinear dynamics of neural

networks.

To model the effect of ACh in the network, we adopted the disinhibition of inhibitory syn-

apses projecting onto excitatory neurons [12, 13]. However, several types of ACh effects are

known which depend on factors, such as the cortical depth and cell types [11]. We regard that

the increase of firing rates of excitatory neurons and associated stabilization of a pattern are

essential in our results. Therefore, when these phenomena are kept unchanged, our results can

also be reproduced by other effects of ACh. For example, Kanamaru et al. [10] examined

dynamics of a network in which both excitatory and inhibitory synapses are modulated based

on experimental results [30–35]. We found that the transitive dynamics and stabilization of

stored patterns are also observed when modulations of excitatory and inhibitory synapses are

balanced to some extent. Therefore, we expect that our results would be also observed even

when different effects of ACh are adopted.

In our network, 50% of modules show firings when a pattern is stably retrieved as shown in

Fig 2C and 2G, i.e., the activation rate of the modules is 0.5. It would be possible to observe

similar results in a more “sparse” network with only a small number of modules show firings.

However, to obtain such dynamics, the total number M of modules should be much larger

than 16, and careful adjustment of parameters would be required. Therefore, we set the activa-

tion rate to 0.5 for simplicity.

In this study, our network has both top-down and bottom-up inputs, and they are injected

to the network to obtain a common target pattern. When these inputs are injected to the net-

work to obtain different patterns, a competition occurs. Typically, the pattern with stronger

inputs is stabilized based on the winner-take-all mechanism. Such a competition also occurs

when the bottom-up inputs are injected to the network to obtain two patterns. The top-down

ACh can cause a bias to such a competition, i.e., ACh can explain the biased competition [36–

38]. To analyze such dynamics, top-down ACh should be injected locally; however, it was

injected globally to all the modules in this study. The role of such local top-down ACh will be

analyzed in our future study.

The results obtained in this study are consistent with both the quasi-attractor hypothesis

[10] and the attention-dependent control of attractor states [1]. Many attention-dependent

properties are known in addition to the attention-dependent response modulation and gain

change in response function [1]. Constructing a networks that can explain such properties and

understanding them on the basis of dynamical systems theory are topics for future research.
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Methods

Definition of a single module

As a model of the network in layers 2/3 of the cortex, we defined a module of a network to be

composed of NE pyramidal neurons and NI interneurons, represented as phase neurons using

the following equations:

tE
_
y
ðiÞ
E ¼ ð1 � cosyðiÞE Þ þ ð1þ cosyðiÞE Þ

�ðsE þ x
ðiÞ
E ðtÞ þ gEEIEðtÞ � gEIIIðtÞÞ;

ð10Þ

tI
_
y
ðiÞ
I ¼ ð1 � cosyðiÞI Þ þ ð1þ cosyðiÞI Þ

�ðsI þ x
ðiÞ
I ðtÞ þ gIEIEðtÞ � gIIIIðtÞ þ ggapIðiÞgapðtÞÞ;

ð11Þ

IXðtÞ ¼
1

2NX

XNX

j¼1

X

k

1

kX
exp �

t � tðjÞk
kX

 !

; ð12Þ

IðiÞgapðtÞ ¼
1

NI

XNI

j¼1

sin y
ðjÞ
I ðtÞ � y

ðiÞ
I ðtÞ

� �
; ð13Þ

hx
ðiÞ
X ðtÞx

ðjÞ
Y ðt

0Þi ¼ DdXYdijdðt � t0Þ; ð14Þ

which have been used previously [10]. Each neuron model is referred to as a theta neuron [39].

The theta neuron has been used as a general model of a type-I spiking neuron [40, 41].

The activity of a single neuron in the model can be regulated by sX (X = E or I). When sX<
0, θ* 0 is stable, this can be regarded as a resting state. When sX> 0, the resting state becomes

unstable, and θ starts to oscillate. The firing time is defined as the time at which y
ðjÞ
X exceeds π.

In this study, we set sE, sI< 0. Each neuron spontaneously fires with the help of Gaussian

white noise x
ðiÞ
X ðtÞ with the strength D.

The connections among neurons are global. Connections generating postsynaptic currents

of an exponential form between all pairs of neurons as well as diffusive connections between

inhibitory neurons are present. These two types of connections model chemical synapses and

electrical synapses with gap junctions, respectively. tðjÞk is the kth firing time of the jth neuron.

gEE, gIE, −gEI and −gII are connection weights within the excitatory and inhibitory ensembles,

and ggap is the strength of gap junctions. τE and τI are the membrane time constants, and κE
are κI the time constants of synaptic currents.

The firing rates rE and rI of the excitatory ensemble and the inhibitory ensemble, respec-

tively, are defined as

rXðtÞ �
1

NXw

XNX

i¼1

X

l

Yðt � tðiÞl Þ; ð15Þ

YðtÞ ¼

(
1; for 0 � t < w;

0; otherwise;
ð16Þ

where X = E or I, and w = 1.
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Connections among modules

To obtain a network of M modules, we defined the connection weights TEi and TIi of the input

to the excitatory neurons and inhibitory neurons in the ith module [27] as

TEi ¼ ðgEE � gsubEE ÞIEi � ðgEI � gsubEI ÞIIi þ
XM

j¼1

hEE
ij IEj þ

XM

j¼1

hEI
ij IIj; ð17Þ

TIi ¼ ðgIE � gsubIE ÞIEi � gIIIIi þ
XM

j¼1

hIE
ij IEj; ð18Þ

where IEi and IIi are the sums of postsynaptic currents of the ith module defined by Eq 12. We

replaced the inputs to the excitatory neurons and inhibitory neurons used in Eqs 10 and 11

with TEi and TIi.

In the above definitions, the intra-module connection weights gEE, gEI, and gIE are decreased

by subtracting gsubEE , gsubEI , and gsubIE , respectively, to maintain the chaotic dynamics observed in a

module.

The inter-module connection weights hEE
ij , hEI

ij , and hIE
ij are defined based on a modified Heb-

bian rule as follows:

hEE
ij ¼

( hEEKij; if Kij > 0;

0; otherwise;
ð19Þ

hEI
ij ¼

(
0; if Kij > 0;

hEIKij; otherwise;
ð20Þ

hIE
ij ¼ hIEjKijj; ð21Þ

Kij ¼
1

Mað1 � aÞ

Xp

m¼1

ðZmi � bÞðZmj � aÞ; ð22Þ

where Z
m
i 2 f0; 1g are stored patterns with the firing rate a = 0.5, hEE = 3.0, hIE = 1.55, and hEI

= 0.1. In the conventional associative memory model, b is set identical to a in Eq 22; however,

we use b as a regulating parameter because our model differs from the conventional model,

such as the inhibition realized by inhibitory ensembles, and we set b = 0.55.

When Kij> 0, there are two types of inter-module connections, i.e., E! E and E! I, and

such connections tend to induce inter-module synchronization. Conversely, when Kij< 0, the

connections I! E and E! I exist, and such connections tend to break the inter-module

synchronization.

Three additional parameters of regulation, gsubEE , gsubEI , and gsubIE , are respectively defined as

gsubEE ¼ ghEE, gsubEI ¼ ghEI , and gsubIE ¼ ghIE using a new parameter γ = 0.75 that is common to all

modules. These are introduced to our model to maintain the chaotic dynamics observed in a

one-module system with gEE, gIE, and gEI. Without them, the chaotic dynamics are broken, and

periodic dynamics or asynchronous firing would be observed.

The values of the parameters used in a module are sE = −0.019, sI = −0.040, D = 0.0025,

gEE = 6, gIE = gEI = 2.8, gII = 1, ggap = 0.1, τE = 1, τI = 0.5, κE = 1, and κI = 1.
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