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ABSTRACT

Italian ryegrass (Lolium multiflorum) is an important cool-season, annual forage crop
for the grassland rotation system in Southern China. The primary aim of breeding
programs is always to seek to improve forage quality in the animal productivity system;
however, it is time- and labor-consuming when analyzed excessive large number of
samples. The main objectives of this study were to construct near-infrared reflectance
spectroscopy (NIRS) models to predict the forage chemistry quality of Italian ryegrass
including the concentrations of crude protein (CP), acid detergent fiber (ADF), neutral
detergent fiber (NDF), and water soluble carbohydrate (WSC). The results showed that
a broader range of CP, NDF, ADF and WSC contents (%DM) were obtained (4.45—
30.60,21.29-60.47, 11.66—36.17 and 3.95-51.52, respectively) from the samples selected
for developing NIRS models. In addition, the critical wavelengths identified in this study
to construct optimal NIRS models were located in 4,247—6,102 and 4,247-5,450 cm™!
for CP and NDF content, and both wavelengths 5,446—6,102 and 4,247—4,602 cm’!
could for ADF and WSC. Finally, the optimal models were developed based on the
laboratory data and the spectral information by partial least squares (PLS) regression,
with relatively high coefficients of determination (R*cy, CP = 0.99, NDF = 0.94, ADF
= 0.92, WSC = 0.88), ratio of prediction to devitation (RPD, CP = 8.58, NDF =
4.25, ADF = 3.64, WSC = 3.10). The further statistics of prediction errors relative
to laboratory (PRL) and the range error ratio (RER) give excellent assessments of the
models with the PRL ratios lower than 2 and the RER values greater than 10. The
NIRS models were validated using a completely independent set of samples and have
coefficients of determination (R?y, CP = 0.99, NDF = 0.91, ADF = 0.95, WSC = 0.91)
and ratio of prediction to deviation (RPD, CP = 9.37, NDF = 3.44, ADF = 4.40, WSC
= 3.39). The result suggested that routine screening for forage quality parameters with
large numbers of samples is available with the NIRS model in Italian ryegrass breeding
programs, as well as facilitating graziers to monitor the forage development stage for
improving grazing efficiency.
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INTRODUCTION

Italian ryegrass (Lolium multiflorum) is one of the most famous annual forage grasses,
and is widely used for the cereal-forage rotation system in south China owing to its high
productivity and palatability, excellent resprouting and easy plantability (Cardmbula &
Cardmbula, 1977; MAIA, 1995). As green-feed or silage for livestock daily ration, the good
forage quality of Italian ryegrass cultivar is the primary goal for famers and breeders
(Casler & Vogel, 1999). The content of crude protein (CP), neutral detergent fiber (NDF)
and acid detergent fiber (ADF), and water soluble carbohydrate (WSC) are the three most
important forage quality parameters which determine the forage intake and digestibility for
livestock (Mott & Moore, 1970). The high CP content increased the milk and milk protein
yield (Mdntysaari et al., 2004) and the NDF, ADF are well correlated with digestibility for
livestock animals (Agbagla-Dohnani et al., 2001; Agnihotri et al., 2003; Dutta, Sharma &
Hasan, 1999; Suksombat, 2004; Yépez et al., 2004), as well as the WSC may improve the
balance and synchrony of the nitrogen and carbon supply to the rumen (Miller et al.,
2001). Furthermore, the appropriate content of the WSC could prevent clostridial from
fermenting, which is a critical parameter for silage production (Haigh, 1990; Pettersson ¢
Lindgren, 1990). Traditional methods for determining the contents of CP, NDF, ADF, and
WSC are based on standard wet chemistry analytical techniques; however, it is unsuitable
for a large number of samples due to its high costly, time-consuming, laborious, and
produces pollution in Italian ryegrass (Kong et al., 2005; Wittkop, Snowdon & Friedt, 2012).
Interestingly, a new technique based on the spectroscopy model is aimed at facilitating
screening for phenotyping traits for higher growth performance and yield (Araus ¢
Cairns, 2013; Cabrera-Bosquet et al., 2012). As a low cost, rapidity, high-precision and
high-throughput technique, near-infrared spectroscopy (NIRS) could predict contents of
organic constituents by combining laboratory data and the spectral information (Ramirez
et al., 2015; Williams & Norris, 1987b; Wu et al., 2015). The absorbance is measured by
different molecular bonds at specific wavelengths, principally C-H, O—H and N-H, which
are the basic components of organic compounds of plant tissues (Bokobza, 2002). NIRS
is widely utilized for the evaluation of forage quality, including the content of nitrogen,
moisture, fiber, structural carbohydrates, amino acids and minerals (Andres et al., 2005;
Campo et al., 2013; Cozzolino, Fassio ¢ Gimenez, 2001; Dreccer, Barnes ¢ Meder, 2014;
Font, Mdel & Ade, 2006; Fontaine, Horr & Schirmer, 2001; Meng et al., 2015). The content
of CP, NDF and ADF had been accurately predicted in Oryza sativa (Kong et al., 2005),
Leymus chinensis (Chen et al., 2015), Elymus glabriflorus (Rushing et al., 2016), Brassica
napus (Wittkop, Snowdon & Friedt, 2012), and Salix caroliniana (Lavin et al., 2016) by the
NIRS technique. Besides, NIRS had been also successfully used to quantify the content
of WSC in Triticum aestivum (Dreccer, Barnes ¢ Meder, 2014), to estimate the phenolic
content in Zea mays (Meng et al., 2015), and in the screening of early-generation material
in cereal breeding programmes (Osborne, 2006). In a word, it had been widely reported
that NIRS would be an efficient analytical technique for the rapid prediction of chemical
compositions for screening different cereal crop species and forage grasses (Kong et al.,
2005). In addition, NIRS does not need solvents or reagent, avoids environment pollution
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and is regarded as an eco-friendly method, which is accordance with the principles of
green chemistry (Cayuela & Garcia, 2017). However, there is little reported study on the
development of NIRS calibration models for predicting the forage quality in tetraploid
[talian ryegrass populations and the establishment of NIRS calibration models for analysis
the CP, NDF, ADF, and WSC contents.

In this study, the main objective was to characterize the methods for measuring the
content of CP, NDF, ADF and WSC in a large population of Italian ryegrass cultivars
and breeding lines by conventional standard wet chemical analytical techniques and
recent near-infrared spectroscopy analyses. Based on the data obtained from two different
methods, the partial least squares regression (PLS) would be used for constructing the
calibration models of NIRS and the validation of the application potential in Italian
ryegrass breeding programs. The optimized NIRS model will quantitatively analyze forage
quality parameters of Italian ryegrass in low cost and high throughput ways to further
facilitate the speed of the breeding for improving the forage quality.

MATERIALS AND METHODS
Materials

A total of 403 Italian ryegrass samples were collected from 34 accessions (15 cultivars and
19 breeding lines, Table 1) at different forage development stage and different locations
(Ya’an and Chengdu) from 2014 to 2016. For each sample, a bulked strategy was applied.
The fresh samples were inactivated at 105 °C for 30 min, and then oven dried at 65 °C to
a constant weight. Finally, the dried samples were ground into powders through a 2 mm
sieve and stored in a dry container until use to analysis CP, fiber fractions (NDF and ADF)
and WSC.

Near infrared spectra (NIRS) collection

Near infrared reflectance spectroscopy analysis was performed using a Bruker MPA Fourier
Transform near infrared (FT-NIR) spectrophotometer (Bruker, Bremen, Germany),
equipped with a quartz beamsplitter and a PbS detector. It was also equipped with an
integrating macrosample sphere and a rotating sample cup, allowing the scanning of large
areas of the samples. NIR spectra of ground samples were obtained with the following
procedure: aliquots of around 25 g of dried samples were placed in rotating sample cup,
and scanned on reflectance mode in the spectral range from 4,000 to 12,500 cm™! at room
temperature (~20 °C). In each of the reflectance measurements, 64 scans were run and
the resolution used for spectral analysis was 8 cm™!. Spectrum were produced with 2,203
date points per sample (Table S1). Background corrections were made before each sample
was scanned. Samples were measured in triplicate, which increased the scanned surface
of samples for reducing errors. The spectral absorbance values were recorded as logl/R,
where R is the sample reflectance.

Biochemical analysis
The Kennard-Stone algorithm was used to select a subset of 123 samples (out of the 403
samples) for biochemical analysis. This algorithm selects a defined number of representative
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Table 1 The information of Italian ryegrass in this study.

Materials Origins Sample Materials Origins Sample
number number

Changjiang No.2 Sichuan Agricultural University 24 Changjiang No.2 x Ganxuan No. 1 Sichuan Agricultural University 13

Tetragold Barenbrug Company 21 Z3 Sichuan Agricultural University 15

Aubade FF Company 9 Splendor x Ganxuan No. 1 Sichuan Agricultural University 10

Splendor DLF Company 10 greenland x Ganxuan No. 1 Sichuan Agricultural University 13

Jumbo Barenbrug Company 9 Splendor x Aubade Sichuan Agricultural University 11

Chuannong Nol. Sichuan Agricultural University 25 Group B Sichuan Agricultural University 21

Barwoltra Barenbrug Company Chenqu x Ganxuan No. 1 Sichuan Agricultural University 11

Diamond T Clover Group Changjiang No.2 x Tetragold Sichuan Agricultural University 15

Blue Heaven Clover Group 10 Jumbo x Ganxuan No. 1 Sichuan Agricultural University 11

Shangnong Tetraploid Shanghai Jiao Tong University 10 Tetragold x Blue Heaven Sichuan Agricultural University 22

C8 Sichuan Agricultural University 5 Chenqu x Aubade Sichuan Agricultural University

Abundant DLF Company 10 Diamond T x Changjiang No.2 Sichuan Agricultural University

Jivet DLF Company 9 Barwoltra x Splendor Sichuan Agricultural University

Group A Sichuan Agricultural University 16 Barwoltra X liaoyuan Sichuan Agricultural University

Angus No. 1 DLF Company 20 Z4 Sichuan Agricultural University 10

Double Barrel DLF Company 10 Cc7 Sichuan Agricultural University 5

Ganxuan No. 1 Jiangxi Livestock Technologies 10 Aderenalin Beijin Green Animal Husbandry 10

Popularizing Station

S&T Development CO.,LTD

rIead
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samples that systematically cover the spectral variation of all samples. Samples from the
selected subset were analyzed for CP, NDF, ADF, and WSC by standard wet chemical
analytical techniques (Table S1). The data generated from biochemical methods will act as
the reference data for future analysis. All experiments were performed with three biological
replicates.

Determination of Crude Protein content

The CP content were determined by wet chemistry analysis according to the Kjeldahl
method (AOAC Official Method 984.13.15) (AOAC, 1990) with the Kjeltec™ 8400
analyzer unit (FOSS, Hoganas, Sweden). The ground samples (0.5 g) were added into

a 250 ml TKN digestion tube with 10 ml concentrated sulfuric acid and two digestive
tablets (Beijing Jinyuanxingke Technology, Beijing, China). Blanks containing all these
reagents were simultaneously processed. All tubes were digested in the preheated digestion
block (Tecator™ digestor auto; FOSS, Hoganas, Sweden) at 420 °C for 90 min or until
the samples were green and clear. The Kjeldahl digests procedure was carried out using a
KjeltecTM 8400 analyzer unit (FOSS, Hoganas, Sweden). The CP content was calculated
using the following equation:

(V1—V2) x C x 1.4007 x 6.25
CP(%DM) = i x 100
Where: V1 = volume (ml) of standard HCI required for sample; V2 = volume (ml) of
standard HCI required for blank; C = molarity of standard HCl; 1.4007 = milliequivalent

weight of N x 100; 6.25 = average coefficient of nitrogen conversion into proteins;

M = sample weight in grams.

Determination of neutral detergent fiber and acid detergent fiber
contents

The NDF and ADF contents were measured by using the methods described by Goering
& Van Soest (1970) and Van Soest, Robertson ¢ Lewis (1991) with 0.5 g pulverized samples
in Automatic Fiber Analyzer (ANKOM 2000 Fiber Analyzer; ANKOM Technology, NY,
USA). The contents of NDF and ADF were calculated using the following equation:

(M2-M1xCD)

NDF (%DM) = " 100
(M3—(M1xCl1))
ADF (%DM) = m x 100

Where: M = Sample weight; M 1 = Bag tare weight; M2 = Weight of organic matter after
extraction by neutral detergent; M3 = Weight of organic matter after extraction by acid
detergent; C1 = Ash-corrected blank bag factor (a running average of the loss of weight
after extraction of the blank bag/original blank bag); C2 = Ash-corrected blank bag factor
(a running average of the loss of weight after extraction of the blank bag/original blank
bag).

Determination of water soluble carbohydrates content
The WSC content were determined as follows: 0.1 g dried samples were ground with 1 ml
distilled water, and the homogenate were transferred to a 2 ml tubes and then water bath
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for 10 min at 95 °C. After centrifugation at 8,000x g for 10 min at 25 °C, all supernatants
were collected and the final volume was adjusted to 10 ml with distilled water. The content
of WSC was detected by using assay kits (Suzhou Comin Biotechnology Co., Ltd, Suzhou,
China). Briefly, 40 pl supernatants were put in a 1.5 ml eppendorf tube with 40 pl distilled
water, 20 pl mix solution and 200 pul concentrated sulfuric acid. The reaction mixture
was shaken and incubated in a water bath for 10 min at 95 °C and then cooled to room
temperature. A total of 200 L reaction mixture was transfered to a 96 well EIA/RIA plate
and read the absorbance at 620 nm using a Thermo Scientific Multiskan™ Go (Thermo
Scientific, Waltham, MA, USA).
The contents of WSC were calculated as follows:
2.34 x (AA+0.07)
W x 10

Where: AA = The absorbance of test tube; W = Sample weight.

WSC (%DM) =

Calibration and validation of near infrared spectra models

All 123 selected samples were used to construct the near infrared spectra models in

the OPUS software (Bruker, version 5.5) by using partial least square (PLS) regression
throughout the process to calculate the correlation between spectral data and laboratory
data. The raw spectral data were transformed by several pretreatments before the calibration
process, including standard normal variate (SNV), standard multiple scatter correction
(MSC), minimum-maximum normalization (MMN), first derivative (FD), second
derivative (SED), straight line subtraction (SLS), constant offset elimination (COE),
and a combination of FD with MSC, SLS, SNV to remove artifacts and imperfections
from the date. For the validation of the models, all 123 samples were split in 93 and 30
for cross validation and external validation sets, respectively, according to the range of the
chemical values. Cross-validation is conducted when developing NIRS models by using
PLS regression, which attempted to screen the optimal ranks and avoid over-fitting of the
data (Shenk ¢ Westerhaus, 1991). Furthermore, external validation subsets were applied to
evaluate and validate the potential accuracy of the models.

The statistical methods applied in this study included the coefficient of determination
calculated in cross-validation (R?cy) and external validation (R?y), the root mean square
error of calibration (RMSEC), the root mean square error of cross-validation (RMSECV),
and the root mean square error of prediction (RMSEP). Moreover, the ratio of prediction
to deviation (RPD), which indicated the correlations between the SD of the standard
wet chemical analyzed data and prediction data by NIRS model (RMSECV or RMSEP)
(Williams ¢ Sobering, 1996), was applied to estimate the prediction ability of the model.
Besides, the prediction error relative to laboratory (PRL) and the range error ratio (RER,
calculated as the ratio between the range of standard wet chemistry values and the RMSECV
or the RMSEP of the parameters) were calculated in this study, and were considered as an
additional criteria for determined the prediction ability of each of the models.
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Figure 1 Quality parameters content. Box and whisker diagrams of the reference values (i.e., values ob-
tained using conventional wet chemistry) measured for quality parameters content (%DM), including
crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF) and water soluble carbohy-
drate (WSC) in Italian ryegrass. Box plots show median values (solid horizontal lines), 50th percentile val-
ues of the data range (box outlines) and whiskers 100th percentile values of data (whiskers), with the ex-
ception of the outliers shown as individual points.

RESULT

Chemical characteristics of forage quality attributes

The content of CP, NDF, ADF and WSC were detected by standard wet chemical analytical
techniques in laboratory and the CP expressed in %DM ranged from 4.45 to 30.6, NDF
ranged from 21.29 to 60.47, ADF ranged from 11.66 to 36.17, and WSC ranged from
3.95 to 51.52% in %DM, respectively (Fig. 1). The variability of NDF and WSC contents
were observed highest (£9.35 and +9.40 %DM), while CP content was lowest (£5.71
%DM). Besides, the calibration (93 samples) and the validation (30 samples) data sets
were also analyzed separately, including the values between maximum and minimum
values, mean, and SD (Table 2). The variation of the CP, NDF, ADF and WSC content
could be considered acceptable and broad enough for development of the aimed NIRS
calibration models.

Features of NIRS spectra

The raw spectral data of 123 selected samples exhibited the general spectral features that one
expects from dried plant samples (Fig. 2). It is obviously shown that peaks and valleys were
presented in the spectra, which indicated the different chemical component characteristics
of Italian ryegrass samples. In the wavenumber region 4,000-12,500 cm™ L, there were five
main absorption peaks located at wavelength approximately 4,240, 4,740, 5,170, 5,800, and
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Figure 2 NIR spectra of each Italian ryegrass sample. NIR spectra of each Italian ryegrass sample in the
wavelengths range of 4,000-12,500 cm™ .

Table 2 Summary statistics calibration and validation sets of CP, NDF, ADF and WSC contents
(%DM) analyzed by standard wet chemistry methods in Italian ryegrass from the calibration and the
validation sets.

Parameter Calibration Validation

N Mean SD Min Max N Mean SD Min Max

CP 93 12.94 5.82 4.45 30.60 30 12.80 5.36 5.10 25.53

NDF 93 40.47 9.48 21.29 60.47 30 40.48 8.95 24.14 55.41

ADF 93 22.92 6.12 11.66 36.17 30 22.92 5.81 13.23 33.88

WSC 93 19.93 9.63 3.95 51.52 30 19.65 8.68 5.33 39.90
Notes.

N, number of samples; SD, standard deviation; Min, minimum value; Max, maximum value.

6,800 cm ™!, respectively. After comparison to the origin of near-infrared absorption bands,
we found that these wavelength related to critical functional groups as carbon atoms and
hydrogen (C-H), hydrogen atoms and oxygen (O-H) and ammonia (N-H) in CP, NDF,
ADF and WSC.

NIRS model calibrations and cross validation

The PLS regression of NIRS spectra and laboratory values constructed good calibration
models for CP, NDF, ADF and WSC content of Italian ryegrass with the cross-validation
processing simultaneously. When a wide range of possible combinations of different spectral
pretreatments were tested, the optimal combinations with lowest RMSECV values were
applied to construct the models. The results showed that FD+MSC combinations could
well improve the linearity relation between reference and spectral values of CP, the SNV
pretreatment improved the linearity relation of NDF, FD improved the linearity relation
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Table 3 Cross-validation statistics of NIRS calibrations for the estimation of CP, NDF, ADF and WSC contents (%DM) in Italian ryegrass ob-

tained by PLS regression.

Parameter SCM Spectrum range Ranks Ry RMSECV RPD¢ SELc PRL¢ RER

(em™)
CP FD +MSC 4,247-6,102 10 0.99 0.68 8.58 1.56 0.43 38.57
NDF MSC 4,247-5,450 7 0.94 2.23 4.25 1.62 1.38 17.57
ADF FD 4,247-4,602; 5,446—6,102 6 0.92 1.68 3.64 1.43 1.17 14.59
WSC MMN 4,247-4,602; 5,446—6,102 7 0.88 3.11 3.10 1.66 1.88 15.30
Notes.

SCM, scatter correction methods; Ranks, number of principal component used for calibration; R?cy, determination coefficient of cross-validation; RMSECV, root mean square
error of cross-validation; RPDc, ratio of prediction to deviation for the calibration (SD/RMSECV); SELc, standard error of laboratory in calibration; PRLc, prediction error rela-
tive to laboratory of calibration models; RERcy, range error ratio for the calibration models (max—min)/RMSECV.

of ADF, and MMN improved the linearity relation of WSC (Table 3). Besides, we also got
the optimal wavenumber based on these spectral pretreatments, including the calibration
model for CP was developed at 4,247—6,102 cm~ !, NDF at 4,247-5,450 cm™—!, ADF at both
5,446-6,102 cm™! and 4,247-4,602 cm~! wavenumber, and the WSC was same as ADF
(Table 3). The regression coefficients contributing for the CP, NDF, ADF and WSC models
are shown in Fig. 3. In these graphs, wavelengths within the horizontal line have zero
contribution to the models. The coefficients for CP model presented abundant spectral
variable within the optimal wavenumber regions, which provide efficient contribution
in the calibration process. The coefficients for NDF, ADF, and WSC models showed an
obvious positive contribution at the peak of 4,405 cm™ L, which indicated that the distinct
spectral region is possibly related to a C-H+O-H combination band attributed to cellulose
and sugar.

Based on the constructed optimal model for each trait, a comparison of four models
was conducted. The results showed that the best model with lowest RMSECV and the
highest R?cy values (RMSECV = 0.68, R?cy = 0.99) was the CP calibration model, while
the highest RMSECV and the lowest R?cy value was obtained from the WSC calibration
model, indicating that the NIRS model for predicting CP content was well suitable in
Italian ryegrass (Table 3). Correspondingly, the PRLc (RMSECV/SEL() ratio scales the
adjusted prediction error (RMSECV) relative to the precision of the standard wet chemistry
method (SELc). For calibrations approaching laboratory precision in this study, the value
of PRL¢ ranged from 0.43 (in CP model) to 1.88 (in WSC model), which the prediction
errors all located whin 2 times of the standard wet chemistry precision, indicating that four
models were sufficient for application. The RPD¢ (SD/RMSECV) ratios ranged from 3.10
for WSC to 8.58 for CP, which represented the relationship between the natural variation
of the calibration population and the prediction errors of the calibration model (Table 3).
Furthermore, the value of RER were calculated in the calibration models and all the values
were higher than the recommended (RER > 10) for screening purposes.

External validation of NIRS calibrations models

External validation of the NIRS calibrations models was carried out using the validation data
subset (including 30 samples), which had similarly broad distribution of CP, NDF, ADF and
WSC content with the calibration data set (Table 4 and Fig. 4). For all individual parameters,

Yang et al. (2017), PeerJ, DOI 10.7717/peerj.3867 9/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.3867

Peer

4000
L

3000

1000 2000
B
=

o \ A / Mol £ L
::) : | | | ' é \ \ ’/ |
% f - W’f \A\ n.ﬂm l[\\ AW !/ N\ \l nM g - UAVM \ I M \‘ fm\ JN\ \ /v ~L/
W \ YR \L‘ il VAR
WY,

| : }

- ssgsvavenumber (cm’];&w - T - = V\;;L\?enumber (ﬁﬁr') a0 w00
g1 € 5

10

-3000  -2000 -
I

-4000
I

Regression coefficients
1000 0
-
—
,’/
\
=3

Regression coefficients
2 1
1

T
6000

T
5500

Wavenumber (cm

T T T T T
5000 4500 6000 5500 5000
) Wavenumber (cm™)

Figure 3 Regression coefficients of the PLS models. Regression coefficients of the PLS models for CP (A), NDF (B), ADF (C), and WSC (D).

robust and parsimonious calibration models were identified and their predictive ability in
the external validation was retained. Corresponding to the results of calibration model,
the value of the determination coefficient for CP content in external validation model
still kept the highest (R?*y = 0.99) compared to other parameters, which revealed the
powerful prediction ability of the NIRS model for CP content in Italian ryegrass. All R*y
values of ADF, NDF and WSC model reached the acceptable thresholds of 0.90, which
efficiently validated the reliability of the models for these parameters. On the other hand,
the calculated RPDp values ranged from 9.37 for CP to 3.39 for WSC, and the value of
PRL ranged from 1.56 for WSC to 0.41 for CP, which could well reflect the accuracy of
the models. Additionally, all the RER values (ranged from 12.03 to 35.72) in this study
exceeded the recommended threshold values for screening purposes. In total, all results
characterized before in external validation proved that the NIRS models constructed had
an excellent quantitative ability and a powerful prediction for further Italian ryegrass forage
quality evaluation in the field, especially for the CP content.
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Figure 4 Relationship between values

measured with the standard reference methods and values predicted by NIRS. Relationship between val-

ues measured with the standard wet chemistry methods (x axis) and values predicted by NIRS (y axis) in the calibration and external validation sets
for CP (A, E), NDF (B, F), ADF (C, G) and WSC (D, H) in Italian ryegrass. The solid line is the relationship between measured and predicted values

in the calibration and validation sets for

quality parameters.

Table 4 External validation statistics obtained from regression equations of laboratory values of CP,
NDF, ADF and WSC contents (% DM) in Italian ryegrass and NIRS predicted values for the validation
set.

Parameter R%y RMSEP RPDp SELy PRL, RERp

CP 0.99 0.57 9.37 1.41 0.41 35.72

NDEF 0.91 2.60 3.44 1.77 1.47 12.03

ADF 0.95 1.32 4.40 1.29 1.02 15.64

WSC 0.91 2.56 3.39 1.64 1.56 13.50
Notes.

R2y, coefficient of determination of prediction models; RMSEP, root mean square error of prediction; RPDp, ratio of predic-
tion to deviation for the prediction models (SD/RMSEP); SELy, standard error of laboratory in validation; PRLp, prediction
error relative to laboratory of prediction models; RERp, range error ratio for the prediction models (max-min)/RMSEP.

DISCUSSION

For reliable selection of a large number of accessions with improved traits, an analytical
method with good precision and a high-throughput is required for forage quality evaluation.
Owing that the NIRS technique effectively combines laboratory value and the spectral
information, it has been regarded as a new fast and reliable method compared to traditional
analytical methods. Recently, it had been reported that the NIRS technique could be
successfully applied for the screening of forage quality parameters in Leymus chinensis (Chen
et al., 2015), Elymus glabriflorus (Rushing et al., 2016), Glycine max (Asekova, 2016), Oryza
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sativa (Kong et al., 2005), Brassica napus (Wittkop, Snowdon & Friedt, 2012), and Sorghum
bicolor (Fox et al., 2012). In this study, the most critical quality parameters comprising CP,
NDF, ADF and WSC contents were detected in 34 Italian ryegrass accessions at different
development stage and the results showed that the range of most parameters was broader
than the range in previous studies (Asekova, 2016; Fox et al., 2012; Williams ¢ Norris,
1987a), which represented a wider application of our NIRS model constructed based on
these data.

The reflectance spectrum is the result of the absorption features of a sample for each
chemical composition. Different chemical bonds absorb at different wavelengths, the
interactions among chemical components, and the differences in particle size, shape and
orientation produced the multiple absorption bands in the raw spectral data (Williams ¢
Norris, 1987a). Hence, the raw spectral data contain a large amount of information. Wu
et al. (2015) obtained the key wavelengths of 1,180-2,492, 408-2,492, and 1,180-2,492 nm
from optimal models of cellulose, hemicelluloses, and lignin in sweet sorghum, respectively.
Shi & Yu (2017) suggested that the key wavelengths of CP content in wheat was 1,800—
2,300 nm. The critical wavelengths identified in this study were located in 4,247-6,102
and 4,247-5,450 cm~! for CP and NDF content, and both wavelengths 5,446—-6102 and
4,247-4,602 cm~! could for ADF and WSC.

Calculating the spectral frequencies constituted by optimal wavelengths corresponds to
identifying the key molecular bond regions located in the spectrum, contributing to the
well relations between spectrum data and the contents of chemical composition (Curran,
1989). The model constructed within these regions will produce the minimum errors
when conduct the quantitative determinations and qualitative analysis (Workman Jr ¢
Weyer, 2012; Xiaobo et al., 2010). Overtones vibrations and combinations vibrations of
the functional groups like C-H, O—H and N-H always produce overlapping absorptions
(Chung & Potma, 2013; Siesler et al., 2008). The optimal wavelengths identified in this study
were mainly correlated to the stretching and bending of the chemical bonds between C-H,
O-H, N-H, and C-0O, which indicated that the organic chemical compounds absorbed
in these wavenumbers are mainly cellulose, sugar and starch, and lignin (Curran, 1989;
Decruyenaere et al., 2012; Workman Jr & Weyer, 2012).

In general, the calibrations obtained based on standard wet chemistry values and the
spectral data for the chemical compositions had good prediction ability and reproducibility
(Williams, 2001; Williams, 2007). CP content may be the most commonly measured variable
in forage and feedstuffs. Previous studies have reported that CP concentrations could be
well quantified by NIRS in forage (Andueza et al., 2011; Chen et al., 2015; Jafari et al.,
2003; Rushing et al., 2016). Consistently, the coefficient of determination and RPD values
associated with the CP model obtained in this study were quite satisfactory (with R?y value
of 0.99 and RPD value of 9.37), according to a guideline scale suggested by Malley, Martin
¢ Ben-Dor (2004) that a NIRS equations model was considered excellent for screening if
the R%y > 0.95 and RPD > 4, successful if Ry = 0.9 —0.95 and RPD = 3—4, and the model
inadequate if R?y < 0.7 and RPD < 1.75. The values which were higher than in the other
forages included Leymus chinensis (R*>y = 0.91, RPD = 3.20) (Chen et al., 2015), Elymus
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glabriflorus (R* = 0.97, RPD = 5.37) (Rushing et al., 2016), and Glycine max (R*y =0.91,
RPD = 3.25) (Asekova, 2016).

In order to further evaluate the accuracy of the models, the further statistics (PRL
ratio and RER value) need to be considered. The PRL (RMSECV or RMSEP/SEL) ratio
scales the prediction error relative to the precision of the standard wet chemistry methods.
Some reports suggested that the RMSEP should range within two times of the SEL which
indicates the adequate of the developed NIRS calibrations model (Kong et al., 2005; Velasco
e Mollers, 1998; ZumFelde et al., 2007). The ratios of the model for CP content observed
in this study was 0.41, which falls within the recommended range, indicating that the
developed calibration in this study has a good precision and is suitable for accurate routine
use (Windham, Mertens ¢ Barton, 1989). The RER value obtained in the CP model was
35.72, which was far greater than the recommended threshold value of RER > 20 (Windham,
Mertens ¢» Barton, 1989). However, Williams ¢ Norris (1987a) suggested that RER > 10
could indicate high utility of the model while limited practical utility when 3 < RER <
10. In conclusion, the CP model has a stable performance and a better predictive power
compared to others, and can be widely used to evaluate the forage quality of Ttalian ryegrass
and applied in rumination feed in future.

NDF and ADF contents always effected the digestion of forage for the livestock, which
were considered as two important limited factors for the estimation of the nutritive
qualities of feed and forage (Wolfrum ¢ Lorenz, 2009). A large number of studies showed
that NDF and ADF concentrations could be well predicted by NIRS in forage (Kong
et al., 2005; Stubbs, Kennedy & Fortuna, 2010; Wittkop, Snowdon & Friedt, 2012; Chen et
al., 2015; Rushing et al., 2016). In Leymus chinensis, Chen et al. (2015) constructed NIRS
models by using partial least squares regression, multiple-linear regression and principal
component regression, which successfully predicted the contents of NDF and ADF, but
the NIRS model for NDF are less accurate than those for ADF. The similarity results
were found in Oryza sativa (Kong et al., 2005) and Brassica napus (Wittkop, Snowdon &
Friedt, 2012). In this study, the performance of the models for NDF (R%*y = 0.91, RPD
= 3.44) and ADF (R*y =0.95, RPD = 4.40) were successful and the precision of the
models were consistent with previous studies. Although the precision of the NDF model
was also lower compared to the ADF, it was still sufficient to differentiate between high
(60.47 %DM) and low (21.29 %DM) NDF content in Italian ryegrass. Interestingly, the
coefficient of determination in the calibration process (R?cy = 0.94) was higher than the
validation (R*cy = 0.91), which could be contributed to the fact that the whole set of
samples employed are not evenly distributed in terms of composition (Keim, Charles ¢
Alomar, 2015). Murray (1988) suggested that a suitable set of samples for NIRS analysis
should be wide and evenly distributed in terms of their composition, and the extreme
values will be less represented when separating the sample set to calibration and validation
subset. Besides, the NIRS model of WSC content also had a good performance (R*y =0.91
and RPD = 3.39) for estimation in application, which is consistent with previous studies
that estimated carbohydrate content in foliar tissues using NIRS (Chen et al., 2014; Quentin
et al., 2017; Ramirez et al., 2015).
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Overall, NIRS offered enormous flexibility for analyzing multiple constituents of plant
tissues (Marten et al., 1984). Moreover, the success of the NIRS method also results from the
time saving and costs associated with the analysis. Indeed, we saved about 80% of normal
laboratory costs by using the NIRS method than the standard wet chemistry. Finally,
NIRS analysis produced no chemical wastes, which should be an important incentive for
environmental friendliness and for reducing the cost of the reagents and waste disposal.

CONCLUSIONS

The prediction of forage quality parameters by the NIRS model is a relatively inexpensive,
rapid, reliable and eco-friendly method compared to the standard wet chemistry methods,
requiring a relatively small quantity of samples and predicts several concentrations of
components simultaneously. In this study, we developed four optimal NIRS models to
predict the CP, NDF, ADF, and WSC contents in Italian ryegrass samples. A broader
range of CP, NDF, ADF and WSC contents (%DM) was detected (4.45-30.60, 21.29—
60.47, 11.66—36.17 and 3.95-51.52, respectively) by standard wet chemistry methods for
developing NIRS models. The optimal models were developed based on the laboratory
data and the spectral information by partial least squares regression in the key wavelengths
(4,247-6,102 and 4,247-5,450 cm™! for CP and NDF, both wavelengths 5,446—6,102 and
4,247-4,602 cm™~! for ADF and WSC). The models were validated using a completely
independent set of samples and have relatively high coefficients of determination (R, CP
=0.99, NDF = 0.91, ADF = 0.95, WSC = 0.91) and ratio of prediction to deviation (RPD,
CP =9.37, NDF = 3.44, ADF = 4.40, WSC = 3.39). In conclusion, the result suggested that
routine screening for forage quality parameters with large numbers of samples is available
with the NIRS model in Italian ryegrass breeding programs, as well as facilitating graziers to
monitor nutritional dynamic in the forage development stage and to identify the optimal
utilization period of forage grasses.
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