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The work of deWardener and colleagues stimulated longstanding interest in natriuretic
hormones (NHs). In addition to the atrial peptides (APs), the circulation contains uniden-
tified physiologically relevant NHs. One NH is controlled by the central nervous system
(CNS) and likely secreted by the pituitary. Its circulating activity is modulated by salt intake
and the prevailing sodium concentration of the blood and intracerebroventricular fluid, and
contributes to postprandial and dehydration natriuresis. The other NH, mobilized by atrial
stretch, promotes natriuresis by increasing the production of intrarenal dopamine and/or
nitric oxide (NO). Both NHs have short (<35 min) circulating half lives, depress renotubu-
lar sodium transport, and neither requires the renal nerves. The search for NHs led to
endogenous cardiotonic steroids (CTS) including ouabain-, digoxin-, and bufadienolide-like
materials. These CTS, given acutely in high nanomole to micromole amounts into the gen-
eral or renal circulations, inhibit sodium pumps and are natriuretic. Among these CTS,
only bufalin is cleared sufficiently rapidly to qualify for an NH-like role. Ouabain-like CTS
are cleared slowly, and when given chronically in low daily nanomole amounts, promote
sodium retention, augment arterial myogenic tone, reduce renal blood flow and glomerular
filtration, suppress NO in the renal vasa recta, and increase sympathetic nerve activity
and blood pressure. Moreover, lowering total body sodium raises circulating endogenous
ouabain. Thus, ouabain-like CTS have physiological actions that, like aldosterone, sup-
port renal sodium retention and blood pressure. In conclusion, the mammalian circulation
contains two non-AP NHs. Identification of the CNS NH should be a priority.
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INTRODUCTION
Natriuretic hormones (NHs) can be defined as substances whose
circulating levels and effects fluctuate in a parallel manner with
dietary sodium intake (1). NHs have long been implicated in
sodium balance and are likely to be of the most significance in
western acculturated societies where sodium intake typically is
>100 meq/day (2). Indeed, ingestion of high salt meals raises the
osmolarity of the circulation, stimulates secretion of antidiuretic
hormone (ADH), and raises the natriuretic activity of the blood.
In principle, the mode of action of NHs includes suppression of
primary active sodium transport in the kidney and/or damping of
secondary active transport systems involving sodium (1) or even
potassium (3), effects on renal vascular tone and glomerular fil-
tration rate (GFR), and activation of intrarenal natriuretic factors,
such as prostaglandins, nitric oxide (NO), or dopamine. This arti-
cle presents a personal and condensed overview of known and
unknown non-atrial NHs and addresses the role of endogenous
sodium pump inhibitors as NHs.

SEARCHING FOR NATRIURETIC HORMONES
It is well accepted that sodium balance is not fully explained
by the up and downregulation of glomerular filtration and
mineralocorticoid-stimulated reabsorption (4, 5). The first
clear evidence for a “third factor” arose from the pioneering

experiments of deWardener in which dogs that received excess
mineralocorticoid and vasopressin increased their urinary sodium
excretion in response to blood volume expansion with saline at a
time when glomerular filtration was being lowered experimen-
tally (6). Thus, the increase in sodium excretion was mediated
by diminished tubular reabsorption of sodium and water. Cross-
circulation studies, as well as work using isolated kidney studies in
dogs and rats (6–10) excluded significant alterations in the compo-
sition of the blood, changes in renal nerve activity, glomerular fil-
tration, renal blood flow, or renal perfusion pressure as mediators.
A humoral “NH” was required.

The discovery of the atrial peptides (APs) and their natriuretic
activity initially promised to explain some of the outstanding func-
tions of an NH (11–13). APs augment sodium excretion (14–16)
and saline infusions raise plasma AP (17, 18). However, in dogs, the
effects of physiological changes in plasma APs and low dose infu-
sions on sodium excretion were less obvious and, under certain
experimental conditions, circulating APs and sodium excretion
changed diametrically or, were temporally unconnected (19–21).
Thus, some other NH was required.

The search for humoral agents that trigger salt excretion has
relied on a variety of assays that range from isolated enzymes
all the way to whole kidneys and animals (22). Table 1 lists
some tissues and fluids from which a variety of natriuretic factors
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Table 1 | An overview of sources and characteristics of natriuretic

factors.

Source for

isolation

Characteristics References

Adrenal No short acting factors described (8, 28, 29)

Ouabain,a proscillaridin A-like compoundb (30)

Blood Rapid onset, chymotrypsin-sensitive (31–34)

Rapid sustained natriuresis,

MW < 500–700

(35)

Trpysin sensitive, slow onset (36)

Precursor? slow onset (37)

Leucine aminopeptidase-sensitive,

chymotrypsin-resistant

(38–41)

Ouabaina (42)

Hypothalamus/

pituitary

ADH, Oxytocin, MSH See text

Ouabaina (43)

Intestine Guanylin (small heat stable peptide) (26, 44)

Kidney High MW, release PGE2 dependent (45–48)

Urodilatinc (ANP 95–126) Small peptide (24, 49, 50)

Liver Long acting, high MW (bound?), hepatic

blood > portal blood

(51–59)

Urine Low MW, Chymotrypsin-sensitive peptide (33)

Low MW, non-peptidic, acidic, Sephadex

post salt fraction

(60–62)

LLU-αd (3)

High MW, slow onset (36, 46,

63–65)

Marinobufagenine (66)

Prolidase-sensitive peptide (61)

Urodilatinc (small peptide) See kidney

Uroguanylin (small heat stable peptide) (27, 44)

Xanthurenic acid β-glucoside and

xanthurenic acid sulfate

(25, 67)

MW, molecular weight.

All materials listed with high MW are likely proteins.
aNatriuretic at supraphysiological and pharmacological doses.
bExpected to have similar natriuretic activity as the bufadienolides (68, 69).
cNot likely to circulate in significant amounts.
dLLU-alpha; 2,7,8-trimethyl-2-(pcarboxyethyl)-6-hydroxychroman.
eImmunoreactivity present in the circulation (70) but not isolated from blood.The

natriuretic effect of MBG per se has not been reported but is inferred from studies

with bufalin and closely related steroids (68).

were obtained. It is a significant accomplishment that numerous
factors with natriuretic activity including guanylin, uroguanylin,
urodilatin, LLu-α, xanthurenic acid, and a number of steroidal
sodium pump inhibitors have been isolated and identified (14,
22–27). These materials likely account for some of the bioactivity
in some, but not all, studies where natriuretic activity has been
demonstrated. It is less clear that any of these materials fits the
physiological profile expected for a NH as will be apparent from
the discussion that follows.

NATRIURETIC HORMONES: HOW MANY?
Other than the APs, there are numerous hormones and endoge-
nous materials that are known natriuretic agents. These include
melanocyte stimulating hormone, dopamine, certain phospho-
lipids, prostaglandins, kinins, and parathyroid hormone (71).
These are not discussed here.

Evidence based upon pharmacological interventions, as well
as an analysis of the kinetics of salt excretion mentioned below,
suggests there are at least two major NH mechanisms unrelated
to the APs. One mechanism is activated by the central nervous
system (CNS) and the other involves maneuvers that increase
atrial stretch. Pharmacological inhibition of renal NO blunts the
magnitude of saline natriuresis (72) and both specific and non-
selective dopamine antagonists attenuate volume expansion and
water immersion (i.e., atrial stretch mediated) natriuresis but not
that activated by CNS sodium (73–77). Yet another key factor that
distinguishes these two NH systems is their kinetics; the rates of
the decline in sodium excretion when the natriuretic stimuli are
abruptly removed differ markedly for CNS- and atrial distention
natriuresis. The kinetic features are potentially diagnostic; they
can be used to evaluate candidate NHs.

The atrial distention arising from balloon inflation requires
intact cardiac but not renal nerves, the stretch can be reversed in
seconds, and the evoked natriuresis declines rapidly (21). Criti-
cally, the kinetics of the decline in natriuresis are uncontaminated
by residual volume that typically would remain following a saline
load (78). The second experimental paradigm is the natriuresis
evoked by infusion of hypertonic saline into the brain. As the flow
rates in the cerebral ventricles are much higher than the rates at
which hypertonic stimuli are typically infused, simply stopping
the infusion exposes the kinetics of the decline in salt excretion.
Accordingly, Figure 1 compares the decline in renal sodium excre-
tion evoked by either atrial distension or CNS sodium. Three
points are apparent: (1) the decay kinetics in both instances are
first order; for CNS natriuresis, they remain linear for well over
1 h. The kinetics demonstrate that a single reaction likely is the
dominant rate limiting step for the natriuresis evoked by each
stimulus. (2) The CNS natriuresis, when activated by hypertonic
saline (79–83), dehydration (84), or norepinephrine (85), pro-
duces similar rate constants with no major species differences.
(3) The rate constants for the decline in CNS natriuresis are ~2–
3-fold less (slower) than that evoked by atrial distension. Thus,
the combined evidence derived from the sensitivity to pharma-
cological agents and the kinetic observations indicate that CNS-
and atrial distension natriuresis must be mediated by different
mechanisms.

Compensatory mechanisms might conceivably alter the kinet-
ics in Figure 1, especially if significant salt and water loss were
to occur along with declining blood pressures. During the 40 min
atrial distention in Figure 1, blood pressure increased modestly.
Plasma renin was suppressed in one set of experiments but not
another. Following the distension, in one set of experiments, blood
pressure remained elevated even though the natriuresis declined
rapidly and aldosterone was unchanged or increased. Neverthe-
less, changes in aldosterone would have been too slow to have
had impact. Under the conditions used, and among the mea-
sured hormonal and hemodynamic variables, the only changes
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FIGURE 1 | Kinetics of the decline in natriuresis following abrupt
removal of the natriuretic stimulus. Reproduced from Ref. (71) with
permission. Data are adapted from Ref. (21) in conscious dogs and Ref. (86)
in conscious goats. Reported values for the t 1/2 of the decline in CNS
natriuresis range from 24 to 32 min in the goat, 32 min in the sheep, and
15 min in the rat (71). These half times are likely to represent the clearance
of their respective humoral mediators from the circulation.

convincingly associated with the decline in natriuresis following
atrial distension were the return of left, right, and pulmonary pres-
sures (i.e., cardiac nerve activity) to normal. With regard to CNS
natriuresis, the decline in natriuresis is an extended first-order
process; the absence of curvature over the time course implies no
major influence by a compensatory process.

Among the candidate NHs in Table 1, there is, unfortunately,
no readily interpretable information regarding the halftimes for
the decline in their natriuretic effects. Most of the unidentified
materials were impure, with variable onset times, and, reminis-
cent of urodilatin (49), some produced a natriuresis that lasted
many hours following infusion. The absence of kinetic informa-
tion is understandable; the primary experimental emphasis was
the demonstration of natriuresis per se. And for decay kinetics
to be informative, a near steady-state natriuresis would ideally be
desirable prior to stimulus removal. This is not always an easy
condition to meet. Regarding the recently identified materials in
Table 1, no kinetic information is available. However, among all
the materials, urodilatin shows a most interesting physiological
correlate; in human beings, urinary urodilatin excretion closely
paralleled the circadian rhythm for sodium excretion over many
days (49). As urodilatin itself is not found in the circulation, it is
not, by definition, an NH; although the unknown substance (?)
that presumably links sodium intake with urinary urodilatin and
sodium excretion could be. Thus, for all listed materials in Table 1,
there is currently no compelling evidence that their behaviors

fit the definition of a physiologically relevant NH given in the
introduction.

Hereafter, I focus primarily on CNS natriuresis and consider
the potential role of sodium pump inhibitors as NHs.

CNS NATRIURESIS
The brain, via an unknown humoral NH, mediates the natriure-
sis evoked by increased plasma sodium concentration, intracere-
broventricular (icv) sodium, and dehydration (79, 81, 87). The
natriuresis may be damped but is not eliminated by renal den-
ervation (88), is activated by small increases of plasma sodium
(1–2 mM). The CNS NH may have a dominant influence in post-
prandial natriuresis (89) and is a blood-bourne factor distinct
from APs (90, 91), ADH (92), or dopamine (74).

Central nervous system natriuresis can be activated by the ele-
vation of either blood-bourne or cerebrospinal fluid sodium; both
dehydration and postprandial natriuresis are blocked or reversed
by hyponatremic CSF (93–95) or rehydration (96). Push–pull per-
fusion techniques suggest a discrete area of the third ventricle
is near the sodium sensing apparatus (97). Further, the ablation
of central structures, including the anteroventral and posterior
hypothalamus in a variety of species, or decapitation, profoundly
influence the ability to regulate osmotic balance, tolerate hyper-
osmotic challenge, and excrete sodium (80, 83, 98–106). The
lesioned areas have included the median eminence, medial preop-
tic nucleus, organum vasculosum of the lamina terminalis, and the
periventricular preoptic area. The consequences of these lesions
are impaired thirst and ADH secretion, reduced renal natriuretic
response, and hypernatremia. In contrast, this same system, when
overactivated, can lead to profound hyponatremia. This phenom-
enon, sometimes termed “cerebral salt wasting,” and resembling
some of the features of the syndrome of inappropriate ADH
secretion, has been noted in some CNS disorders (107–111).

The observation that dehydration results in hypernatremia
and provokes a compensatory natriuresis in the face of reduced
extracellular fluid volumes, and that the natriuresis subsides with
rehydration, suggests that the tendency to hypernatremia during
dehydration and following a high salt meal is actively opposed by
an unknown osmotically sensitive mechanism [see in Ref. (84)]. In
each instance, the natriuretic response to these stimuli is present
in animals with denervated kidneys but absent in animals with
hypothalamic lesions (84, 112). Further, CNS natriuresis is not
explained by blood pressure changes and persists when renal artery
pressures are servo controlled (92, 113).

In each of the aforementioned situations, changes in circulat-
ing ADH have been implicated as the efferent mediator of CNS
natriuresis (114, 115). Indeed, CNS natriuresis is either absent or
slowed in rats congenitally deficient in AVP (116, 117), is absent
in hypophysectomized rats but reappears in rats pretreated with
large amounts of ADH and in rats given a dD-AVP analog (88).
ADH certainly contributes to the control of sodium excretion in
rats, dogs, and man (84, 89, 118–123). ADH infusions are natri-
uretic, and specifically implicated in CNS (114, 115) but not saline
natriuresis. However, ADH is not sufficient to account for CNS
natriuresis (92, 117), although it may be permissive (124, 125). For
example, AV3V-lesioned sheep and dehydrated normal sheep both
lost similar amounts of body water, although the hypernatremia

www.frontiersin.org December 2014 | Volume 5 | Article 199 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hamlyn Natriuretic hormones

was much worse in the lesioned animals (112). Thus, something
other than ADH was lacking in the lesioned animals to explain the
greater hypernatremia with the same overall water loss.

Little is known about the chemical nature of the CNS NH other
than it appears to be heat stable (126). Its actions have an inter-
esting temporal association with ADH and/or oxytocin (92, 127).
For example, plasma ADH rises during the prehypertensive period
associated with mineralocorticoid escape; a period when increased
CNS NH would be expected (128). Consistent with the latter
supposition, urinary sodium excretion in sheep given 3–4 day
infusions of aldosterone was almost entirely blocked by the acute
CNS administration of a low sodium cerebrospinal fluid during
mineralocorticoid escape (129). Further, mineralocorticoids also
augment the osmotic sensitivity of ADH secretion (130).

Oxytocin also has a role in renal sodium excretion (131–134)
and restores the ability of hypophysectomized dogs and rats to
excrete sodium at a brisk rate during saline expansion (20, 135).
Yet other humoral factors implicated during CNS and ADH natri-
uresis include an inhibitor of prostacyclin synthesis (136) and a
humoral substance that inhibits active sodium transport in toad
bladder (137). Hemorrhage, paradoxically, also evokes a natriure-
sis that depends on the CNS (118). The natriuresis is blocked
when intrarenal prostaglandin synthesis is inhibited (119). The
simplest interpretation is that activation of intrarenal V1 recep-
tors stimulates prostaglandin synthesis and the resultant products
influence sodium reabsorption at distal tubular sites (138). Over-
all, the phenomenon ascribed to CNS natriuresis has complex
interdependencies and is associated with the diminution of renal
tubular sodium transport.

Of significant relevance, CNS-mediated natriuresis depends
upon the prevailing level of dietary sodium intake. In sodium
depleted dogs, infusion of hypertonic saline into the carotid artery
is not natriuretic (139). Moreover, the phenomenon of postpran-
dial natriuresis in the sheep is activated only when dietary sodium
intakes reach a threshold of 50–75 mmol of sodium/24 h (140),
i.e., when plasma renin and aldosterone are largely suppressed.
Thus, the CNS NH system is likely of great physiological rele-
vance; it is appropriately integrated with other key factors that
govern long-term sodium balance.

The CNS also has a permissive role in the response to saline
expansion of blood volume (79, 102, 103). Hypophysectomy
reduces saline natriuresis; the deficit is reversed partially by admin-
istration of oxytocin and ADH (141). Furthermore, the application
of a constricting vice to the neck of anesthetized dogs so as
to exclude the brain and pituitary factors from the circulation
impairs saline natriuresis (102). In view of the abovementioned
role of the CNS, it is surprising that remarkably little attention has
been focused on the natriuretic activity associated with extracts
from brain and pituitary (Table 1). The little that is known is
that the bioactivity of natriuretic extracts from hypothalamus per-
sists following treatment with thioglycollate (to exclude oxytocin
or ADH), and that an unidentified tridecapeptide was found in
bioactive fractions from the posterior pituitary (142, 143).

ARE SODIUM PUMP INHIBITORS NATRIURETIC HORMONES?
There is much evidence linking sodium pump inhibitors with
salt balance and cardiovascular and renal disease (144, 145). The

Na,K-ATPase inhibitory activity of plasma from normal individu-
als on a high sodium diet was 25 times greater than that when the
individuals were on a low sodium intake (146). Further, the plasma
from individuals on high sodium diets, purified natriuretic mate-
rial from urine, and ouabain, all stimulated glucose-6-phosphate
dehydrogenase (G6PD) activity. G6PD activity is claimed to be
inversely related to Na,K-ATPase activity (147) and related to inhi-
bition of proximal tubular Na,K-ATPase (148), although the G6PD
assay is not considered a surrogate method for the Na,K-ATPase.

Nevertheless, increased blood levels of sodium pump
inhibitors, as measured by traditional well-accepted means, have
been repeatedly associated with acute volume expansion, high
dietary salt, mineralocorticoid excess, chronic renal failure, and
CNS natriuresis (31, 32, 35, 38, 149–155). Haddy and cowork-
ers using animal models of low renin hypertension observed that
sodium pump inhibition could be reproduced in normal ani-
mals given a rapid volume expansion and that this effect could
be transferred to the arteries of another animal via the plasma
(156). Further, in acutely saline-expanded dogs, the plasma levels
of a polar Na,K-ATPase inhibitor and a digoxin immunoreactive
material were elevated at a time when endogenous ouabain (EO)
was unchanged (37, 157). Moreover, the plasma of dogs undergo-
ing atrial distension strongly inhibited the ouabain-sensitive 86Rb
uptake into human red cells. Notably, the bioactivity of the plasma
declined substantially when retested a few days later, and was
undetectable after 10 days (Hamlyn and Goetz,unpublished obser-
vations). This indicates that the inhibitor is unstable in plasma
and is reminiscent of the labile digoxin-like material described by
Graves et al. (158). Other work implicated the CNS in the con-
trol of humoral sodium pump inhibitors; Buckalew et al. (159)
found that the jugular effluent inhibited active sodium transport
to a greater extent than the blood from the femoral vein. Further,
increased levels of circulating sodium pump inhibitors depend
upon the integrity of hypothalamic structures within the AV3V
area (103, 160). Moreover, the lesion sites overlap those whose
integrity is required for CNS natriuresis. Thus, the interrelation-
ship between increased circulating sodium pump inhibitors and
natriuresis continues to be of interest. When taken together, there
is no doubt that the circulation contains inhibitors of sodium
transport, but what are these materials, do their levels change
appropriately with salt, and are they natriuretic? Below we focus
on sodium pump inhibitors that have been isolated and that have
been previously linked with the aforementioned criteria.

IDENTIFICATION OF SODIUM PUMP INHIBITORS
Starting from either human plasma or urine (brain, adrenal, and
the eye are not discussed here), four groups isolated sodium pump
inhibitors and identified them as ouabain- (42, 161, 162), digoxin-
(163), marinobufagenin- [MBG, (66)], and telocinobufagin-like
steroids (162, 164), respectively. There are altered levels of these
materials in numerous experimental and clinical studies (70, 164–
169). All these steroids inhibit the sodium pump and, when
bound, at least one evokes biased signaling in a manner strikingly
reminiscent of the β-adrenergic receptor (168, 170–172). These
cardiotonic steroids (CTS) typically are natriuretic and variably
kaliuretic when infused acutely at pharmacological (micromolar)
doses into anesthetized animals or the renal artery and, in the
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case of ouabain, selectively inhibit sodium transport in the dis-
tal tubules (68, 69, 173, 174). The natriuretic response is linearly
related to the inhibition of Na pumps in the dog (175). But are
they physiologically relevant NHs?

WHAT DO THE KINETICS OF THE DECLINE IN NATRIURESIS
TELL US ABOUT THE ROLE OF KNOWN SODIUM PUMP
INHIBITORS?
By comparing the circulating half lives of any putative NH with
the half times in Figure 1, it is possible to determine whether it
is a plausible mediator of natriuresis. Here, I examine the cir-
culatory half lives of a number of well-known sodium pump
inhibitors and compare them with the information in Figure 1.
For example, in the dog, the plasma half lives for intravenous
ouabain, digoxin, resibufagenin, and bufalin were ~18 h, ~30 h,
21 min, and 25 min, respectively [Ref. (176–178)]. In the rat, the
circulating half lives for intravenous cinobufagin, resibufagenin,
and bufalin were 44, 42, and 25 min, respectively (179). Therefore,
it is apparent that, among these known steroidal sodium pump
inhibitors all, with the exception of bufalin, are simply cleared
too slowly from the circulation to be kinetically plausible humoral
mediators of CNS natriuresis. In the case of atrial distention natri-
uresis, the kinetic analysis reveals that none of the abovementioned
sodium pump inhibitors are likely primary humoral mediators.
With regard to CNS natriuresis, only the clearance of bufalin is
sufficiently fast in both dogs and rats to warrant further investi-
gation. The kinetic analysis does not prove bufalin as the humoral
mediator in CNS natriuresis, but simply suggests that this steroid
(or those that are closely related but for which no clearance data
are available, e.g., MBG) cannot, as yet, be excluded. A lingering
concern with bufalin, or any CTS sodium pump inhibitor, as a
NH is the potentially serious conceptual problem that their acute
vasoconstrictive action within the renal vasculature will oppose
their tubular effects (180).

RENAL SODIUM PUMP ISOFORMS: IS THEIR OUABAIN
SENSITIVITY IMPORTANT?
Nearly all mammalian tissues express the α-1 catalytic subunit
of the sodium pump; muscle and muscle and nerve also express
sodium pump isoforms with α-2 and α-3 subunits (181). In the
rat kidney, sodium pumps with the α-1 catalytic subunit are
insensitive to micromolar ouabain but are somewhat sensitive
to bufalin and marinobufagenin; the acute natriuretic effect of
bufalin is greater than that of ouabain (69). For many years, it
was believed that the kidney expressed only the α1 isoform even
though the ouabain sensitivity of the renal Na pump increases pro-
gressively along the nephron (182); the distal tubules are believed
to be ~50–100-fold more sensitive than their proximal tubule
counterparts. More recently, small numbers of highly ouabain-
sensitive α-2 sodium pumps have been detected in rat kidney
and they are functionally significant. For example, in response
to acute low doses of ouabain, the α2 sodium pumps trigger
enhanced Ca2+ signaling and NO generation in the descend-
ing vasa recta (183). It is not known if these signaling effects
extend to the renal epithelia, but if they do then the acute natri-
uretic effects of ouabain could involve short-term NO-mediated
events. In contrast, the acute natriuretic effects of bufalin and

other bufadienolides are thought to be mediated by inhibition of
α1 sodium pumps (184).

In the kidney, the renal ouabain-insensitive α-1 sodium pumps
far outnumber their ouabain-sensitive α-2 cousins. Interestingly,
saline natriuresis was augmented when rodent α-1 sodium pumps
were made highly ouabain-sensitive (185). Further, the augmented
component of the natriuresis was blocked by digoxin antibody
fragments (Fab). However, the kinetic analysis in Figure 1 makes
it clear that neither ouabain nor digoxin are viable mediators
of atrial distention (saline) natriuresis; the digoxin Fab frag-
ments must, therefore, have interacted with an unknown material
that preferred ouabain-sensitive sodium pumps. Thus, occupa-
tion of the ouabain binding site by this material can contribute
to, but does not fully account for, the phenomenon of saline
natriuresis.

OUABAIN AS A SALT RETAINING STEROID
In contrast to the well-accepted acute natriuretic effects of high
doses of sodium pump inhibitors, the chronic effects of low con-
centrations can be diametrically opposite. In the case of ouabain,
the prolonged daily administration of low nanomole amounts
in the rat suppresses Ca2+ signaling and NO generation in the
endothelium of the descending vasa recta, reduces renal blood
flow and glomerular filtration, raises sympathetic nerve activity,
directly augments vascular myogenic tone and contractility, and
raises blood pressure (186–193). Further, chronically reduced total
body sodium in human beings is associated with elevated circulat-
ing levels of EO (194, 195), i.e., the chronic relationship between
plasma EO and salt intake is, like aldosterone and renin, roughly
“L”-shaped (196). In addition, and as might be anticipated from
the above noted chronic observations, clinical studies have shown
that among salt-loaded EH patients, renal tubular sodium reab-
sorption was highest in the group with elevated circulating EO
(197). Thus, the behavior of circulating EO under physiological
circumstances, as well as its long-term vascular and renal tubular
actions, all appear to favor sodium retention.

Dramatic increases in circulating EO have been reported dur-
ing exercise, a state associated with increased sympathetic activity
and a decline in renal blood flow (198). The circulating levels
of EO rise acutely in response to the stress of cardiac surgery
(199) and the preoperative plasma levels of EO enhance the iden-
tification of those patients who will develop acute kidney injury
postsurgery (200). Once again, the behavior and actions of EO in
these stressful situations is associated directly or indirectly with
salt and water retention, rather than salt excretion. When taken
together, the current evidence strongly favors the view that EO is
a physiologically relevant hormone with a variety of interesting
actions that augment vascular tone and promote renal sodium
retention.

In summary, the hunt for NHs has led recently to the complete
identification of numerous natriuretic materials. In spite of these
notable successes, none of the materials seems to fit the anticipated
physiological profile for a mammalian NH. Much evidence indi-
cates there are two major non-AP NHs that remain to be isolated
and identified. It may be argued that identification of the CNS
NH should be a priority in view of its broad physiological rele-
vance, relationship to dietary sodium intake, and the implication
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of a profound role in salt balance in a number of pathological
disorders.
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