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Conventional embeddings of the edge-graphs of Platonic polyhe-
dra, {f , z}, where f , z denote the number of edges in each face
and the edge-valence at each vertex, respectively, are untangled
in that they can be placed on a sphere (S2) such that distinct edges
do not intersect, analogous to unknotted loops, which allow
crossing-free drawings of S1 on the sphere. The most symmetric
(flag-transitive) realizations of those polyhedral graphs are those
of the classical Platonic polyhedra, whose symmetries are *2fz,
according to Conway’s two-dimensional (2D) orbifold notation
(equivalent to Schönflies symbols Ih, Oh, and Td). Tangled Platonic
{f , z} polyhedra—which cannot lie on the sphere without edge-
crossings—are constructed as windings of helices with three, five,
seven,… strands on multigenus surfaces formed by tubifying the
edges of conventional Platonic polyhedra, have (chiral) symme-
tries 2fz (I, O, and T), whose vertices, edges, and faces are symmet-
rically identical, realized with two flags. The analysis extends to
the “θz” polyhedra, {2, z}. The vertices of these symmetric tangled
polyhedra overlap with those of the Platonic polyhedra; however,
their helicity requires curvilinear (or kinked) edges in all but one
case. We show that these 2fz polyhedral tangles are maximally
symmetric; more symmetric embeddings are necessarily untan-
gled. On one hand, their topologies are very constrained: They
are either self-entangled graphs (analogous to knots) or mutually
catenated entangled compound polyhedra (analogous to links).
On the other hand, an endless variety of entanglements can be
realized for each topology. Simpler examples resemble patterns
observed in synthetic organometallic materials and clathrin coats
in vivo.

regular polyhedra | compound polyhedra | helicates | metal-organic
frameworks | clathrin

Two-dimensional topology, graph theory, and non-Euclidean
geometry offer a useful view of the rich universe of chemical

structures. In this paper, we combine Platonic geometry and two-
dimensional topology to derive theoretical families of “tangled”
or “catenated” polyhedra, whose faces are threaded by edges.
(We will clarify our nomenclature later on.) The resulting struc-
tures are worth knowing for their own sake, since they are the
most symmetric entanglements of the regular (Platonic) poly-
hedra in three-dimensional space, with symmetrically equivalent
faces, edges, and vertices. They are also promising candidates for
(supra)molecular assemblies. For example, tangled symmetric
structures are a feature of finite metal-organic molecules (1–5)
and infinite catenated inorganic compounds, coordination poly-
mers, covalent organic frameworks (COFs), and metal-organic
frameworks (MOFs) (6–12).

The phenomenon of entanglement is central to the mathe-
matical field of knot theory (13). Equivalent tangled nets are
“isotopic” and interchangeable by any distortion of the net edges
and vertices as long as edges don’t pass through each other.
Tangling is therefore a structural phenomenon that lies between
geometrically congruent structures, which allow rigid-body rota-
tions or translations only, and topologically equivalent (home-
omorphic) structures, which can be interchanged by arbitrary
distortions, including “phantom moves” of edges through each
other. In common with modern understanding of polyhedra as
combinatorial structures (14), we describe polyhedra via the net
of edges and vertices, allowing faces to self-intersect. However,

we do not insist that edges follow shortest paths between vertices,
allowing edges to tangle. For example, tangled cubes share the
topology of the conventional Platonic cube, but many different
“isotopes” are possible, whose rings of four edges—bounding
the cube “faces”—are threaded by edges in different ways (some
examples can be found in ref. 15). The occurrence of tangled
two- and three-periodic nets at the molecular scale in synthetic
chemical materials, particularly MOFs, has led to a number
of fundamental studies of tangles of infinite periodic nets (10,
16–19). In contrast, surprisingly little is known about allowed
symmetries of finite nets, with the exception of the “trivial” (un-
tangled) symmetric (e.g., Platonic and Archimedean) polyhedra
and studies of symmetric embeddings of knots and links (20–22).
Graph topologies of the five Platonic polyhedral nets are given
by their Schläfli symbols, {f , z}, where f describes the number of
edges per face and z the number of faces per vertex (z), including
{3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube), {3, 5}
(icosahedron), and {5, 3} (dodecahedron). We describe the fa-
miliar regular embeddings of these nets, with straight edges, as
(capitalized) “Platonic” embeddings and arbitrary embeddings
of {f , z} nets as “platonic”. The former are “flag-transitive”
embeddings of {f , z} nets with symmetrically identical faces,
edges, and vertices; their point-group symmetries are (for our
purposes) most simply denoted by Conway’s orbifold symbols
*2fz (23). The orbifolds refer to the symmetries of spherical
embeddings of the Platonic polyhedra, formed by blowing the
polyhedra into a ball, bounded by a sphere centered on the
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polyhedron. The radius of that sphere can be adjusted so that
all polyhedral vertices lie on its surface and edges form arcs of
great circles joining those vertices. Conway symbols *2fz describe
the asymmetric domain of those spherical Platonic polyhedra:
spherical triangles bounded by geodesic mirror arcs (on great
circles) subtending angles on the sphere of π

2
, π

f
, and π

z
. The

geodesic edges coincide with the intersections of mirror planes
of the Platonic polyhedron with the sphere, passing through face
centers, vertices, and midedges, giving Schönflies point-group
symbols, Td , Oh , and Ih (for {3, 3}, {4, 3} or {3, 4}, and {5, 3}
or {3, 5}, respectively) (24).

Graph topologies of the nets of platonic polyhedra are con-
strained by Euler’s formula for polyhedra, which can be ex-
pressed as 0≤ (f − 2)(z − 2)< 4, where f and z are positive
integers. That relation admits additional solutions, notably, the
{2, 3} “θ-polyhedron,” with a pair of three-valent vertices and
three lens-shaped faces. That net can be embedded in space with
symmetry *223, in which case its three edges describe curved
meridians from pole to pole. More generally, θz -polyhedra, with
vertices at both poles joined by z meridians, are admissible
solutions. For convenience, we include the θz -polyhedra among
platonic examples. All of these platonic {f , z} polyhedra can
be embedded as “regular” (Platonic) polyhedra, with reflection
symmetry *2fz.

The most symmetric “irregular” polyhedra are referred to
as “chiral polytopes” in ref. 25. So-called chiral polytopes are
almost, but not quite, regular: Like regular polyhedra, they have
edge-, vertex-, and face-transitive embeddings. However, in con-
trast to regular cases which have a single flag, chiral polytopes
have two distinct flags, each with separate orbits. Any flag of
one type is necessarily adjacent to a flag of the other, and their
union describes an asymmetric domain of the chiral embedding
(25). (Three-dimensional chiral polytopes differ from better-
known chiral polyhedra, such as the snub cube, although both
are geometrically chiral.) Chiral polytopes, with straight edges,
include either an infinite number of finite (skew) faces or a
finite number of infinite (helical) faces (25), Here, we show that
specific entanglements of {f , z} polyhedra, whose nets share the
topologies of Platonic polyhedra, can be realized with symmetries
2fz, which contain rotation axes only (Schönflies point-group
symbols T, O, and I for {3, 3}, {4, 3} or {3, 4}, and {5, 3} or
{3, 5}, respectively). The edge-net of a tangled platonic {f , z}
polyhedron cannot be morphed into that of its untangled Platonic
analog without phantom crossings, where edges pass through
each other. Like chiral polytopes, these tangled polyhedra have
just two flags; they are therefore the most symmetric nontrivial
embeddings of entangled platonic graphs, whose trivial entangle-
ments are the Platonic *2fz polyhedral embeddings.

Embeddings of Platonic {f , z} polyhedra with no crossed
edges are possible on the sphere; their edges can therefore
be traced in the plane without edge-crossings (e.g., via stere-
ographic projection). These regular embeddings are classified
as “untangled,” analogous to the trivial unknot, which can be
drawn in the plane (or on the sphere) without edge-crossings.
In contrast, like knots, planar drawings of tangled net embed-
dings contain edge-crossings, and crossing-free embeddings are
possible only on higher-genus surfaces. Tangled embeddings of
polyhedral nets {f , z} are less symmetric than their untangled,
regular analogs. Earlier studies of tangled nets of the tetrahe-
dron, octahedron, and cube, generated as reticulations of the rel-
evant {f , z} nets on the torus, established that all such “toroidal
polyhedra” are topologically chiral (26, 27), allowing a pair of
distinct isotopes related to each other by a reflection. Further,
those toroidal polyhedra are, without exception, rather asymmet-
ric compared with their untangled embeddings. Their chirality
ensures that they are devoid of reflections (so their orbifold
symbols exclude the * character) and have multiple flags. The
most symmetric toroidal tetrahedra, cubes, and octahedra can

be realized with orbifolds 222 (D2), 422 (D4), and 622 (D6),
respectively (28), with six, six, and four distinct flags. Here,
we show that the most symmetric {f , z} (nontrivially) tangled
polyhedral nets can be embedded in space with chiral symmetry
2fz, provided their edges are curved (or suitably kinked), so that
they have just two flags, analogous to chiral polytopes. Since
the most symmetric regular embeddings of polyhedral graphs
{f , z}, with symmetry *2fz, are untangled, these 2fz cases are the
most symmetric possible embeddings of (nontrivial) polyhedral
entanglements.

Construction of 2fz Polyhedra
Less symmetric tangled toroidal polyhedra introduced above are
analogous to torus knots, which are formed by winding a loop
on the surface of a (genus-one) torus—a donut. Simpler torus
knots are the trefoil knot and two-component Hopf link. These
are conventionally labeled 31 and 221, respectively, where label
X L

i indicates a knot (no superscript) or L-component link that
can be drawn on the page with no fewer than X crossings, and i
is an arbitrary index to distinguish different knots or links with
minimal crossing number X. To form 31 and 221, a pair of parallel
strands is wound around the torus once, building what we call a
“two-track railway” on the torus. That railway passes through a
single twist box with two ports for each track, such that its entry
and exit ports for each track are set by the (even or odd) parity
of the number of half-twists, t. Within the switch box, the tracks
wind around each other, giving a double-helix with t half-twists.
The resulting knot depends on t: 221 and 31 form by setting t to
two and three, respectively, and winding the two-track railway,
denoted t

2
on the torus, then removing the torus, leaving the

railway embedded in three-space. We label these torus knots by
their “railway labels,” 2

2
(Hopf) and 3

2
(trefoil). The constructions

are shown in Fig. 1.
Since these railways are formed by double-helical windings

around the torus, their embeddings are geometrically chiral,
whose enantiomers have railways −2

2
and −3

2
, respectively. The

−2
2

railway can be deformed without phantom moves to give the
same three-dimensional embedding as that of the 2

2
railway, so

both −2
2

and 2
2

form the same isotope, and the Hopf link is “topo-
logically achiral.” It is, in fact, the sole topologically achiral knot
or link among all ±t

2
railways (excluding the unknotted 0

2
and

1
2

railways). In contrast, the pair of geometrically enantiomeric
railways −3

2
and 3

2
are distinct isotopes, and the trefoil knot is

topologically chiral, with enantiomers 3+1 and 3−1 . Higher-order
helices, with n = 3, 4, . . . strands, can also be wound on the torus,

Fig. 1. (A and B) Schematic drawings of two-track railways lining the torus,
characterized by a pair of parallel strands, interrupted by a single (pink) twist
box, where the tracks experience two (A) and three (B) half-twists, forming 2

2
and 3

2 railways, respectively. The railways form tangles in three-dimensional
space. (C and D) A Hopf link (22

1; C) and a trefoil knot (31; D).
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Fig. 2. Construction of the
[

2
3

]3
θ

tangled polyhedron. (A) Schematic planar
cartoon of the winding, with three parallel strands running along each
tubified edge of the θ-graph, forming a triple-helix whose strands are
twisted by 4π

3 along each tubule (t = 2). (B–D) The trajectory of crimson,
yellow, and blue tracks, twisted within each switch, building the vertex-
and edge-transitive polyhedral tangle. (E) The three-track winding on the
tubified θ-polyhedron. The θ-skeleton is embedded with maximal symmetry
∗223, giving a tangled polyhedron with symmetry 223. (F) The resulting

[
2
3

]3
θ

tangle embedded in space, after removal of the bitorus. (G) Alternative view
of the tangle, with a central opaque sphere as a visual aid.

forming n-track railways t
n

, where each strand is twisted by 2πt
n

during a single traverse around the torus.
In contrast to torus knots and links, the tangled polyhedra we

construct are realized by winding n-stranded helices on a “poly-
torus,” an oriented boundary-free surface, whose genus exceeds
one. Polytori are formed from the edges of a symmetric skeleton,
whose edges are those of a Platonic polyhedron {f , z}, or the
“θ ” polyhedra, {2, z}. Tubification of the skeleton (replacing its
edges by tubules) results in the polytorus of genus g = 2z+f (z−2)

2z−f (z−2)
,

whose symmetries are those of its underlying skeleton, *2fz. We
construct symmetric polyhedral tangles as follows. Each tubule
hosts the same n-strand helix, with equal twist t, t

n
, where n is odd

(n = 2k + 1). The central strand on each tubule runs between
vertices of the polyhedral graph, whereas outer strands of adja-
cent tubules are joined, forming a helically wound graph, via a
construction outlined in detail in the next paragraph. An infinite
variety of polyhedral entanglements are generated by varying n
and t, as well as the polyhedral skeleton. We label each tangled
polyhedron

[
t

2k+1

]E
P

, formed by winding a helix with 2k + 1

parallel strands and twist t around each tubule of the polytorus,
whose skeleton is the edge-graph of the polyhedron P with E
edges. Like the toroidal tangled polyhedra discussed above, the
edges of these polytoroidal tangled polyhedra do not describe
maps on their underlying surface since they do not bound fi-
nite, disk-like faces. [Their universal covers are close-packed z-
branched trees, embedded in the hyperbolic plane, H2 (29).]

For example, a tangled polyhedron
[
2
3

]3
θ

is built by winding
three tracks on a genus-2 bitorus, formed by tubifying the three-
valent θ-graph, building a bitorus of symmetry 223, as shown
in Fig. 2. A single edge is traced from a point on the tubified
θ-polyhedron corresponding to a vertex in the skeleton, along
a tubule, and winds around each tubule, twisting by an angle
of 2πt

n
= 4π

3
as it passes through each twist box. Fig. 2B reveals

that each edge of the tangle traverses all three tubules of the
θ bitorus: The crimson edge exits the upper vertex, then passes
through the right-hand tubule, followed by the left-hand tubule
and the central tubule, terminating at the lower vertex. The edge-
topology of this three-track railway is that of the θ-graph: a pair
of three-valent vertices joined by three edges. However, it is not
the same isotope as the usual (untangled) θ-polyhedron, since
its edges cannot be relaxed to form that untangled embedding
without passing through themselves; it is therefore (nontrivially)
tangled. In this case, its tangling is manifested by knotted loops.
For example, the closed two-ring including crimson and yellow
edges only in Fig. 2C forms a trefoil knot, 3+1 . Indeed, the
other two-rings within the tangle also form 3+1 knots. Since
3+1 is topologically chiral, this self-entangled polyhedron is also
topologically chiral.

This example is one member of an infinite family of
[±t

3

]3
θ

tangled θ-polyhedra. Generic twists, t, induce self-entangled
θ-polyhedra with one component. Triple-helical windings

[
t
3

]3
θ

and
[
t
3

]3
θ

are chiral enantiomers, for arbitrary t. However, if t is
a multiple of three (i.e., mod3(t) = 0), the polyhedral tangle is a
four-component link rather than a knot, as shown in Fig. 3. Three
of those components are topological loops (colored red, green,
and blue in Fig. 3); the fourth component is a θ-graph (colored
black in Fig. 3).

Similarly, generic polyhedral tangles wound on the bitorus,
whose skeleton is the θ-graph,

[
t

2k+1

]3
θ
, with coprime twist

t and track number 2k + 1, induce a chiral self-entangled
θ-polyhedron with symmetry 233. If mod2k+1(t) = 0, the tangle
is a catenated link with 2(k + 1) components, including a single
θ graph and 2k + 1 unbranched loops. A further set of isolated
cases, whose track numbers, 2k + 1, satisfy modt(2k + 1) = 0,
also form links, rather than a single-component knotted θ graph.
For example, the

[
3
9

]3
θ

tangle is also a four-component link, like
those in Fig. 3.

Generic tangles described by 2k + 1-strand helical windings on
a polytorus whose skeleton is an {f , z} polyhedron can be traced
out on the page by first drawing a planar Schlegel diagram of the
polyhedron, P, containing E edges. Edges of the Schlegel diagram
describe the central track, of track-index zero. The remaining
±k tracks on either side of the central track (with indices
±(1− k)) are joined end-to-end, forming k concentric loops
within each f -sided face of the original skeleton. The resulting
diagram describes the untwisted tangle,

[
0

2k+1

]E
P

. Twists t are
generated by joining incoming to outgoing ports to effect a
2k + 1-helix of twist t. For example, a seven-track diagram
(k = 3) on the octahedron (P = oct) is illustrated in Fig. 4A. A
single track on a tangled configuration with twist t = 2, forming
the tangle

[
2
7

]12
oct

, is traced out in Fig. 4B.
We note that this construction schema induces branched

strands, whose branchings coincide with vertices of the resulting
polyhedral graph. A more rigorous analysis of the construction

03 0303

Fig. 3. Tangled polyhedra
[±t0

3

]3
θ

, where mod3(t0) = 0, with four distinct
components colored red, blue, green, and black. These tangled polyhedra
are four-component catenated entanglements of three unbranched loops
(red, green, and blue) and a (branched) θ-graph (black).

Hyde and Evans
Symmetric tangled Platonic polyhedra

PNAS 3 of 10
https://doi.org/10.1073/pnas.2110345118

https://doi.org/10.1073/pnas.2110345118


Fig. 4. (A) Construction of a seven-track polyhedral tangle on the octa-
hedron,

[
t

2k+1

]12
oct

, with arbitrary twist t and k = 3. A Schlegel diagram of
the octahedral edge-net is drawn in gray, which passes through the central
entrance and exit ports (index 0) of switch boxes interrupting each of the
12 edges. (B) An edge AB (shown in blue) of the

[
2
7

]12
oct

tangle, connecting
a pair of neighboring vertices on the octahedron via a helical winding
traversing seven tubules of the octahedron. (Dashed line segments denote
undercrossing paths.)

is possible by first building an unbranched winding of parallel
twisted strands, forming twisted helices 2t

4k+2
wound around

each tubule, and merging strand ends with those of neighboring
tubules such that strands are combed to form parallel trajectories
on the polytorus. Those unbranched railways are circuit double-
covers (30) of the branched constructions we describe, with
component helices t

2k+1
wound around each tubule.

Topologies of 2fz Tangled Polyhedra
Polyhedral tangles wound on tubified skeletons of the conven-
tional Platonic polyhedra, P = {f , z}, also describe tangled poly-
hedra, whose topology and tangling depend on t and n = 2k + 1.
All such tangled polyhedra,

[
t

2k+1

]E
P

, can be embedded with
symmetry 2fz. The most interesting examples are those whose
fractions

[
t

2k+1

]
are “irreducible,” where t and 2k + 1 are co-

prime. From here on, we consider only those cases. Regardless
of t and k,

[
t

2k+1

]3
θ

irreducible tangles invariably consist of a
single self-entangled θ-graph only. However, irreducible tangles
on tubified tetrahedra (P = tet), cubes (P = cub), octahedra
(P = oct), icosahedra (P = icos), and dodecahedra (P = dodec)
form either single-component self-entangled polyhedra (P) or
multiple catenated congruent polyhedra (denoted P ′, where P ′

is a graph minor of P). The allowed topologies, characterized
by the number of component graphs within the tangle (L) and
constituent polyhedra (P ′), are severely constrained. (Notice
that if L= 1, P ′ = P .)

Just as a helical edge of an irreducible three-track tangled
θ-polyhedron traverses three tubules from vertex to vertex, any
edge of an irreducible polyhedral tangle

[
t

2k+1

]E
P

traverses 2k +

1 tubules of its underlying polytorus between graph vertices.
(For example, edges of the

[
2
7

]12
oct

tangle in Fig. 4B traverse
seven tubules.) The helical winding of an edge around a *2fz
polytorus necessarily passes through an axis of twofold rotational
symmetry of the underlying polytorus, located midway along its
length, which exchanges the vertices at either end of the edge.
(Otherwise, a pair of edges would span those vertices, giving a
multi-graph, which does not correspond to a platonic polyhe-
dron.) Pairs of vertices bounding edges of these 2fz polyhedral
tangles are therefore necessarily related by isometries about
axes of rotational symmetry of even order. Further, since the
edges traverse 2k + 1 tubules, they can be projected onto their
underlying polyhedral skeleton P to form walks passing through
2k + 1 edges of P. Since 2k + 1 is odd, those axes must pass
though midpoints of edges of P. (That constraint rules out generic

even-order rotation axes passing through vertices of P.) Consider,
for example, tangled cubes,

[
t

2k+1

]12
cub

, with symmetry 234. In that
case, admissible rotation axes are parallel to the face-diagonals of
the cube, passing through its center. Examples of allowed edges
of these tangles, projected onto the edges of the underlying cube
skeleton, traversing three and five tubules of the tubified cube
(i.e., k = 1, 2), are illustrated in Fig. 5 A and B, respectively.
Indeed, regardless of the starting vertex and choice of rotation
axis, vertex pairs (A and B) at either end of edges in

[
t

2k+1

]12
cub

tangles with symmetry 234 can only be located 1) at both ends
of an edge of the untangled cube (as in Fig. 5B) or 2) at both
ends of a body diagonal (Fig. 5A). In the former case, the orbit
of tangled edges by 234 isometries results in just one component
net in the tangle: a self-entangled cube. On the other hand, if
they lie on a body diagonal, the orbit generates four catenated θ-
polyhedra. (A third candidate topology for tangled cubes, a pair
of catenated tetrahedra, is excluded, since edges joining adjacent
tetrahedral vertices traverse an even number of tubules.) In
summary,

[
t

2k+1

]12
cub

tangled cubes allow the following topologies
only: self-entangled cubes (L= 1,P ′ = P = cub) or catenations
of four θ3-polyhedra (L= 4,P ′ = θ3).

Similar considerations dictate allowed topologies of other self-
tangled or mutually tangled polyhedra,

[
t

2k+1

]E
P

, with symmetries
2fz and irreducible t

2k+1
. Tangles on the dodecahedral polytorus

exhibit the broadest variety of topologies, forming catenated θ3-
polyhedra (L= 10) and catenated tetrahedra (L= 5), as well as a
self-entangled dodecahedron (L= 1). Self-entangled octahedra,
cubes, and icosahedra (L= 1) exist for certain values of t , k
only; otherwise, catenated θz -polyhedra are formed on the oc-
tahedral polytorus (L= 3,P = oct ,P ′ = θ4), the cube polytorus
(L= 4,P = cub,P ′ = θ3), and the icosahedral polytorus (L= 6,
P = icos,P ′ = θ5). In contrast, all irreducible tangled tetrahe-
dra,

[
t

2k+1

]6
tet

share common topology, regardless of t and k: a
self-entangled tetrahedron (L= 1).

Though the topologies of these entangled 2fz polyhedra are
limited, the number of distinct isotopes is unbounded. (Recall
that equivalent isotopes or tangles can be morphed into each
other by ambient isotopies; distinct cases cannot.) Here, we
deduce the simpler isotopes only, limited by the following con-
siderations. First, we ignore k = t = 0, since those untwisted 2fz
polyhedra can be further symmetrized to form the untangled Pla-
tonic polyhedra, with symmetry *2fz. Second, we consider only
irreducible cases, where t and 2k + 1 are coprime, for reasons
described above. Third, tangling of a polyhedron

[
t

2k+1

]E
P

is that

of its chiral enantiomer
[ −t
2k+1

]E
P

modulo a reflection. Lastly,

tangled polyhedra
[±(t±j(2k+1))

2k+1

]E
P

(where j is an integer) share
common edge topology—though likely not tangling—regardless

A

B

A

B

Fig. 5. Two examples of edges AB in tangled cubes,
[

t
2k+1

]12
cub (drawn

in blue) projected onto edges of the underlying cube polytorus skeleton,
with k = 1 (A) and k = 2 (B). Twofold axes of rotational symmetry of the
underlying Platonic cube skeleton, drawn as black lines, pass through the
midpoints of AB.
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of j, since incrementing j adds 2π “Dehn twists” (31) within the
switch, but preserves the entrance and exit ports at each switch.
Thus, for example, seven-track tangled polyhedra

[
t
7

]E
P

fall into

three groups of chiral pairs:
[±1±7j

7

]E
P

and
[±6±7j

7

]E
P

;
[±2±7j

7

]E
P

and
[±5±7j

7

]E
P

; and
[±3±7j

7

]E
P

and
[±4±7j

7

]E
P

. We consider just
one enantiomer in each class, so all seven-track topologies are
found from the following cases:

[
1
7

]E
P

,
[
2
7

]E
P

, and
[
3
7

]E
P

. It turns
out that the full spectrum of possible topologies of these 2fz
tangled polyhedra is generated by three-, five-, and seven-track
polyhedra, so we have analyzed tangles with k < 4 only.

Self-Entangled 2fz Polyhedra
Consider first tangled polyhedra that result from winding an odd
number of tracks (2k + 1) around the three edges of a tubified
θ3 polyhedron,

[
t

2k+1

]3
θ
. Those windings are chiral and can be

embedded with maximal symmetry 223. As noted above, these
form a single-component tangled θ-polyhedron, regardless of
(coprime) t and n. The simplest (nontrivial) tangles,

[
1
3

]3
θ

and[
2
3

]3
θ
, are shown in Fig. 6 B and C, along with the trivial tangle,[

0
3

]3
θ

(Fig. 6A).
It is clear that the

[
2
3

]3
θ

case is a distinct isotope to the trivial
(untangled) θ-polyhedron since, in contrast to the untangled
θ-polyhedron, all two-rings are knotted, forming like-handed
trefoils, as shown in Fig. 7 A–C. Its enantiomer,

[−2
3

]3
θ
, gener-

ates trefoils of the opposite hand. (For brevity, we describe the
two-ring knots of the enantiomers, labeled

[±2
3

]3
θ

by the label
3±1 .) In contrast, all cycles in the

[±1
3

]3
θ

tangles are unknotted
(Fig. 7 D–F). Nevertheless, they form an enantiomeric pair of
distinct isotopes to the trivial (untangled) embedding,

[
0
3

]3
θ
, since

they cannot be untangled to form the trivial embedding with-
out cutting and regluing edges. These

[±1
3

]3
θ

tangles are the
simplest examples of an infinite class of chiral tangles explored
previously, classified as universal three-ravels (6). Interestingly,
one enantiomer has been realized at the atomic (Å) scale in an
organometallic molecule, with stoichiometry C312H336Fe8O60

and symmetry 223 (Schoenflies symbol D3) (7).
Self-entangled platonic polyhedra with topologies L= 1,P =

P ′, including {f , z}= {3, 3} (P = tet), {3, 4} (P = oct), {4, 3}
(P = cub), {3, 5} (P = icos), and {5, 3} (P = dodec), are gen-
erated by winding 2k + 1-track helices on each tubule of the
polytorus formed by inflating that same Platonic polyhedron
P. The simplest resulting self-entangled maximally symmetric
platonic polyhedra, with lowest indices t , k , are shown in Fig. 8.

Table 1 lists all of the self-entangled platonic polyhedra,[
t

2k+1

]E
P

, where k ≤ 3, and t is limited to the values discussed
in Topologies of 2fz Tangled Polyhedra.

It is possible that all tangles of a given platonic polyhedron P
with distinct labels t and k build distinct isotopes. Nearly all the

A B C

Fig. 6. (A) Relaxed, symmetrized (*223) embedding of the untangled
θ-polyhedron

[
0
3

]3
θ

. (B) The chiral (223) raveled tangle of the θ-polyhedron,[
1
3

]3
θ

. (C) The simplest chiral (223) knotted tangle,
[

2
3

]3
θ

(cf. Fig. 2).

A B C

D E F

Fig. 7. (A–C) Knotted (3+
1 ) trefoils in the

[±2
3

]3
θ

tangles. (D–F) Unknotted

embeddings of loops in the
[±1

3

]3
θ

tangles.

(f -)rings of edges in these tangled polyhedra form distinct knots,
depending on t and k, as listed in Table 1. However, some
isotopes cannot be distinguished on that basis, namely, the θ

A B

C D

E F

Fig. 8. The simplest tangled vertex-, edge-, and face-transitive platonic
polyhedra built from three-, five-, and seven-strand helices. (A) The chiral
tangled tetrahedron,

[
1
3

]6
tet

, with symmetry 233. (B) The chiral tangled

octahedron,
[

1
5

]12
oct , with symmetry 234. (C and D) A pair of vertex-, edge-,

and face-transitive tangled cubes,
[

2
5

]12
cub

and
[

1
7

]12
cub

, with symmetry 234. (E

and F) A tangled icosahedron,
[

1
3

]30
icos

, and tangled docecahedron,
[

1
5

]30
dodec

;
both embeddings have chiral symmetry 235. Note that vertices of these
polyhedra coincide with those of their untangled Platonic analogs.
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Table 1. Single-component self-entangled platonic {f , z} polyhedra
[ t

2k+1

]E
P formed by windings on tubified dodecahedra, icosahedra,

cubes, octahedra, and tetrahedra

Polyhedron P Symmetry
[

t
2k+1

]E
P

Topology N× f-ring knot

Dodecahedron 235 (I)
[±1

5

]30
P

,
[±4

5

]30
P

, . . . 120, 480, . . . 5±
1 , . . .

[±2
7

]30
P

,
[±5

7

]30
P

, . . . 360, 900, . . . 10±
123, . . .

Icosahedron 235 (I)
[±1

3

]30
P

,
[±2

3

]30
P

, . . . 60, 120, . . . 01, . . .
[±1

5

]30
P

,
[±4

5

]30
P

, . . . 120, 480, . . . 3±
1 , . . .

[±1
7

]30
P

,
[±6

7

]30
P

, . . . 180, 1, 080, . . . 8±
19, . . .

[±3
7

]30
P

,
[±4

7

]30
P

, . . . 540, 720, . . . 10±
123, . . .

Cube 234 (O)
[±2

5

]12
P

,
[±3

5

]30
P

, . . . 96, 144, . . . 8±
18, . . .

[±t
7

]12
P

72t 8±
19(t = 1), . . .

Octahedron 234 (O)
[±t

5

]12
P

..

48t 3±
1 , 3±

1 (t = 1, 2), . . .
[±t

7

]12
P

72t 8±
19, 9±

49(t = 1, 2), . . .

Tetrahedron 233 (T)
[±1

3

]6
P

,
[±2

3

]6
P

, . . .
..

12, 24, . . . 3±
1 , . . .

[±t
5

]6
P

24t 3∓
1 , 9±

47(t = 1, 2), . . .
[±t

7

]6
P

72t 8±
19(t = 1), . . .

θ 223 (D3)
[±1

3

]3
P

,
[±2

3

]3
P

, . . . 6, 12, . . . 01, 3±
1 , . . .

[±1
5

]3
P

,
[±4

5

]3
P

, . . . 12, 48, . . . 3±
1 , . . .

[±2
5

]3
P

,
[±3

5

]3
P

, . . . 24, 36, . . . 6±
1 , . . .

[±t
7

]3
P

18t 3±
1 , 8±

19(t = 1, 2), . . .

Crossing numbers (N×) are listed for planar projections of the tangles drawn on Schegel diagrams; these are not necessarily minimal. Their symmetries
are listed as orbifold symbols 2fz (and point groups I, O, T, or D3). Knots formed by face cycles are specified for lower twist cases (identified in parentheses).
Higher-order tangled polyhedra, with twists t′, also form self-entangled polyhedra provided mod2k+1t′ = t. Note that our convention for + and – labeling
of knots is arbitrary and listed only to distinguish like from unlike enantiomers of knots.

isotopes [±2
3
]3θ ,

[±1
5

]3
θ
, and

[±1
7

]3
θ
, tetrahedral isotopes

[±1
3

]6
tet

and
[±1

5

]6
tet

, and the octahedral isotopes
[±1

5

]12
oct

and
[±2

5

]12
oct

.
The pair of tangled tetrahedra are necessarily distinct isotopes, as
follows. On the one hand, the three-rings (topologically equiva-
lent to those bounding faces of the untangled tetrahedron) in the[±1

3

]6
tet

and
[±1

5

]6
tet

tangles form enantiomeric trefoils, 3±1 (i.e.,
±→±) and 3∓1 (±→∓), respectively, so the ring knotting fails
to definitively distinguish those isotopes. However, their four-
sided skew Petrie polygons (32) form distinct knots: the prime
trefoil knot (3±1 ) and the composite pair of trefoils (3∓1 #3∓1 ) for
the

[±1
3

]6
tet

and
[±1

5

]6
tet

tangles, respectively. Consequently, they
are distinct (nontrivial) isotopes of the tetrahedron. Similarly,
three-rings in the tangled octahedra

[±1
5

]12
oct

and
[±2

5

]12
oct

form
identical 3±1 trefoils, whereas their six-sided skew Petrie polygons
describe distinct knots, namely, (3∓1 #3∓1 #3∓1 ) and a nonalter-
nating 12-crossing knot.

Since two-rings in the tangled θ-polyhedra
[±1

5

]3
θ

and
[±1

7

]3
θ

are trefoils, those cases are distinct isotopes to the trivial isotope,[
0
3

]3
θ
, as well as the raveled

[±1
3

]3
θ

isotope, though indistinguish-
able from the

[±2
3

]3
θ

knotted isotope. Since
[±2

3

]3
θ
,
[
1
5

]3
θ

and
[
1
7

]3
θ

contain trefoils only, they cannot be distinguished on the basis
of their knotted cycles. We therefore explored so-called “tight”
embeddings of these tangled polyhedra. Tight knots minimize
the total edge length of the knots realized as unit diameter tubes
that do not overlap (33, 34). A numerical procedure to estimate
tight embeddings of graphs generalize that concept, admitting
branched vertices (35). This approach is useful, assuming distinct

isotopes form noncongruent tight embeddings. That assumption
holds for most knots although there are some exceptions (34), as
well as simpler graph embeddings (35). Numerical realizations of
tight embeddings of the

[
2
3

]3
θ
,
[
1
5

]3
θ
, and

[
1
7

]3
θ
θ tangles are shown

in Fig. 9. Since those embeddings differ significantly, with distinct
total lengths, it is very likely that all three tangled embeddings of
the θ-graph are distinct isotopes.

A B C

D E F

Fig. 9. (A–C) Tight embeddings of
[

2
3

]3
θ

(A),
[

1
5

]3
θ

(B), and
[

1
7

]3
θ

(C) tangled
θ-polyhedra, with lengths 47.10, 36.25, and 48.20, respectively. (D–F) The
same embeddings traced with reduced edge diameter, revealing their very
different tight geometries.
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In summary, for all the cases explored to date, retuning the
component helices wound on a polyhedron P by adjusting t and/or
k induces a different 2fz isotope,

[
t

2k+1

]E
P

.
All of these self-entangled embeddings are geometrically chi-

ral, leading to the question of their topological chirality; i.e.,
can they be deformed into their enantiomer by some defor-
mation that does not include phantom crossings (36)? Topo-
logical chirality of these 2fz tangles is assured, provided they
contain (topologically chiral) knotted f -rings and just one knot
enantiomer is present in the graph embedding. Nearly all the
polyhedral tangles whose f -ring knots are listed in Table 1 fulfill
these criteria. There are just two exceptions among the lower-
index tangles in Table 1: the raveled θ-polyhedron

[
1
3

]3
θ

and the
tangled icosahedron

[
1
3

]30
icos

. Nevertheless, both exceptions are
also topologically chiral. The

[
1
3

]3
θ

tangle is among Moriuchi’s
census of θ-graphs (51), all of which are topologically chiral
(37). Although isolated three-rings of the icosahedral isotope
are unknotted, triplets of those rings form 633 links, which are
topologically chiral (38). All of these lower-index, self-entangled
platonic polyhedra are therefore topologically chiral. We conjec-
ture that all single-component self-entangled platonic polyhedra[

t
2k+1

]E
P

(with coprime t and k) are topologically chiral.

The 2fz Isotopes of Self-Entangled Polyhedra Are Maximally
Symmetric
These odd-order helical windings realize very symmetric tangled
polyhedra (2fz, with two flags). Nevertheless, they are slightly
less symmetric than those of the (untangled) Platonic polyhedra,
realized with just one flag, forming patterns with symmetry *2fz.
In order to rule out flag-transitive tangled polyhedra, it is nec-
essary to establish that any embedding of an {f , z} polyhedral
graph with symmetry *2fz is necessarily untangled. That is readily
demonstrated for the simplest polyhedral topology, namely, the
θ-polyhedron, for which {f , z}= {2, 3}, as follows. Assume that
a θ-polyhedron is realized with symmetry *223, in which case
its pair of antipodal three-valent vertices (marked A and B in
Fig. 10A) lie on a common threefold axis of rotational symmetry,
displaced equally from the center, which lies on three axes of
twofold rotational symmetry. The polyhedron contains three
mirror planes, Π1, Π2, and Π3, each split into half-planes, Π+

i

and Π−
i , intersecting along the common axis AB, as shown in

Fig. 10A. All three curved edges of the θ-polyhedron are nec-
essarily confined to mirror planes; e.g., AabB lies in Π1. (Clearly,
their tangent vectors at A and B lie in Π1, since otherwise, A and
B would be six-valent. If the edge leaves Π1 somewhere along
its length, a forbidden three-valent vertex is generated by that
mirror; therefore, the entire edge AabB lies in Π1.) If the edge
AabB intersects the threefold line AB, forbidden three-valent
vertices are formed at intersections a and b, so AabB is confined
to the half-plane Π+

1 , as in Fig. 10B. Similarly, the other pair of
edges are located in half-planes Π+

2 and Π+
3 , such that all three

half-planes subtend angles of 2π
3

with each other. All edges can
therefore be morphed within their respective half-planes to lie
along meridians of a sphere without intersections (Fig. 10C). It
follows that any embedding of the θ-polyhedron with symmetry
*223 is necessarily untangled.

Similar reasoning proves that embeddings of {f , z} graphs
with symmetry *2fz, where {f , z}= {3, 3}, {3, 4}, {4, 3}, {3, 5},
or {5, 3}, are also necessarily untangled, forming equivalent
isotopes to the standard Platonic tetrahedron, octahedron, cube,
icosahedron, or dodecahedron, respectively. It follows that all
tangled isotopes of polyhedral graphs {f , z} have at least two
flags and the 2fz constructions of

[
t

2k+1

]E
P

tangles outlined above
are maximally symmetric.

Π+1Π
+
1

Π−
1

Π−
2

Π+3

Π+2

Π−
3

A

a

b

B

2

Π−
2

Π+3

Π−
3 Π+1Π

+
1

Π−
1

Π+2

a

b

2

A

B

Π−
3

2

Π−
2Π+2

Π+3

Π−
3

A

B

Π+1Π
+
1

Π−
1

A B C

Fig. 10. Three mirror planes of a θ-polyhedron with symmetry *223 labeled
Π1, Π2, and Π3, each split into half-planes Π+

i and Π−
i . They intersect

along a common vertical axis of threefold rotational symmetry passing
through (red) points marked A, a, b, B. A and B are located at equal (unit)
distance from the (blue) site marked 2, located on the threefold axis AB
and a horizontal mirror plane, containing three orthogonal axes of twofold
rotational symmetry. (One of those axes is the dotted line, passing through
2.) (A) A hypothetical edge of the θ-polyhedron, AabB, whose tangent vector
at A and B must lie in plane Π1 since A, B are three-valent vertices. If a, b
also lie on the axis AB, they induce forbidden three-valent vertices. (B) A
valid edge AabB of the *223 θ-polyhedron therefore lies entirely within the
(white) half-plane Π+

1 . (C) Since all three edges are confined to their (white)
half-planes, the AabB edge can be deformed to lie along a meridian of a
unit sphere centered at 2, with poles A and B. By symmetry, all three edges
can be similarly deformed, so the θ-polyhedral edges can be deformed to lie
on three half-planes without edge-crossings. It follows that any embedding
of the θ-graph {2, 3} with symmetry *223 is untangled.

Catenated (Compound) 2fz Platonic Polyhedra
Self-entangled polyhedra share identical graph topologies
(though not entanglements) with their Platonic precursors:
Their entangled graphs can be morphed into a single copy of
one of the familiar Platonic polyhedral embeddings via some
deformation, which includes edges passing through each other
(phantom crossings). Those single-component polyhedral graphs
are realized for

[
t

2k+1

]E
P

tangles, provided t and k are equal to

those listed in Table 1. Otherwise, the polyhedral tangles
[

t
2k+1

]E
P

lead to entanglements containing multiple, equivalent graphs,
P ′ �= P , rather than a single self-entangled polyhedron. The
resulting “polyhedral links” are listed in Table 2.

Among the low-index tangles analyzed here, the most spectac-
ular linked polyhedra are those resulting from three- and seven-
track windings on the dodecahedral polytorus, which induce five
disjoint, but mutually catenated, tetrahedra. The simplest iso-
tope,

[
1
3

]30
dodec

, is identical to the well-known regular compound
tetrahedron, labeled {5, 3}[5{3, 3}]{3, 5} by Coxeter (39). The
embedding induced by the

[
1
3

]30
dodec

winding and the compound
tetrahedron are shown in Fig. 11. Both embeddings are chiral,
with symmetry 235. The helical edges of the

[
1
3

]30
dodec

embedding
inherited from the triple-helical winding impose 233 symmetry on
each component tetrahedron in the tangle, whereas the straight
edge in the compound polyhedron result in enhanced symmetry
(*233) for each tetrahedron. Among all 2fz tangles

[
t

2k+1

]E
P

, this
is the sole isotope we have identified whose edges can be rectified
without phantom crossings.

The remaining
[

t
2k+1

]E
P

polyhedral links, wound around tubi-
fied dodecahedra, icosahedra, cubes, and octahedra, are cate-
nations of three-, four-, and five-valent θz polyhedra (i.e., P ′ =
θz , where z = 3, 4, 5), listed in Table 2. Some of the simpler
cases are shown in Fig. 12. Like the self-entangled examples
previously described, the vertices in each mutually catenated 2fz
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Table 2. Vertex and edge-transitive catenations of multiple equivalent polyhedra P′ formed from 2fz polyhedral tangles on tubified
polyhedra P, t

2k+1
E

P

Polytorus skeleton P Symmetries
[

t
2k+1

]E
P

Topology P′ #

Dodecahedron 235–234 (I − T)
[
±1
3

]30†
P ,

[±2
3

]30
P

, . . . ,
.. .. .. .. ..

{3, 3} 5

235–223 (I − D3)
[
±2
5

]30

P
,
[±3

5

]30
P

, . . . {2, 3} 10

235–234 (I − T)
[
±1
7

]30

P
,
[±6

7

]30
P

, . . .
.. .. .. .. ..

{3, 3} 5

235–234 (I − T)
[
±3
7

]30

P
,
[±4

7

]30
P

, . . .
.. .. .. .. ..

{3, 3} 5

Icosahedron 235–225 (I − D5)
[
±2
5 P

]30
,
[±3

5

]30
P

, . . . {2, 5} 6

Cube 234–223 (O − D3)
[
±1
3

]12

P
,
[±2

3

]12
P

, . . . {2, 3} 4

234–223 (O − D3)
[
±1
5

]12

P
,
[±4

5

]12
P

, . . . {2, 3} 4

Octahedron 234–224 (O − D4)
[
±1
3

]12

P
,
[±2

3

]12
P

, . . . {2, 4} 3

Each component P′ has topology f , z, listed in column 4. The number of discrete polyhedra P′ is listed as # in column 5. All structures can be embedded
with uncolored-colored symmetries 2f”z–22z. (The tangle marked † lifts to a more symmetric embedding.)

polyhedral complex coincide with vertices of the *2fz Platonic
polyhedral skeleton of the underlying polytorus, P. The θz links
partition vertices into antipodal pairs; each pair belongs to a
single θz polyhedron. All θz links are embedded such that each
θz component has symmetry 22z. More generally, an uncolored
L-component link

[
t

2k+1

]E
P

, with symmetry 2fz (where P has
Schläfli symbol {f , z}), leads to a colored pattern, formed by
coloring each component in the link differently. That colored
pattern has reduced symmetries: either 22z for θz catenations or

A B

Fig. 11. (A) The dodecahedral winding of triple-helices,
[

1
3

]30
dodec, with

chiral symmetry 235, made of five catenated tetrahedra, each with sym-
metry 233. (B) The edges in A can be rectified without passing edges
through each other, forming a regular compound polyhedron, labeled
{5, 3}[5{3, 3}]{3, 5} by Coxeter, with uncolored-colored symmetries 235–
*233.

234 for catenations of tetrahedra. (In either case, the uncolored
symmetry is an index-L supergroup of its colored symmetry.)

Discussion
These polyhedral isotopes realize the most symmetric embed-
dings in three-space for all tangled polyhedral nets whose edge-
graphs correspond to those of conventional Platonic polyhedra
(and θz -polyhedra). Their constituent helices contain an odd
number of strands, and related patterns can be constructed by
winding even-stranded helices around the same polytori, with
Platonic skeletons. For example,

[±1
10

]6
tet

and
[±3

6

]6
tet

induce
self-catenated cube isotopes. Neither isotope is equivalent
to the isotopes shown in Fig. 8 C and D. Both the 6- and
10-helical examples have symmetry 233 (T), lower than that
of the odd-track self-entangled cubes, which display 234 (O)
symmetry. Note however, that the isotope generated by a tangle
signature

[
t

2k+1

]E
P

is not an invariant of the graph isotope.

For example, the isotope induced by the tangle
[ 1

2
(2k+1)

2t

]3
θ

is
equivalent to

[
t

2k+1

]3
θ
. Tightening the five- and seven-strand θ-

polyhedral tangles
[
1
5

]3
θ

and
[
1
7

]3
θ

induce “flyped” embeddings,
where the tangle is turned in on itself, analogous to turning a
part of a sock inside-out.* Those embeddings have signatures[ 5

2
2

]3
θ

and
[ 7

2
2

]3
θ
, respectively—characteristic of double-helices.

Indeed, two-stranded (double-)helices wound around the edges
of the θ-skeleton are visible in Fig. 9 B and E and C and F.

*Not dissimilar to the flype maneuver introduced by Tait to explore knots (13).
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A

B C

D E

Fig. 12. Compound 2fz polyhedra, containing catenated copies of θz

polyhedra. (A) The octahedral tangle,
[

1
3

]12
oct : a three-component catenation

of θ4 polyhedra, with uncolored-colored symmetries 234–224. (B and C) Cube
tangles,

[
1
3

]12
cub

and
[

1
5

]12
cub

, containing four catenated θ3-polyhedra (sym-

metries 234–223). (D) The icosahedral tangle,
[

2
5

]30
icos, built of six catenated

θ5 polyhedra (symmetries 235–225). (E) The dodecahedral tangle,
[

2
5

]30
dodec

,
including 10 catenated θ-polyhedra (symmetries 235–223).

(Since strands traverse two edges of the θ-skeleton between
vertices, they twist by 5π and 7π, respectively, between vertices,
passing from the top of the upper threefold junction in the tubi-
fied θ, via the lower junction, to the underside of the same junc-
tion. The winding geometry of these tight configurations is best
viewed in the three-dimensional .ply files found in SI Appendix.)
Evidently, flyping allows two alternative embeddings of the
same isotope, with different tangle “signature”

[
t
n

]E
P

. However,
the constructions via helices with an odd number of strands,

n = 2k + 1, are maximally symmetric, whereas flyped embed-
dings of the same isotope are not. Thus, the flyped, tight embed-

dings of an entangled θ-graph via railways
[ 5

2
2

]3
θ

and
[ 7

2
2

]3
θ

have
symmetry 33 (C3ν), an index-2 subgroup of the embeddings,

[
1
5

]3
θ

and
[
1
7

]3
θ
, which exhibit symmetry 233.

These tangled polyhedra are attractive targets for materials
science since their smoothly curved edges can be replaced by
jointed stick-like edges with the same maximal symmetry, 2fz.
(The number of jointed linear segments in each edge depends
on the twist t.) Entangled and woven structures are of increasing
relevance to synthetic chemical materials, from finite metal-
organic molecules to extended COFs and MOFs, referred to at
the opening of this paper. These materials are synthesized by
assembly of identical chemical modules, leading to symmetric
structures, with minimal transitivity (40, 41) (i.e., minimal num-
ber of symmetrically distinct edges and vertices). The 2fz polyhe-
dral tangles introduced here are vertex- and edge-transitive, with
just two flags. Therefore, they can be assembled from identical
structural units containing a half-edge and a 1

z
-fraction of a single

(z-branched) vertex. That feature is likely to be responsible for
the formation of a molecule whose skeleton is equivalent to
that of the simplest of all polyhedral tangles introduced in this
paper, (

[
1
3

]3
θ
) (1). More recent syntheses of entangled metal-

organic molecules (2–5) have closely related and marginally less
symmetric structures, which can also be described as (branched
or unbranched) railways wound on polyhedra. Entangled infinite
framework structures also emerge from these finite polyhedral
tangles, which describe the embeddings of their quotient graphs
[formed by replacing the infinite structure by a finite unit cell with
periodic boundaries (42)]. We suspect that these structures are
not limited to synthetic materials, given the report of chiral self-
assemblies that resemble these polyhedral entanglements in biol-
ogy. Simpler polyhedra formed by chiral “triskelion” assemblies
of clathrin networks, which coat soft bilayer vesicles allowing
cargo transport in vivo, are strikingly similar to {f , 3} tangled
polyhedra enumerated here (43). Like synthetic organometallic
materials, those biomolecular assemblies may be driven toward
structurally homogeneous patterns, favoring very symmetric en-
tanglements. Lastly, we note that all of these 2fz tangled polyhe-
dral constructions are formed by assembling tubules, each wound
by equivalent helices with 2k + 1 strands, into a polytorus. Thus,
they can be viewed as (z-)branched helicates. Helicate chemistry,
which has produced some of most complex molecular knots
synthesized to date (44), is therefore a promising field in which to
search for these most symmetric branched and tangled structures.
Data Availability. Data files (in .ply format) allowing three-dimensional
viewing of some of the tangled polyhedra discussed in this paper, plus
a table listing components numbers, have been deposited in GitHub
(https://github.com/stimhyde/platonic_tangles). All other study data are in-
cluded in the article and/or SI Appendix.
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