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A B S T R A C T

The main purpose of this research is to check the relative importance of methods fuzzy-logic and back-
propagation neural network to evaluate the performance of wire electric discharge machine (WEDM) of
aeronautics super alloy. It has been confirmed that BP-ANN method reveals significant result over the fuzzy logic
method for the evaluation of surface roughness and waviness of the WEDM of aeronautic super alloy. On the basis
of Taguchi analysis, it has been established that the variable pulse-on, interaction amid the pulse-on and pulse-off
time, wire tension and spark-gap voltage have a superlative influence on the surface roughness. The waviness is
influenced prominently by pulse-on time, pulse-off time and spark-gap voltage. The thickness of recast layer is
minimized up to 9.434 mm.
© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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Introduction

The wire-cut electric discharge machining is the machine of unique type which employed the
diminutive size of 0.05 mm to 0.3 mm diameter wire for separating the infant material from the
parental plate of material [1]. The sturdy electric current is allowed to flow through the wire and work
material which results the generation of sturdy electrical field in the gap (0.025–0.05 mm) provided
among the wire and work material [2]. Due to the high potential difference formation, a large number
of distinct sparks have been generated in a close vicinity of wire and work material, therefore, the
plasma zone is shaped. The material in the plasma zone is melted and evaporated. At the same instant,
the enduring supply of the dielectric fluid has taken away the molted material. Eventually, the
material has been extracted from the surface of the wire and work material.

Udimet-L605 is an austenitic alloy revealing the face centered cubic-crystal structure and
exhibiting the non-magnetic behavior, strength and corrosion resistance at high temperature. The
Udimet-L605 reveals superior resistance to air and oxidizing environment mutually [3]. It has been
examined that a simple Co-base super alloy (L605) has the best impact resistance on an areal weight
basis. It is 10 times better than IMI 550 (Titanium best alloy). The sterling impact resistance is
delineated by Udimet L-605 primarily at velocity extra than 1100 ft/sec. For that reason, the Udimet-
L605 may be the best alternative as a substitution of titanium alloy for fan containment applications in
supersonic aircraft.

Hence, there is a vital need to study the surface nature after WEDM of Udimet-L605 and access
the relation between the process parameters and response parameters using advanced modeling
technique like back propagation artificial neural networking and fuzzy-logic. In recent years,
researchers have made various efforts to evaluate the performance of WEDM on different materials
using different modeling and optimization technique. The surface characteristics of WEDM
generated surface has been examined [1]. The F-ANN and SA approach were applied to the WEDM
process to associate the input variables with the output performances. It was noted that the cutting
performance of wire-EDM can be improved using this new approach [4]. The RSM and ANN
modeling of WEDM process has been recommended to pronounce the acquaintance amid the
process variables and response variables. It has been evaluated that both models give accurate
results for the surface roughness and material removal rates [5]. The neural network modeling of
WEDM has been made to analyze the residual stress formation in electric discharge machining of
metal matrix composites. It has been identified that pulse-off time have a significant effect on the
residual stress formation [6]. The PCA integrated with the Taguchi approach has been
recommended to identify the effect of particulate size, volume fraction, pulse-on time, pulse-off
time and wire tension on SR, WWR, kerf width and white layer thickness during WEDM [7]. Taguchi
approach, ANFIS modeling and grey relational analysis methods have been recommended for
modeling and optimization of WEDM process [8]. The advance modeling and analysis approaches
like RSM, PSO, support vector machine, regression and sensitivity analysis have been applied to
investigate the performance of EDM and WEDM of advance materials [9–14]. Different modeling
approaches have been employed in distinct research area [15–17]. Based on literature study, it has
been observed that a rare work has been reported on evaluation of WEDM of Udimet-L605 using
fuzzy-logic and BPANN approaches.
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This paper examined the change in the surface characteristics of Udimet-L605 after WEDM on
Udimet-L605. The two models such as back propagation artificial neural network and fuzzy-logic have
been developed to check the variance between experimental and predicted results for the surface
roughness (SR) and waviness (Wa). The consistencies of the models are checked based on evaluation
parameters performance of the model. Taguchi method is employed to analyze the experimental data
and find the best combination of input variables for minimum surface roughness and waviness. The
thickness of the white layer and a recast layer is evaluated by SEM analysis.

Experimental details

This section consisted of three segments. The first segment demonstrates the specification,
elemental composition of Udimet-L605 and its mechanical and physical properties. The second
segment encompasses the details of the experimental plan and work. The third segment incorporates
the measurement methodology.

Material

A rectangular plate of Udimet-L605 has been taken as work material of dimensions
400 mm � 150 mm � 6 mm respectively. Total 81 square pieces of dimension 12 mm � 12 mm have
been cut in material plate with WEDM. The chemical composition of material has been specified in
Table 1.

Experimental procedure

The experiments have been conducted on the Electronica sprint-cut (Electra-Elplus 40A DLX) CNC
WEDM as shown in Figs. 1 and 2. Plane brass wire of diameter 0.25 mm is utilized in WEDM cutting of
material. Deionized water is used as a dielectric medium at constant room temperature of 25 �C.

Six input variables, namely, Pulse-on (Ton) time, pulse-off (Toff) time, peak current (IP), wire tension
(WT), spark gap reference voltage (SV), wire feed (WF) and three one-way interactions, viz. Ton� Toff,
Ton� IP and Toff� IP have been chosen as input variables to elaborate the machining of Udimet-L605
with wire electric discharge machining. All of three interactions and variables were selected based on
preceding literature reviews. Three levels for each input parameters have been taken as depicted in
Table 2. The ranges and levels of these input parameters have been decided based on pilot experiments
performed by considering five levels of each input parameter and using one factor at a time approach
(OFAT).

Experimentation work has been designed by means of Taguchi method of design of
experimentation using a L27 orthogonal array. Based on the designed experimental layout as
specified in Table 3, total 27 experiments were performed randomly and each experiment is repeated
three times separately to consider the experimental error. Thus, total of 81 experiments have been
performed.

Measurement methodology

The surface roughness (SR) and waviness (Wa) of each experiment were measured using surfcom
roughness and waviness tester as delineated in Fig. 3. The roughness and waviness of each piece have
been checked on three sides of machined surfaces and three measurements were taken per surface.
Thus, an average of 9 reading/sample was taken as the average roughness and waviness of each piece.

Table 1
Chemical composition of Udimet-L605.

Composition Cobalt Chromium Tungsten Nickel Iron Manganese Copper

Value Wt.(%) 53.2 19.0 14.4 8.44 3.20 1.20 0.46
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Fig. 1. Experimental setup of WEDM machine.

Fig. 2. View of erosion process.

Table 2
Three level input variable description.

Parameters Designation Level Units
I II III

Ton A 106 (0.4) 114 (0.8) 122 (1.2) Mu (msec)
Toff B 28 (9) 38(13) 48 (22) Mu (msec)
IP C 130 160 190 Ampere
SV D 36 58 80 V
WT E 1020 (7) 1260 (9) 1500 (11) Mu (Gm)
WF F 6 8 10 m/min
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odel Wa BP-ANN
Wa

1.3040
1.1040
1.0880
1.0040
0.9370
1.1850
0.7860
1.1880
0.9970
1.5720
1.7270
1.7130
1.6530
1.6780
1.5480
1.5300
1.4090
1.5340
2.1750
2.1110
2.1850
1.8910
2.0940
2.0170
1.8840
1.9120
1.9151
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Table 3
Experimental outcome for the L27 orthogonal array.

Run 1 2 3 4 5 6 7 8 9 10 11 12 Mean SR
(mm)

SR pred. by fuzzy model Pred.SR by
BP-ANN

Mean Actual Wa (mm) Fuzzy M

A B A� B A� B C A�C A�C B� C D E B� C F

1 1 1 1 1 1 1 1 1 1 1 1 1 1.9837 1.8000 1.9930 1.3026 1.2800
2 1 1 1 1 2 2 2 2 2 2 2 2 1.8192 1.6000 1.8220 1.0905 1.0900
3 1 1 1 1 3 3 3 3 3 3 3 3 1.5615 1.4000 1.5640 1.0779 1.0900
4 1 2 2 2 1 1 1 2 2 2 3 3 1.8098 1.6000 1.8110 1.0055 0.9130
5 1 2 2 2 2 2 2 3 3 3 1 1 1.3120 1.1000 1.3130 0.9386 0.9130
6 1 2 2 2 3 3 3 1 1 1 2 2 2.0971 1.8000 2.1060 1.2016 1.2800
7 1 3 3 3 1 1 1 3 3 3 2 2 0.9053 1.0000 0.9100 0.7799 0.8160
8 1 3 3 3 2 2 2 1 1 1 3 3 1.5405 1.4000 1.5490 1.1931 1.2800
9 1 3 3 3 3 3 3 2 2 2 1 1 1.5298 1.4000 1.5360 0.9897 0.9130
10 2 1 2 3 1 2 3 1 2 3 1 2 2.3861 2.2000 2.3940 1.5723 1.6400
11 2 1 2 3 2 3 1 2 3 1 2 3 2.4455 2.5000 2.4470 1.7139 1.6400
12 2 1 2 3 3 1 2 3 1 2 3 1 2.4854 2.5000 2.4870 1.7141 1.6400
13 2 2 3 1 1 2 3 2 3 1 3 1 2.4413 2.5000 2.4460 1.6584 1.6400
14 2 2 3 1 2 3 1 3 1 2 1 2 2.3619 2.2000 2.3640 1.6594 1.6400
15 2 2 3 1 3 1 2 1 2 3 2 3 2.4000 2.5000 2.4090 1.5488 1.6400
16 2 3 1 2 1 2 3 3 1 2 2 3 2.3609 2.2000 2.3710 1.5317 1.4600
17 2 3 1 2 2 3 1 1 2 3 3 1 2.1148 2.0000 2.1190 1.4179 1.4600
18 2 3 1 2 3 1 2 2 3 1 1 2 2.1149 2.0000 2.1230 1.5309 1.4600
19 3 1 3 2 1 3 2 1 3 2 1 3 2.5478 2.5000 2.5490 2.1721 2.1200
20 3 1 3 2 2 1 3 2 1 3 2 1 2.4573 2.5000 2.4640 2.1178 2.1200
21 3 1 3 2 3 2 1 3 2 1 3 2 2.2946 2.2000 2.3000 2.1737 2.1200
22 3 2 1 3 1 3 2 2 1 3 3 2 2.2944 2.2000 2.2970 1.8857 1.8000
23 3 2 1 3 2 1 3 3 2 1 1 3 2.2352 2.2000 2.2410 2.1015 1.9700
24 3 2 1 3 3 2 1 1 3 2 2 1 2.5063 2.5000 2.5070 2.0118 1.9700
25 3 3 2 1 1 3 2 3 2 1 2 1 2.6913 2.6000 2.6910 1.8860 1.8000
26 3 3 2 1 2 1 3 1 3 2 3 2 2.6567 2.6000 2.6640 1.9083 1.8000
27 3 3 2 1 3 2 1 2 1 3 1 3 2.6560 2.6000 2.6630 1.9151 1.8000



The mean and predicted values of the surface roughness and waviness along with experimental layout
have been given in Table 3.

Modeling of the WEDM process

In this segment, the predicted values of surface roughness and waviness have been investigated
using advanced modeling technique like fuzzy-logic and back propagation artificial neural
networking. The significance of models has been identified based on graph plotted amide the actual
and predicted outcome of the model for SR and Wa. In addition to this, the evaluation parameters
performance like correlation coefficient (R) Nash-Sutcliffe model efficiency coefficient (NSE) and root
mean square error (RMSE) was calculated to decide the prominent model. Consequently, this section
consists of two segments as fuzzy-logic modeling and back propagation artificial neural network
modeling for the surface roughness (SR) and waviness (Wa).

Fuzzy-logic modeling for surface roughness and waviness

The fuzzy-logic inference engine is applied to the experimental data to identify the relation
between input and output variable. Based on experimental data, the predicted value of surface
roughness and waviness were attained using fuzzy inference engine. The consistency of the model is
evaluated by considering three evaluation parameters like Nash-Sutcliffe model efficiency coefficient
(NSE), correlation coefficient (R) and root means square error (RMSE) as depicted in Table 4.

Generally, a fuzzy process is a process of crisp-fuzzy-crisp for a real system. The original input and
the terminal output must be crisp variables, but the intermediate process is a fuzzy inference process.
The reason why one needs to change a crisp to a fuzzy variable is that, from the point of view of fuzzy
control or a human being’s intuition, no absolutely crisp variable is existed in our real world. It consists
of three phases as fuzzifier, fuzzy inference and defuzzifier as depicted in Fig. 4(a).

The fuzzification is the practice of mapping the crisp input and output variables into linguistics
value corresponding to fuzzy memberships. It is essential to instigate the rules which are in the form
of linguistic parameters. The fuzzifier takes the input data and established the limit to decide the

Fig. 3. Surface roughness tester.

Table 4
Performance evaluation result for the entire models.

Surface Roughness Waviness

Model Significant order R NSE RMSE R NSE RMSE

BP-ANN 1 1 0.9999 0.0057 0.9998 1 0.0079
Fuzzy-logic modeling 2 0.9787 0.9961 0.1359 0.9890 0.9981 0.0698
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concerned fuzzy set using membership functions. There are different types of fuzzy membership
function can be used such as triangular, gaussian shape, trapezoidal and arc etc. In the present study,
the triangular shape membership function is used for input and output variables as given in Eq. (1).

mz xð Þ ¼

0 x < p;
x � p
q � p

p � x � q;

q � x
r � q

q � x � r;

0 x > r

8>>>>><
>>>>>:

ð1Þ

P and r indicates the feet of the triangular function and q represents the peak of the triangular
function.

Three membership functions for each process variable and nine memberships function for each
response parameter were decided and communicated using the Mamdani fuzzy inference engine as
depicted in Fig. 5. The fuzzy membership function for one input variables has been shown in Fig.6 and

Fig. 4. (a) Fuzzy inference engine and (b) Method of defuzzification.

Fig. 5. Fuzzy inference engine set communication amide the six input variables and two output variables.
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membership function diagrams for surface roughness (SR) and waviness (Wa) have been shown in
Fig.7. The inputs and outputs in a fuzzy system were characterized by fuzzy rules which were decided
based on experimentation and engineering expert knowledge as epitomized by Fig. 8.

Fig. 6. Three membership functions for input variables.

Fig. 7. Nine membership functions for output variables.
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Fuzzy inference process is used to combine the membership functions with the control rules to
develop the fuzzy output to initiate the fuzzy inference process and arrange the fuzzy output as a
lookup table. The control rules are the core of the fuzzy inference process and these rules are directly
associated to a human being’s perception and feelings. In general, two most popular fuzzy inference
systems are available as: Mamdani fuzzy model and Sugeno fuzzy model. The selection depends on the
fuzzy reasoning and the formulation of fuzzy IF-THEN rules. Mamdani model is depended upon the
collections of IF-THEN rules by means of mutually fuzzy antecedent and consequent predicts as given
in Fig. 7 [18]. This model is advantageous because the rule bases were usually presented by experts.
Hence, the model is lucent to clarify and study. Because of easiness, Mamdani model is still most
commonly used technique for solving many real world problems.

Defuzzification process uses different methods to calculate each associated input and to
characterize the output into a table: known as the lookup table. It picks up the output from the lookup
table based on the current input during an application. Different methods of defuzzification can be
used such as centroid method as suggest by Takagi, middle of maximum (MOM), bisector of area
(BOA), last of the maximum (LOM) etc. are utilized to compute the associated control output as
depicted in Fig.4. (b) and each control output should be arranged into a table called lookup table [19].
In present study centroid approach is employed for defuzzification. The centroid method (COG) is the
most popular method of defuzzification and is widely utilized in actual applications as given in Eq. (2).

ZCOA ¼
X

z
mA zð Þ:Z:dxX
z
mA Zð Þdx ð2Þ

Where ZCOA is taken as crisp output, mA Zð Þ is used as aggregated membership function and Z is taken
as output variables.

Back propagation artificial neural network

The artificial neural network (ANN) is extensively engaged for numerical prophecy and
classification. It is fabricated with numbers of processing elements and comprises of three basic
layers such as the input layer, hidden layer and output layer correspondingly. The channel between the
layers corresponds to the weight association amid the nodes. Each processing node behaves like a
biological neuron and performs mainly two functions. First, it has done the sum of the product of

Fig. 8. The sum of the rules considered.
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entire input values and weight associated with every interaction. After that, this summation is
conceded over activation function f to create the outcome. By providing the weight, the network
generates an outcome which is existed near to the observed target outcome as symbolized in Eq. (3).

yj ¼ SWijxi ð3Þ
Where Wij is symbolized as the weight considered for the channel between the unit i to j and xi is
known as the process elements considered in the input layer. The outcome attained by employing
Eq. (3) is altered by the function to generate an outcome for the j unit. The different types of activation
function can be utilized, but the sigmoid function is employed in current research, which is specified
as:

f yj
� �

¼ 1
1 þ e�yj

ð4Þ

The gain parameter is taken one which can change the frame of the sigmoid function by magnifying
with yj as suggested by Schalkoff [20]. The interrelated weights were decided randomly by the
network after assigning some initial weight to the network. There are a number of algorithms which
can be employed to attain the negligible overall training error by adjusting the interconnected weight
[21]. The generalized delta rule or back propagation is the prominent method which is generally
employed for modeling the WEDM process. It is the continual process of minimizing the error
between the network consequences and target consequences of the training set. The training set
comprises of two data vector. The pattern is learned by a training data vector. The outcome of the
training set is contained in the output vector which is achieved by the network. The main intention of
the network is to minimize the error between the actual and predicted outcome of the model. This
error is then fed backward through the network towards the input layer with the weights connecting
the units being changed in relation to the magnitude of the error.

This process is repeated until the error rate is mi nimized or reaches an acceptable level, or until a
specified number of iterations have been accomplished as revealed in Figs. 9 and 10. For the further
details, reviewers are referred to follow the Haykin [22]. The controlling parameters of the neural
networks used in the present study are the number of hidden layers, number of nodes in the hidden
layers, learning rate (the amount by which the weights are updated), momentum (momentum applied
to the weights during updating), and number of iterations. The value of learning rate is 0.2,
momentum is 0.1 and number of iteration are 2000 with eight nodes in hidden layer respectively.

Result and discussion

The graph as shown in Fig. 11 is plotted between the actual and predicted value of SR obtained
through fuzzy logic modeling and back propagation neural network modeling. To analyze the
scattering around the agreement line (i.e. line at 45 degrees) two more lines in the range of �05% error

Fig. 9. BP-ANN network for SR.

S.S. Nain et al. / MethodsX 5 (2018) 890–908 899



has been plotted. It has been evaluated that most of the predicted value provided by fuzzy model and
BP-ANN model lies in the range of �05% error line which shows the consistency of both model. The BP-
ANN model was dominating the fuzzy model because the most of the predicted values of SR obtained
by BP-ANN model were lying on the agreement line and even the single predicted value of SR not
crosses the �05% error line as depicted in Fig. 11. While in case of fuzzy modeling, some predicted
value of SR crossing the �05% error line. Consequently, the fuzzy model was dominated by BP-ANN
model. In addition to this, the graph has been plotted amid the total number of experiments and
predicted value of SR by both models coupled with actual SR which prove that path followed by BP-
ANN SR line travels the same path exactly as followed by actual SR line. While the fuzzy SR line (dotted
line) was deviated from the actual SR line path (dark line) as depicted in Fig. 12. Therefore, it also
clarifies the dominancy of the BP-ANN model over the fuzzy model. It was further confirmed by
performance parameters as depicted in Table 4 which demonstrates that the value of R and NSE were
obtained highest and the RMSE value was least for the BP-ANN model for SR.

Similarly, the graph has been plotted between the actual and predicted value of waviness provided
by both models as depicted in Fig. 13. The maximum amount of predicted value of waviness existed on
or around the agreement line in comparison to the values predicted by fuzzy model. Figs.13 and 14 and
Table 4 demonstrated that the BP-ANN model provides the better results for waviness in contest with
fuzzy logic modeling as explained for surface roughness.

Further the error graphs have been plotted for the predicted results of SR and Wa to validate the
importance of the model relative to each other as portrayed in Figs. 15 and 16. Fig. 15 demonstrates
that BPANN model presents the better result in comparison to the fuzzy model for the surface

Fig. 11. Per. error line graph between actual and predicted value of SR obtained by fuzzy and BP-ANN model.

Fig. 10. BP-ANN model for Wa.
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Fig. 13. Percentage error line graph between actual and pred. val. of Wa obtained by fuzzy and BP-ANN models.

Fig. 12. Surface roughness plot for number of experiments.

Fig. 14. Surface waviness plot for no. of experiments.
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roughness. Similarly, the Fig.16 also proves the dominancy of BPANN model over the fuzzy model for
the waviness.

Optimization of surface roughness and waviness

The Taguchi’s technique is used for single response optimization. The selected characteristic,
surface roughness (SR) is of the type “Lower the Better”. The S/N ratio is calculated by the logarithmic
transformation of loss function given by Ross (1996) [23] as shown in Eq. (5).

Surface roughness is of the type “Lower the Better”. The S/N ratio is calculated as

S
N
ratio ¼ �10 log10

1
n

Xn
i¼1

y2i

" #
ð5Þ

ANOVA test has been conducted using the MINITAB-16 software in order to investigate the
significance of input parameters. Lower the P value or higher the F value indicates the degree of
importance of each input variable on surface roughness of Udimet-L605 at 95% confidence level. The
insignificant parameters have been discarded from the further analysis.

The overall average of SR is delineated as: m = 2.1485 mm
The predicted desirable outcome for the SR is delineated as:

mSR = = (mA1 + mB3 + mC2 + mD3 + mE3 + mF2) �5 m = 1.088 mm (6)

Fig. 15. Error graph of both model for SR.

Fig. 16. Error graph of both model for Wa.
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For the deliberation of confidence intervals, Eq. (7) was used as described by Ross (1996) [23].

CICE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa 1; f eð Þ: 1

nef f
þ 1

R

� �
: Ve

s
ð7Þ

Here fe is exemplified as error degree of freedom = 2
F0.05 (1,2) = 18.513 (standardized value at 95% assurance level)
Error variance (Ve) = 0.00074

neff ¼ N
1 þ Tot: degree of f reedom entailed in appraisal of mean

N = 81, Hence, neff = 81/(1 + 12) = 6.231
R = 3 By introducing all these values in Eq. (7)

CICE = 0.006765

Fig. 17. Influence of process variables on the mean value of SR.

Fig. 18. Interaction graph pertain to the S/N ratio of SR.
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Thus the upper and lower bound for SR at 95% assurance level is delineated as:

mSR = 1.0813 < mSR< 1.09479.

Fig.17 demonstrated that surface roughness increased with an increase in Ton time, IP, and WF, and
decrease with an increase in wire tensions, spark gap set voltage and pulse-off time. The increment in
Ton time duration integrated with decrements in Toff time duration formed the high discharge energy
which results in formation of big craters and large amount of material is melted on the surface of the
machined sample. The poor flushing of molten material due to the diminutive period of Toff time
generated the shape of substantial layers of debris and a recast layer on the upper machined surface of
the sample as entrenched by SEM image delineate in Fig. 23. The surface roughness abated with an
increment in spark gap voltage due to increase in the discharge gap between the wire and workpiece
which results in low discharge energy. With an increase in wire tension, the vibrations in the wire are
reduced, which result in improvement in surface finishing.

The Fig. 18 revealed that only interaction amid the Ton time and Toff times presents the striking
persuade on the mean and the variance value of the surface roughness.

The Table 5 demonstrated that the variables Ton time, Toff time, SV, WT and interaction amide
pulse-on time and pulse-off time have the significant influence on the mean and variance results for
the surface roughness.

Likewise, the desirable value of waviness is described as:

Table 5
ANOVA for the S/N ratio of SR.

Source DOF Sequ. SS Adjo SS Adjt. MS F ratio P value

A 2 82.5212 82.5212 41.2606 312.19 0.003
B 2 4.5488 4.5488 2.2744 17.21 0.055
C 2 0.714 0.714 0.3570 2.70 0.270
D 2 6.239 6.239 3.1194 23.60 0.041
E 2 8.469 8.469 4.2345 32.04 0.030
F 2 1.028 1.028 0.5139 3.89 0.205
A*B 4 13.023 13.023 3.2557 24.63 0.039
A*C 4 2.050 2.050 0.5124 3.88 0.215
B*C 4 7.876 7.876 1.9691 14.90 0.064
Residual Eroor 2 0.264 0.264 0.1322
Total 26 126.733

Fig. 19. Input variables vs mean value of waviness.
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The overall average of Wa is pronounced as: m = 1.5592 mm

mWa = = (mA1 + mB3 + mC2 + mD3 + mE3 + mF2) �5 m = 0.7864 mm and CICE = 0.03449

The upper and lower bound for the Wa at 95% assurance level is pronounced as: 0.7519 < mWa

< 0.8209.
The Fig. 19 asserted that waviness increased with an increase in the value of Ton time, IP and WF

and reduced with an increase in Toff time, SV and WT.
Fig. 20 revealed that interaction didn’t have significant influence on the variance results of

waviness, but the interactions between the Ton� Toff and Toff� IP have significant influence on mean
result of Wa.

Table 6 shows that the interactions didn’t have the significant effect on variance results. The
variable pulse-on time, pulse-off time, wire tension and spark-gap voltage presented the sterling
effect on the mean and variance results for the Wa.

Table 7 shows the optimal predicted value and confirmatory experimental value for the waviness.
The confirmatory experiments were performed and repeated three times at the optimal settings of
parameters. The mean value of the responses has been found to be good and existed within confidence
intervals. The confirmatory experiments were reiterated thrice times at the optimal grouping of
variables. The experimental confirmed value of the responses was existed within the confidence
interval limit. It is confirmed that both the response variables have minimum value at the same

Fig. 20. Interaction graph for the process variables vs S/N ratio of waviness.

Table 6
ANNOVA for S/N ratio of waviness.

Source DOF Sequ. SS Adjo SS Adjt MS F ratio P value

A 2 146.435 146.435 73.2173 1729.72 0.001
B 2 6.128 6.128 3.0642 72.39 0.014
C 2 0.524 0.524 0.2621 6.19 0.139
D 2 2.928 2.928 1.4638 34.58 0.028
E 2 6.161 6.161 3.0805 72.78 0.014
F 2 0.559 0.559 0.2796 6.60 0.132
A*B 4 0.402 0.402 0.1006 2.38 0.317
A*C 4 0.330 0.330 0.0826 1.95 0.366
B*C 4 1.816 1.816 0.4541 10.73 0.087
Residual Eroor 2 0.085 0.085 0.0423
Total 26 165.369
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combination of input variables as revealed by Table 7. Therefore, there is no need of employing the
multi-optimization approach. The Fig. 21 illustrated the percentage persuade of input variable on
mean output of SR and Wa, respectively.

Effect of process variables on white layer and recast layer thickness

The SEM analysis has been done for the trial 1th and 7th at constant lowest value of pulse-on time
duration as revealed by Fig. 22(a) and (b). With an upsurge in the value of pulse-off time duration and
spark gap voltage, the frequency of discharge formation has been decreased which in result, created
the least amount of thermal energy. Due to minimum thermal energy generation, less amount of
material is melted and evaporated from the surface of the material. Hence, the thickness of the white

Table 7
Optimal parameters confirmation table.

Approach Output Desirable setting Predicted desirable output Actual achived output

Taguchi optimization SR A1B3C2D3E3F2 1.088 mm 0.908 mm
Wa A1B3C2D3E3F2 0.7864 mm 0.7711 mm

Fig. 21. Percentage effect of variables on mean value of (a) SR (b) Wa.

Fig. 22. (a) White layer thickness for trial 1st (b) White layer thickness for the trial 7th.
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layer is decreased from 13.41 mm to negligible thickness as revealed in Fig. 22(a) and Fig. 22(b).
Therefore, quality of the machined surface of the work material is improved during running the
machine at the parameter setting for the experiment no. 7th.

In the same way, it is symbolized that the thickness of recast layer is decreased from 27.31 mm to
9.454 mm with an increase in the value of pulse-off time duration and spark-gap voltage as revealed in
Figs. 23 and 23(a) and (b). Hence, surface roughness and waviness were reduced with an increase in
pulse-off time and spark-gap voltage. An increase in wire tension intends to decrease in vibration in
the wire which also tends to decrease the surface roughness and waviness of the machined sample.

Conclusion

(1) Both, the fuzzy and BP-ANN model presents the good result for the SR and Wa. The BP-ANN model
proves its dominance over the fuzzy-logic model for both surface roughness and waviness of
machined sample in WEDM of aerospace super alloy Udimet-L605.

(2) The percentage significance of input variables on the surface roughness is specified as: Ton time
(79.0925%), interaction Ton x Toff (5.5373%), SV (5.3582%), WT (3.4530%), interaction Toff � IP
(2.6162%), Toff time (2.300%), peak current (0.5820%), WF (0.5625%) and interaction Ton � IP
(0.4681%), respectively.

(3) The percentage significance of input variables on the waviness of the machined surface is specified
as: Ton time (91.15%), Toff time (03.91%), SV (2.8%), WT (0.879%), WF (0.257%), IP (0.21%),
interaction Ton � Toff (0.281%), Ton � IP (0.0695%) and interaction Toff � IP (0.436%), respectively.

(4) The Ton time, interaction amid the Ton time and Toff time, SV and WT were the sterling variables
for the surface roughness.

(5) The Ton ti me, SV and Toff time were the sterling variables for the waviness.
(6) The thickness of white layer was negligible at minimum thermal energy condition.
(7) The thickness of recast layer is reduced to 9.434 mm during WEDM of Udimet-L605.
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