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Abstract: Extracts of Viscum album (VA); a semi-parasitic plant, are frequently used in the
complementary therapy of cancer and other immunological disorders. Various reports show that
VA modulates immune system and exerts immune-adjuvant activities that might influence tumor
regression. Currently, several therapeutic preparations of VA are available and hence an insight into
the mechanisms of action of different VA preparations is necessary. In the present study, we performed
a comparative study of five different preparations of VA on maturation and activation of human
dendritic cells (DCs) and ensuing CD4+ T cell responses. Monocyte-derived human DCs were treated
with VA Qu Spez, VA Qu Frf, VA M Spez, VA P and VA A. Among the five VA preparations tested
VA Qu Spez, a fermented extract with a high level of lectins, significantly induced DC maturation
markers CD83, CD40, HLA-DR and CD86, and secretion of pro-inflammatory cytokines such as IL-6,
IL-8, IL-12 and TNF-α. Furthermore, analysis of T cell cytokines in DC-T cell co-culture revealed
that VA Qu Spez significantly stimulated IFN-γ secretion without modulating regulatory T cells and
other CD4+ T cytokines IL-4, IL-13 and IL-17A. Our study thus delineates differential effects of VA
preparations on DC maturation; function and T cell responses.

Keywords: Viscum album; innate cells; dendritic cells; maturation; cytokines; T cell response; IFN-γ;
Th17; Th1; Th2; regulatory T cell

1. Introduction

Extracts of Viscum album L. (VA) or European mistletoe, a semi-parasitic plant, are traditionally
used for the complementary therapy of cancer and other disorders [1–4]. Several lines of evidence
indicate that VA improves patient survival, reduces the damage caused by conventional cancer
therapies and increases patients’ quality of life [1,5,6]. Depending on the concentration used for
treatment, mistletoe extracts induce tumor cell death and exert direct necrotic effects or apoptosis [2].
VA preparation is a heterogeneous mixture of several bio-active molecules, but the major components
are lectin and viscotoxin. Mistletoe lectin (ML) consists of two subunits, the A chain (29 KDa) and B
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chain (34 KDa). The A chain is responsible for ribosome inactivation, whereas the B chain helps in
binding to terminal galactoside residues on cell membrane [7,8].

Dendritic cells (DCs) are antigen presenting (APCs) and involved in mounting and modulating the
immune response. Being sentinels of the immune system, DCs bridge innate and adaptive immunity.
Thus, DCs are potential targets for the therapeutic intervention in immune-mediated conditions.
Immature DCs expressing low MHC II on their surface are specialized in uptake of antigens. Upon
receiving activation signals, DCs undergo maturation and induce distinct CD4+ T cell responses. The
mature DCs express high level of MHC II and co-stimulatory molecules and secrete a large array
of cytokines that mediate inflammation and CD4+ cell polarization [9–14]. However, in the absence
of danger signals, presentation of self-antigens by immature DCs promotes immune tolerance by
silencing the effector and autoreactive T cells and enhancing CD4+CD25+FoxP3+ regulatory T cells
(Tregs) or T regulatory type 1 cells [9,15–18].

As DCs have a central role in anti-tumor immune responses, efficient functioning of these cells is
crucial for the success of cancer immunotherapy [19]. DCs are immature and functionally defective in
cancer patients and tumor-bearing animals, possibly due to insufficient danger signals in the tumor
microenvironment [20]. Further, several reports indicate that tumor cells hamper the maturation
process of DCs and their capacity to prime protective T cell responses [21–24].

Our previous report demonstrates that VA Qu Spez, one of the VA preparations, induces activation
of human DCs, and DC-mediated CD4+ T cell proliferation and tumor-specific CD8+ T cell responses
as measured by IFN-γ and TNF-α secretion [25]. However, several therapeutic preparations of VA
are currently available. Each VA preparation is heterogeneous in its chemical composition and is
influenced by the host tree, harvest season and extraction method [26–28]. Therefore, the therapeutic
outcome of a particular VA preparation might not be similar to that of other preparations [29,30].
An insight into the mechanisms of action of different VA preparations is therefore necessary to provide
guidelines for the correct therapeutic use of VA preparations.

In the present study, we performed a comparative study of five different preparations of VA
(VA Qu Spez, VA Qu Frf, VA M Spez, VA P and VA A) on the maturation and activation of human DCs
and ensuing CD4+ T cell responses. Our data show that among five preparations tested, VA Qu Spez
is the most potent inducer of DC maturation and secretion of DC cytokines. Furthermore, VA Qu Spez
significantly stimulated IFN-γ secretion without modulating Tregs and other CD4+ T cytokines IL-4,
IL-13 and IL-17. Our study thus delineates differential effects of VA preparations on DC maturation,
function and T cell responses.

2. Results

2.1. Effect of Different VA Preparations on the Maturation of DCs

Immature DCs of 5 day old were either untreated or treated with five VA preparations at four
different concentrations: 5, 10, 15 and 20 µg/mL/0.5 ˆ 106 cells for 48 h. DCs were analysed for the
expression of various maturation-associated surface molecules (Figure 1A–F). We found that among
five VA preparations, only VA Qu Spez was able to significantly enhance the intensity of expression of
antigen presenting molecule HLA-DR, co-stimulatory molecules CD86 and CD40 and % of expression
of terminal maturation marker CD83. The induction of DC maturation by VA Qu Spez was observed
only at higher concentrations i.e., 15 and 20 µg. Further, the effect of VA Qu Spez on maturation of
DCs was dose-dependent. The expressions of CD40 and HLA-DR were 100% on control DCs and
were not altered by VA Qu Spez. VA Qu Spez also did not alter % expression of CD1a and intensity of
expression of CD83.

We observed that HLA-DR expression on VA Qu Spez (20 µg) and LPS (positive control, 10 ng/
0.5 million cells)-stimulated DCs was similar. However, induction of CD40 and CD86 by VA Qu Spez
was 2-fold lesser and CD83 was 4-fold lesser than LPS. In line with our previous report on stimulation
of tumor-antigen-specific cytotoxic T cell responses by VA Qu Spez-stimulated DCs [25], we found
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that these DCs expressed higher levels of HLA class I molecules (13.6% ˘ 1.1% on control DCs vs.
20.6% ˘ 3.2% on VA Qu Spez-stimulated DCs, n = 3). However, VA Qu Frf, VA M Spez, VA P and VA A
did not significantly modify the expressions of any of maturation-associated molecules on DCs. These
results suggest that among all preparations tested; only VA Qu Spez is able to induce maturation of DCs.
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It is well reported that DC-derived cytokines play a critical role in regulating the immune 
responses and in polarizing distinct CD4+ T cell responses. We analysed the differential effects of 
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As VA Qu Spez significantly induced maturation of DCs, it was likely that this effect is associated 
with modulation of DC cytokines. In fact, compared to control DCs, VA Qu Spez-treated DCs 
showed significantly increased secretion of IL-6, IL-8, IL-12 and TNF-α (Figure 2A–C,E). Control 
DCs secreted 4.7 ± 5.1 pg/mL of IL-6 and was enhanced to 156.9 ± 105.1 pg/mL by VA Qu Spez. In case 
of IL-8, control DCs secreted 102.2 ± 78.5 pg/mL, whereas VA Qu Spez at the highest concentration 
induced 612.1 ± 20.4 pg/mL. The Th1-polarizing cytokine IL-12 was secreted at 3.3 ± 4.9 pg/mL by 
control DCs and was increased to 10.4 ± 6 pg/mL by VA Qu Spez-treated DCs. TNF-α secretion by 
untreated DCs was 3.2 ± 2.1 pg/mL, and with VA Qu Spez treatment, this cytokine was increased to 
135.7 ± 37.9 pg/mL. We could observe a moderate but insignificant induction of the aforementioned 
DC cytokines by VA Qu Frf and VA M Spez. However, VA P and VA A did not modulate any of the 
DC cytokines (Figure 2A–C,E). These results show that VA Qu Spez is the most potent preparation that 
induces both maturation and cytokines by DCs. Of note, production of IL-10, an immunosuppressive 
cytokine was unaltered upon VA Qu Spez treatment (Figure 2D). Together, our data suggest that VA 

Figure 1. Differential effects of VA preparations on the phenotype of human DCs. Immature DCs were
treated with medium alone (control, labelled as ‘C’) or with five preparations of VA (VA Qu Spez,
VA Qu Frf, VA M Spez, VA P and VA A) at indicated concentrations for 48 h. Expressions (mean ˘
SEM, ě4 independent donors) of (A) CD1a; (B) CD83; (C) HLA-DR; (D) CD40; (E,F) CD86 on DCs
were analysed by flow cytometry. The data are presented either as % positive cells or MFI of indicated
markers. X-axis denotes concentrations of VA preparations. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.2. VA Qu Spez but Not Other VA Preparations Stimulate the Secretion of DC Cytokines

It is well reported that DC-derived cytokines play a critical role in regulating the immune
responses and in polarizing distinct CD4+ T cell responses. We analysed the differential effects of
various VA preparations on the secretion of DC cytokines such as IL-6, IL-8, IL-12, IL-10 and TNF-α.
As VA Qu Spez significantly induced maturation of DCs, it was likely that this effect is associated
with modulation of DC cytokines. In fact, compared to control DCs, VA Qu Spez-treated DCs showed
significantly increased secretion of IL-6, IL-8, IL-12 and TNF-α (Figure 2A–C,E). Control DCs secreted
4.7 ˘ 5.1 pg/mL of IL-6 and was enhanced to 156.9 ˘ 105.1 pg/mL by VA Qu Spez. In case of
IL-8, control DCs secreted 102.2 ˘ 78.5 pg/mL, whereas VA Qu Spez at the highest concentration
induced 612.1 ˘ 20.4 pg/mL. The Th1-polarizing cytokine IL-12 was secreted at 3.3 ˘ 4.9 pg/mL by
control DCs and was increased to 10.4 ˘ 6 pg/mL by VA Qu Spez-treated DCs. TNF-α secretion by
untreated DCs was 3.2 ˘ 2.1 pg/mL, and with VA Qu Spez treatment, this cytokine was increased to
135.7 ˘ 37.9 pg/mL. We could observe a moderate but insignificant induction of the aforementioned
DC cytokines by VA Qu Frf and VA M Spez. However, VA P and VA A did not modulate any
of the DC cytokines (Figure 2A–C,E). These results show that VA Qu Spez is the most potent
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preparation that induces both maturation and cytokines by DCs. Of note, production of IL-10, an
immunosuppressive cytokine was unaltered upon VA Qu Spez treatment (Figure 2D). Together, our
data suggest that VA Qu Spez significantly induces several pro-inflammatory cytokines without
modulating immune-suppressive cytokine IL-10.
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Figure 2. VA Qu Spez but not other VA preparations stimulate the secretion of DC cytokines. Immature
DCs were untreated (control, labelled as ‘C’) or treated with five preparations of VA at various
concentrations for 48 h. The amount (pg/mL, mean ˘ SEM, four independent donors) of (A) IL-6;
(B) IL-8; (C) IL-12; (D) IL-10; and (E) TNF-α in cell-free supernatants was measured. ** p < 0.01,
*** p < 0.001, **** p < 0.0001.
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Figure 3. Effect of various VA preparations on the CD4+ T cell responses. DCs were treated with medium 
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CD4+ T cell subsets by intra-cellular cytokines (IFN-γ, IL-4, IL-17A) or transcription factor (FoxP3) for 
Th1, Th2, Th17 and Tregs respectively. (A,C,E,G) representative dot plots showing the proportion of 
IFN-γ+, IL-4+, IL-17A+ CD4+ T cell and CD4+CD25+Foxp3+ T cells respectively; (B,D,F,H) Percentage 
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Treg cells respectively. ns, non-significant. 

  

Figure 3. Effect of various VA preparations on the CD4+ T cell responses. DCs were treated with
medium alone (DC Ctrl, labelled as ‘C’) or with five preparations of VA for 48 h. These DCs were
co-cultured with CD4+ T cells at 1:10 ratio. After five days of co-culture, the cells were analysed
for the various CD4+ T cell subsets by intra-cellular cytokines (IFN-γ, IL-4, IL-17A) or transcription
factor (FoxP3) for Th1, Th2, Th17 and Tregs respectively. (A,C,E,G) representative dot plots showing
the proportion of IFN-γ+, IL-4+, IL-17A+ CD4+ T cell and CD4+CD25+Foxp3+ T cells respectively;
(B,D,F,H) Percentage (mean ˘ SEM, six independent donors) of IFN-γ+ Th1, IL-4+ Th2, IL-17A+ Th17
and CD4+CD25+Foxp3+ Treg cells respectively. ns, non-significant.
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2.3. Differential Effects of VA Preparations on the CD4+ T Cell Response

One of the key functions of APC is to promote CD4+ T cell responses. DCs primed with various
preparations of VA were co-cultured with CD4+ T cells and Th1, Th2, Th17 and Treg responses were
determined by flow cytometric analysis of intracellular IFN-γ (Th1), IL-4 (Th2), IL-17A (Th17), FoxP3
(Treg). Although VA Qu Spez induced maturation of DCs, this effect was not associated with the
modulation of frequency of any of the T cell subsets (Figure 3A–H). However, analysis of amount
of secretion of T cell cytokines in DC-CD4+ T cell co-culture revealed that VA Qu Spez significantly
stimulated IFN-γ secretion (Figure 4A), without having any effect on the secretion of IL-4 (Figure 4B),
IL-13 (Figure 4C) and IL-17A (Figure 4D). These results suggest that VA Qu Spez selectively favours
Th1 responses without modulating Th2, Th17 and Treg responses. Other four preparations of VA did
not alter either frequency of T cell subsets or secretion of various T cell cytokines. These results were in
line with the fact that VA Qu Frf, VA M Spez, VA P and VA A did not induce maturation and activation
of DCs.
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Figure 4. VA Qu Spez-educated DCs significantly induce the secretion of Th1 cytokine IFN-γ in 
DC-CD4+ T co-cultures. Immature DCs were treated with medium alone (control, labelled as ‘C’) or 
with five preparations of VA for 48 h. These DCs were co-cultured with CD4+ T cells for five days. 
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and (D) IL-17A in the cell-free supernatants from the above co-cultures was presented. * p < 0.05. 
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Spez selectively induces IFN-γ responses. Although not examined in DCs, we have recently shown 
that VA Qu Spez inhibits COX2-mediated PGE2 in epithelial cell line [41,42]. Therefore, it is likely 
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Tregs in the present study. As these data are from the in vitro experiments, further work is necessary 
to validate these results from the patients treated with VA. Of note, through enhancement of Fas/FasL 

Figure 4. VA Qu Spez-educated DCs significantly induce the secretion of Th1 cytokine IFN-γ in
DC-CD4+ T co-cultures. Immature DCs were treated with medium alone (control, labelled as ‘C’) or
with five preparations of VA for 48 h. These DCs were co-cultured with CD4+ T cells for five days.
Amount (pg/mL, mean ˘ SEM, five independent donors) of secretion of (A) IFN-γ; (B) IL-4; (C) IL-13;
and (D) IL-17A in the cell-free supernatants from the above co-cultures was presented. * p < 0.05.

3. Discussion

Currently available mistletoe extracts are highly heterogeneous due to differences in the host trees,
nutritional source, season of harvest, and extraction methods [4,26–28]. Therefore, VA preparations
could exert divergent biological activities. However, comparative study of immunomodulatory
properties of different VA extracts on immunocompetent cells such as DCs has not been performed to
date. The present data therefore provide guidelines for the therapeutic use of VA preparations.

IFN-γ plays an important role in mediating the protective immune response against cancer,
viral and intracellular bacterial infections [31]. IFN-γ enhances MHC class I expression on tumor
cells and MHC class II expression on APCs like DCs, which in turn link innate and adaptive
immunity [32]. IFN-γ responsiveness of tumor cell is important for the successful immune recognition.
Indeed, it has been demonstrated that mice that are non-responsive to IFN-γ develop more tumors
as compared to wild-type mice. Studies have shown that cross-talk between lymphocytes and
IFN-γ/STAT1 signalling pathway plays an important role in maintaining the immune competiveness
of the host [33]. Idiotype-specific CD4+ Th1 cells can achieve tumor apoptosis directly by Fas/Fas L
interaction and indirectly by IFN-γ production [34]. Thus, IFN-γ pathway is considered as an extrinsic
tumor-suppressor mechanism [35]. We found that VA Qu Spez significantly enhances IFN-γ production
without modulating Treg subsets and production of other T cell cytokines IL-4, IL-13 and IL-17A. This
selective enhancement of Th1 cytokine strongly supports the use of VA as an immune modulator.

The success of DC-based cancer immunotherapies is dependent on the maturation status of DCs,
their migration capacity and ability to mount protective T cell responses [36]. DC immunotherapy for
cancer in humans though shown promises, it has not met with great success as compared to therapeutic
molecules that target immune checkpoints. The reasons are multiple including poor survival of
transferred DCs, limited number of DCs reaching the secondary lymphoid organs, heterogeneity
in the DC subtypes and immune suppressive environment created by the tumor. Previous reports
have shown that PGE2 produced by DCs mediate Treg expansion [37–39], which might help in tumor
evasion. Vaccination of cancer patients with ‘PGE2-educated DCs’ also induced Treg expansion in the
patients [40]. We observed that VA Qu Spez did not modulate Treg responses suggesting that VA Qu
Spez selectively induces IFN-γ responses. Although not examined in DCs, we have recently shown
that VA Qu Spez inhibits COX2-mediated PGE2 in epithelial cell line [41,42]. Therefore, it is likely
that VA Qu Spez-mediated suppression of COX-2 in DCs might be responsible for nonmodulation of
Tregs in the present study. As these data are from the in vitro experiments, further work is necessary
to validate these results from the patients treated with VA. Of note, through enhancement of Fas/FasL
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expression and caspase activation, IFN-γ has been shown to enhance apoptotic response to ML II in
human myeloid U937 cells [43].

MLs are the active components of mistletoe extracts and have several functions. The cytotoxicity
of mistletoe is attributed majorly to its lectin contents [44,45] and lectin internalization is required for
ML-I-mediated apoptosis [46]. MLs are responsible for stimulating cells of the innate and adaptive
immune system such as DCs, macrophages, natural killer cells, and B and T lymphocytes. This
function of MLs might represents one of the mechanisms responsible for the anti-tumoral and
immunomodulatory effects of mistletoe extracts. It is known that ML-I B chain causes Ca2+ influx
in Jurkat cells and is mediated by its interaction with surface glycoprotein receptors [47]. Chemical
labelling of the lectin revealed that it binds to surface of peripheral and intra-tumoral monocytes [48].

A recent study shows that 3D structure of ML-A chain shares structural homology with shiga
toxin from Shigella dysenteriae and provides an explanation for the strong immune stimulatory capacity
of ML [49]. It is also demonstrated that Korean mistletoe lectin (KML) induces activation of innate
cells by TLR4-mediated signalling [50]. The nature of the receptor(s) on DCs that recognizes ML
and mediates activation is not known. Since Korean ML and European ML share 84% sequence
identity [51], it is presumable that European ML might signal DCs via TLR [49]. However, we
found that not all VA preparations are stimulatory on DCs. VA Qu Frf, an unfermented preparation
containing the highest concentration of lectin and viscotoxin was unable to activate DCs. Other
VA preparations, which are fermented and contain low lectin, were also unable to stimulate DCs,
whereas VA Qu Spez, a fermented preparation that contains the second highest concentration of lectin
(785 ˘ 10% ng/mL) efficiently activated DCs and promoted Th1 response. These results suggest that
mere lectin content in a VA preparation does not necessarily determine its immunostimulatory capacity.
The methodology of preparation, i.e., fermented vs unfermented, might be crucial for conferring the
stimulatory properties to VA. Alternatively, the fermentation process might modify the structure of the
lectins of the VA preparation.

To conclude, our study delineates the differential effects of various VA preparations on DC
maturation, function and T cell responses. These results reveal that VA Qu Spez is the most potent
preparation in activating DCs and promoting Th1 response. The current evidence to support mistletoe
therapy in oncology is weak [52]. Thus, this study along with other reports on mistletoes [53–60]
provides a rational for examining the use VA as an immune modulator. Such mechanistic studies are
also important to undertake randomised clinical trials to improve level of evidence for the use of VA in
complementary therapy of cancer.

4. Materials and Methods

4.1. VA Preparations

Five clinical grade preparations of VA (VA Qu Spez, VA Qu Frf, VA M Spez, VA P and VA A)
obtained from Hiscia Institute, Verein für Krebsforschung (Arlesheim, Switzerland) were used. These
preparations were free from endotoxins and were formulated in 0.9% sodium chloride isotonic solution
as 5 mg/mL vials. The chemical compositions of the VA preparations are provided in Table 1.

Table 1. Composition of VA preparations.

Preparation
Concentration Host Trees Lectin Content

(ng/mL)
Viscotoxin

Content (µg/mL)
Method of

Preparation

VA Qu Spez 10 mg Quercus (Oak) 785 ˘ 10% 5 ˘ 5% Fermented
VA Qu Frf 10 mg Quercus (Oak) 2391 ˘ 10% 19 ˘ 5% Unfermented
VA M Spez 10 mg Malus (Apple) 548 ˘ 10% 4 ˘ 5% Fermented

VA P 10 mg Pinus (Pine) 28 ˘ 10% 6 ˘ 5% Fermented
VA A 10 mg Abies (Fir) 23 ˘ 10% 19 ˘ 5% Fermented
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4.2. Human DCs

Human monocyte-derived DCs were used as a source of DCs. Peripheral blood mononuclear cells
(PBMC) were isolated from buffy coats of healthy donors. The buffy coats were purchased from Centre
Necker-Cabanel (EFS, Paris, France). Ethics committee approval for the use of such material (Institut
National de la Santé et de la Recherche-EFS Ethical Committee Convention N˝12/EFS/079) was
obtained and experiments were performed in accordance with the approved guidelines of INSERM.
Circulating monocytes were isolated using CD14 microbeads (Miltenyi Biotec, Paris, France) and
were cultured for 5 days in RPMI 1640 containing 10% fetal calf serum, rhIL-4 (500 IU/106 cells) and
rhGM-CSF (1000 IU/106 cells) to obtain immature DCs [61].

4.3. Viscum Album Treatment of DCs

Immature DCs were washed and cultured in rhIL-4 and rhGM-CSF and treated with VA Qu Spez,
VA Qu Frf, VA M Spez, VA P and VA A at four different concentrations: 5, 10, 15 and 20 µg/mL/
0.5 million cells for 48 h. Cell culture supernatants were collected for analysing the cytokines and DCs
were analysed for the phenotype by flow cytometry.

4.4. DC: CD4+ T Cell Co-Cultures

CD4+ T cells were isolated from the PBMC using CD4 microbeads (Miltenyi Biotec). VA-treated
DCs were washed extensively and seeded with 1 ˆ 105 responder allogeneic CD4+ T cells at DC:
T cell ratio of 1:10. On 5th day, CD4+ T cell responses were analysed by intra-cellular staining for
specific T cell cytokines (IFN-γ, IL-17A and IL-4) and transcription factor (FoxP3). The cell-free culture
supernatants were analysed for the cytokines secreted.

4.5. Flow Cytometry

For surface staining, following Fc receptor blockade, antibodies against surface molecules were
added at pre-determined concentration and incubated at 4 ˝C for 30 min. FITC-conjugated monoclonal
antibodies (MAbs) to CD1a, CD86, HLA-DR, and CD25; PE-conjugated MAbs to CD83 (all from
BD Biosciences, Le Pont de Claix, France), CD40 (Beckman Coulter, Villepinte, France) and Alexa
Fluor® 700-conjugated MAbs to CD4 (eBioscience, Paris, France) were used for the analysis of
surface phenotype.

For intra-cellular staining, cells were stimulated with phorbolmyristate acetate (50 ng/mL;
Sigma-Aldrich, St. Quentin Fallavier, France) and ionomycin (500 ng/mL; Sigma-Aldrich) at 37 ˝C
for 5–6 h in the presence of golgi-stop (BD Biosciences) during the last 2 h. Cells were fixed and
permeabilised using Foxp3 Fixation/Permeabilization kit (eBioscience) and incubated at 4 ˝C with
FITC-conjugated MAbs to IFN-γ (eBioscience), PE-conjugated MAbs to IL-17A and IL-4 (eBioscience),
and APC-conjugated MAbs to FoxP3 (eBioscience). Live-dead cells were differentiated by PO-Fixable
Viable dye (eBioscience).

Cells were acquired on LSR II and processed with FACS DIVA software (BD Biosciences) and
analysed by Flowjo. The data were presented as % positive cells for indicated markers or mean
fluorescence intensities (MFI) of their expression.

4.6. Cytokine Assay

IL-6, IL-8, IL-10, IL-12, TNF-α, IL-4, IL-13, IFN-γ and IL-17A in the cell-free culture supernatants
were quantified by Ready-SET-Go enzyme-linked immunosorbent assay (ELISA) kits (eBioscience).

4.7. Statistical Analysis

The significant differences between samples were determined by One-way ANOVA Tukey’s
multiple comparison test using Prism 5 software (GraphPad Software Inc., La Jolla, CA, USA). Values
of p < 0.05 were considered statistically correlated (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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5. Conclusions

Our study demonstrates the differential effects of various VA preparations on human DC
activation and ensuing CD4+ T cell responses. Our data reveal that VA Qu Spez is the most potent VA
preparation in activating DCs and promoting Th1 response.
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