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Abstract: One of the core problems for people with multiple sclerosis (pwMS) is the impairment
of their ability to walk, which can be severely restrictive in everyday life. Therefore, monitoring of
ambulatory function is of great importance to be able to effectively counteract disease progression.
An extensive gait analysis, such as the Dresden protocol for multidimensional walking assessment,
covers several facets of walking impairment including a 2-min walk test, in which the distance taken
by the patient in two minutes is measured by an odometer. Using this approach, it is questionable
how precise the measuring methods are at recording the distance traveled. In this project, we
investigate whether the current measurement can be replaced by a digital measurement method
based on accelerometers (six Opal sensors from the Mobility Lab system) that are attached to the
patient’s body. We developed two algorithms using these data and compared the validity of these
approaches using the results from 2-min walk tests from 562 pwMS that were collected with a
gold-standard odometer. In 48.4% of pwMS, we detected an average relative measurement error of
less than 5%, while results from 25.8% of the pwMS showed a relative measurement error of up to
10%. The algorithm had difficulties correctly calculating the walking distances in another 25.8% of
pwMS; these results showed a measurement error of more than 20%. A main reason for this moderate
performance was the variety of pathologically altered gait patterns in pwMS that may complicate
the step detection. Overall, both algorithms achieved favorable levels of agreement (r = 0.884 and
r = 0.980) with the odometer. Finally, we present suggestions for improvement of the measurement
system to be implemented in the future.

Keywords: multiple sclerosis; gait analysis; mobility; digital tools and applications

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory, progressive disease of the central
nervous system. Based on its multifocal, inflammatory lesions in the central nervous
system, MS is characterized by deficits in different neurological functional systems, which
leads to a wide range of symptoms and a highly individualized course of the disease [1,2].
It is important to phenotype the different symptoms of MS to adapt the management
of the disease [3,4]. For many people with MS (pwMS) the limitation on the ability to
walk is a clinical hallmark of their disease. Walking problems have a major impact on
important areas of life and contribute significantly to the patient’s quality of life. Up to 85%
of pwMS report impairments in their ability to walk [5]. Kister et al. stated that 5 years
after disease onset, 45% of pwMS reported mild gait deficits, and after 30 years of disease,
only 18% of pwMS were able to walk without problems or with minimal limitations [6].
Different pathophysiological components such as spasticity, paresis, or sensitivity and
balance disorders contribute to the development of patient-specific gait disorders [7,8].
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In pwMS, walking impairments are characterized by a decreased gait speed, walking
endurance, step rate, and cadence in addition to an increased variability of gait [9–11].
All these gait impairments increase with the progression of the disease. In routine clinical
practice, limitations in mobility are primarily assessed with the Expanded Disability Status
Scale (EDSS). Less frequently, various time-based walking tests are applied, which are
often subject to intraindividual and interindividual variation [12–14]. For a better detection
of mobility impairments and a high-quality, clinically relevant characterization of pwMS,
an objective multimodal assessment of gait changes, such as the Dresden protocol for
multidimensional walking assessment (DMWA), is important [15–17]. Different walking
domains, such as gait quality, maximal walking speed, patient-reported outcomes, and
also gait endurance should be assessed, with the aim to provide a more objective and
standardized measurement of walking ability in addition to the EDSS [16].

Specifically, testing of walking endurance is used as an important marker in various
medical settings. The Cooper 12-min walk test was originally developed for physical
fitness [18]. As time progressed, shorter versions of this endurance walk test, such as the
six- and two-minute walk test (6MWT, 2MWT) were developed [19]. In medicine, the gold
standard of endurance testing is considered to be the 6MWT [7]. However, some patients
are unable to walk for longer than two minutes. So, the 6MWT is often too strenuous
and time consuming for cardiac patients and also for pwMS, so the 2MWT became a
practical alternative in this case [19–21]. This is a popular and well-established walking
test to obtain a detailed impression of walking ability [22] that can be well compared to the
6MWT [20,22,23].

For subtle changes in gait and the detection of an early deterioration in endurance, an
accurate measurement of the distance covered is required. Estimating the total distance
by multiplying the number of gaits covered does not meet the requirement for accuracy.
Unlike an estimate of the total distance travelled, an odometer objectively measures the
distance travelled. An odometer is clinically approved and considered the gold standard.
Odometers are in principle well suited for measuring longer distances with quite high
measuring accuracy [24]. For this reason, they are widely used for the measurement of
walking distance in clinical environments [16,25–28]. An odometer is a measuring wheel
with an integrated counter, a handpiece, and a digital display. It is designed for distance
measurements on flat ground. For this purpose, the odometer is pushed over the floor
in such a way that the wheel rolls permanently without slip. Although an odometer
objectively measures the distance travelled, it does not measure the exact distance travelled
by the patient within the given time. Using a stopwatch, the tester must measure exactly
two minutes so that the odometer can be stopped afterwards, which creates a delay effect of
the distance measurement. Patients can show different evasive movements when walking
the distance. This is due, among other things, to the pathological gait pattern and obstacles
in the course. Furthermore, the turn at the end of the gait is displayed inaccurately because
the reversal angle with the odometer is different. In addition, there is the possibility of a
speed influence that is subconsciously transferred from the tester with the odometer to the
person being tested. To prevent a lower inter-rater reliability by changing the respective
examiner, the person to be tested should walk the 2MWT completely alone.

The aim of the study is to address exactly this problem by improving the existing
monitoring of multidimensional gait analysis in its complexity and efficiency and increas-
ing its objectivity. A digitalization in this field, through the integration of appropriate
algorithms can optimize the efficiency and quality of patient management [29]. The use
of inertial measurement units (IMUs) is becoming increasingly popular for determining
gait deficits, such as with the 6MWT [30]. In particular, the distance traveled is often
calculated from IMU data [31–33]. Retory et al. compared the distance traveled, which
was classically calculated from the product of the number of steps (from video recordings)
with the median step length, with IMU data from an accelerometer and a correlation of
r = 0.99 [32] was shown. When calculating the distance traveled using IMUs no other
measurement instruments were needed, thus resulting in less bias in the measuring method.
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Furthermore, the use of IMUs facilitated the application of the 2MWT in a setting outside
the clinic. The development of such a digital measurement method is relevant to the
structural shift towards home-based assistive devices for which simple digital measure-
ment methods are needed, as well as to simplify the clinical measurement process while
improving measurement accuracy.

For this purpose, we developed two algorithms using accelerometer data. These two
approaches were compared and their basic functionality was evaluated in a monocentric
study with the gold standard of odometers.

2. Materials and Methods

This work investigates whether the 2MWT with an odometer can be replaced by a
2MWT with accelerometers. From the sensor data of the body-worn sensors, the total dis-
tance can be determined using two developed algorithms. The first approach provides an
overall evaluation of the total acceleration (Digiwalk algorithm, DWA) signals. The second
approach calculates the total distance based on an average stride length (Mobility Lab
algorithm, MLA). The primary focus of this study is to compare the accuracy of the DWA
and MLA with the gold-standard odometer.

2.1. Population

Data from 562 patients were used for the analysis, which were recorded between
July 2018 and February 2020 at the MS Center Dresden of University Hospital Carl Gustav
Carus, Dresden. All pwMS completed a multidimensional gait analysis according to
the DMWA protocol as part of their clinical outpatient visit. We included patients with
a reliable diagnosis of MS, which were able to walk with or without assistive devices.
Each participant was examined according to good clinical practice guidelines. The study
was approved by the local ethics committee (BO-EK-320062021).

2.2. Procedure of the 2-Min Walk Test (2MWT)

For the 2MWT, the pwMS wore six Mobility Lab Opal sensors (APDM, Portland, OR,
USA) and were asked to walk along a hospital corridor approximately 25 m long for two
minutes. Walkers could be used during the test, but the patient had to be able to walk
independently. Short breaks could also be taken, but these were recorded during the two
minutes. To allow accurate distance measurement, the examiner walked behind the patient
to match the patient’s speed and not dictate his or her own walking pace. The distance
traveled was recorded with an odometer, and the respective time needed was checked with
a stopwatch. For each patient, the covered distance of the 2MWT was measured with the
odometer and the file with the acceleration values was archived.

2.3. Distance Measurement with Acceleration Sensors

An accelerometer is a sensor that determines the acceleration it experiences by mea-
suring the inertial force acting on a test mass. In the accelerometer-based measurement
method, we used Mobility Lab Opal sensors (APDM, Portland, OR, USA) to measure
spatiotemporal gait parameters of patients during walking trials. There were six individual
sensor units that were attached to the patient’s wrists, ankles, sternum, and lower back
(Figure 1) [34].

Location of the motion sensors on specific body parts was used to obtain valid gait
and balance parameters. Being consistent with other motion sensors worn on the body, the
sensor to measure upper sway was placed in front of the sternum 2 cm below the jugular
fossa [35]. Another sensor was placed on the lumbar spine at L5 to measure lower trunk
balance [35–37]. To measure the arm swing, two sensors were placed at the left and right
wrist, 4 cm from the dorsum of the hand [38]. The last two sensors for spatiotemporal
gait parameters were attached to the forefoot [39,40]. Each sensor unit contained a three-
axis accelerometer, three-axis gyroscope, and a magnetometer. Measurement data were
collected after each walking test by plugging the sensors into the access point, which
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automatically generated a single file containing the raw kinematic measurements [41].
We used the acceleration data contained in these files to estimate the distance walked by
the patient.
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While accelerometers are a well-established method for gait analysis in the clinical
environment, they are currently not commonly used for measuring walking distances [42].
However, acceleration measurements of any sensor unit carry a measurement error caused
by tiny drift rates of the gyroscopes that must be compensated for by the algorithms
employed [43]. In fact, extracting precise distance values from acceleration data requires
exceptionally sophisticated algorithms that employ methods from the field of inertial
navigation [43].

There are essentially two different algorithmic approaches to extract distance informa-
tion from acceleration data.

2.3.1. Digiwalk Algorithm (DWA)

The underlying idea of the DWA is to calculate velocity from acceleration (a(t)) by
integration over time. Repeating this procedure to integrate velocity over time results in
the distance traveled (s(t)) at the following rate:

s(t) =
x

a(t)d2t
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Foxlin and Bebek et al. demonstrated that two sensors that were each attached to
an ankle provided sufficient information about the distance walked [43,44]. The reason
being that the ankles experienced the greatest acceleration during walking which led to
a high signal to noise ratio and a highly detectable movement signal. Furthermore, we
leveraged the fact that each foot stands completely still for a brief moment during each
walking cycle. Velocity and distance can be calculated from acceleration data by integration
over time. Due to the drift of the acceleration sensors and the resulting double integration
of a possible error, the calculated values deviated more from the real values over longer
distances. To compensate for these errors, the periodical standstills of the feet allowed
us to continuously set the velocity to zero whenever a resting foot was detected, which
eliminated the drift of the calculated values. We followed the approach of Foxlin who
proposed to apply these zero velocity updates (ZVU) to solve the problem of drifting
values for velocity and distance [43]. To the extent that this method builds on the raw
acceleration data from the Mobility Lab system, we called this approach the Digiwalk
algorithm. The following section describes the DWA that we implemented to determine
the distance traveled from the raw acceleration data. Figure 2 illustrates the process.
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The first step was to preprocess and clean the acceleration data from the influence
of gravity. Therefore, from each acceleration component ax, ay, and az, we subtracted its
mean. Subsequently we reduced unwanted frequency components in the signals (which
were sampled at 128 Hz) by applying a low pass filter with a cut-off frequency of 60 Hz.
Next, we detected the time periods during which each foot was resting. Since a resting foot
should only experience the acceleration of gravity, which we removed from the signal, we
searched for sections with a total acceleration of zero plus a threshold for measurement
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inaccuracy. We determined the optimal threshold in preliminary experiments to be 1 m
s2 by

varying the threshold value until each step of a test subject was detected for an appropriate
duration (stance duration). The results of our step detection are illustrated in Figure 3,
which shows the raw acceleration data of one foot as well as the time intervals in which
the algorithm declared the foot was resting.
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Figure 3. Total acceleration of one foot with detected resting periods (red).

In addition to the detection of a single resting foot, we also identified time periods
during which the patient completely stopped walking. This occurred frequently during
the walking tests since some patients were severely restricted in their ability to walk for
longer periods of time. The patient was declared to be resting as soon as both feet were
found to be resting simultaneously for more than one second. The integration process was
paused for both feet as soon as the standstill of the patient was detected. To calculate the
distance walked, we separately integrated each component of the acceleration signal twice
over time. Integration was suspended for the time interval in which either one or both feet
were detected to be resting and continued afterwards starting with an initial value of zero.
The difference between the calculated velocity curves of one foot with and without ZVU
can be seen in Figure 4.
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Even though each step was clearly visible in the velocity diagram without ZVU in
Figure 4a, the curve contradictorily suggests that the foot never reached a velocity of zero.
By contrast, the velocity curve with applied ZVU in Figure 4b depicts each step realistically
with short periods of zero velocity while the foot is resting.

Finally, the difference between the calculated distances with and without stop detec-
tion is shown in Figure 5, which depicts an experiment in which a test subject walked to
stop at t = 10 s for approximately 6 s. While the distance calculated without stop detection
continued growing even though the test subject was standing still, the curve with stop
detection stopped growing properly at this point.
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2.3.2. Mobility Lab Algorithm (MLA)

Capela et al. presented a possible approach for inertial navigation [45]. They used
raw accelerometer data processing for the 6MWT in a clinical setting and employed an
activity detection to distinguish walking from standing times. By multiplying the average
stride lengths by the number of steps taken, the walked distance was determined [45].
The number of steps could be recorded using a pedometer or peak identification of the
acceleration data. In our work, we used the same approach as just described. The distance
traveled in two minutes were estimated by multiplying the stride length by the number of
steps per minute. As the calculation was based on the stride length output by the Mobility
Lab System, we refer to it as the Mobility Lab algorithm.

2.4. Statistical Methods

Continuous variables were presented as mean ± standard deviation (SD) or median
with interquartile range (IQR), where appropriate. Categorical variables were described in
absolute numbers and percentages. We calculated the mean of the differences between the
DWA, MLA, and odometer measurement series, the SD, and the 95% limits of agreement
(=mean ± 1.96 × SD) to describe the agreement between the MLA and the DWA to the
standardized odometer measurement method. Bland–Altman plots, Pearson’s r, and
intraclass correlation coefficients (ICC) were calculated to compare the three estimates of
distance (odometer, DWA, MLA). ICC levels were interpreted according to the guidelines
of Koo and Li (below 0.50: poor, between 0.50 and 0.75: moderate, between 0.75 and 0.90:
good, above 0.90: excellent) [46]. Mean values were tested for significance using a t-test
for systematic differentiation between the distance traveled by the different measurement
methods and the use of assistive devices. In order to assess important variables influencing
the measurement series and their measurement errors, Kendall’s tau-b correlation analyses
were performed. Kendall’s tau-b (τb) has been defined for level 0.1 to 0.3 as weak, for level
0.3 to 0.5 as moderate, and above 0.5 as strong correlation. Linear model analyses were
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performed to determine variables influencing DWA and MLA. An identity linkage function
linear model were used for normally distributed data with the factors of age, sex, degree of
disability (via EDSS), the use of assistive devices, and subtype of MS (relapsing–remitting,
primary progressive, and secondary progressive). The level of statistical significance was
set at α = 5%. All statistical analyses were performed using IBM SPSS Statistics 27 (SPSS,
Chicago, IL, USA).

3. Results

The analysis used data from 562 pwMS performing the 2MWT. There was an age
distribution of 16 to 79 years among the patients, with a mean age of 43.15 (SD ± 12.31)
years. A figure of 69.8% of the pwMS were female and the disease duration of patients
averaged 8.57 (SD ± 7.51) years. An overview of patient characteristics is shown in Table 1.

Table 1. Characterization of people with multiple sclerosis (MS) presented as mean [mean]
with standard deviation [SD] or median with interquartile range (IQR); MS = multiple sclerosis;
RRMS = relapsing–remitting MS; PPMS = primary progressive MS; SPMS = secondary progressive
MS; EDSS = Expanded Disability Status Scale; 2-min walk = 2MWT.

pwMS (n = 562)

Mean age (years; mean ± SD) 43.15 ± 12.31
Females (N, %) 392 (69.8%)
Disease duration (years; mean ± SD) 8.57 ± 7.51
MS Subtype

RRMS (N, %) 490 (87.2%)
PPMS (N, %) 55 (9.8%)
SPMS (N, %) 13 (3.0%)

EDSS (median, IQR) 2.5 (1.5–3.5)
Aids

with 35 (6.2%)
without 527 (93.8%)

2MWT
2MWT with odometer in m (mean, SD) 143.52 ± 32.57
2MWT with Digiwalk in m (mean, SD) 149.20 ± 32.33
2MWT with MobiLab in m (mean, SD) 140.61 ± 32.58

With the comparison of the respective mean values of the two measuring methods
to the odometer it was shown that the DWA overestimated the values (149.20 ± 32.33)
whereas the MLA, calculated using cadence and average step length, underestimated the
covered distance (140.6 ± 32.58) compared with the distance measured by the odometer
(143.52 ± 32.57) (Table 1, Figure 6).

Bland–Altman plots revealed upper and lower limits of agreement of 24.10 and −36.40
for the DWA and upper and lower limits of agreement of 15.68 and −9.84 for the MLA
(Figure 6). The two algorithms showed good to excellent correlations with the odometer
(DWA: r = 0.884, ICC = 0.871; MLA: r = 0.980, ICC = 0.976).

The relative measurement error was calculated for both algorithms, and the distribu-
tion is visualized in Figure 7. Most of the recordings showed a relatively small measurement
error of 10% or less. The mean measurement error was 9.21 ± 14.7% for the DWA and 4.06
± 4.61% for the MLA, respectively.

Comparing the covered distance between the DWA and the odometer, 272 data sets
had a relative measurement error of less than 5%, which was 48.4% of the total number of
data sets. However, 145 (25.8%) data sets remained with a measurement error of up to 10%
and 25.8% had a measurement error of more than 20% error.

In the second approach, comparing the MLA and the odometer, a relative measure-
ment error of less than 5% was present in 436 (77.6%) data sets. Another 85 data sets (15.1%)
showed a measurement error of less than 10% and the remaining 7.3% had over 20% error.

The relative measurement errors were analyzed in relation to influencing variables
such as age, degree of disability, and the use of assistive devices and are shown in Figure 8.
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When age (Figure 8A) of the pwMS was considered, the MLA measurement errors
appeared to be independent of age. For the DWA, there was a peak in measurement error
at the age of 60 to 69.

Measurement errors tended to increase with increasing disability slightly earlier with
the DWA (EDSS 4.0) than with the MLA (EDSS 5.5) (Figure 8B).

The relative measurement errors also increased with the use of assistive devices, es-
pecially with DWA. The highest relative measurement error that occurred was 31.27%
when measuring with the DWA with aids. In contrast, the lowest relative measure-
ment error of 3.57% occurred when measuring with the MLA without aids (Figure 8C).
The mean difference between the odometer and the DWA using assistive devices was
−14.44 ± 16.39 m, compared to without assistive devices −5.10 ± 15.44 m (p = 0.001).
Compared to the DWA, the mean difference between the odometer and the MLA was lower
with aids 4.82 ± 7.28 m and without aids 2.79 ± 6.45 m (p = 0.074) (Table 2).

Table 2. Comparison of the measurement series with the aids (mean ± SD) by t-tests; 2MWT =
two-minute walk test; OM = odometer; DWA = Digiwalk algorithm; MLA = Mobility Lab algorithm.

With Aids Without Aids p

2MWT OM 70.98 ± 22.89 148.34 ± 29.91 <0.001
2MWT DWA 85.42 ± 16.55 153.44 ± 28.44 <0.001
2MWT ML 66.16 ± 23.19 145.55 ± 26.53 <0.001

Difference OM-DWA −14.44 ± 16.39 −5.10 ± 15.44 0.001
Difference OM-MLA 4.82 ± 7.28 2.79 ± 6.45 0.074

The measurement error of the DWA showed a weak correlation with age (τb = 0.0173),
the use of aids (−0.159), and disease disability (Table 3), as well as a moderate correlation
with double support (τb = 0.0359). There were no such correlations for the MLA.
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Table 3. Kendall´s tau-b correlation between demographic data, clinical outcomes, and parameter of
gait (n = 562); EDSS = Expanded Disability Status Scale; DWA = Digiwalk algorithm; MLA= Mobility
Lab algorithm.

Measurement Error
DWA

Measurement Error
MLA

Age τ 0.173 ** 0.091 **
Sex τ 0.041 −0.007
Aids τ −0.159 ** 0.147
Disease Duration τ 0.073 * 0.001
Disease Disability (EDSS) τ 0.241 ** −0.029
Parameter of gait

Cadence τ −0.116 ** 0.155 **
Stride Length τ −0.191 ** 0.119 **
Double Support τ 0.359 ** −0.010
Gait speed τ −0.184 ** 0.143 **
Lateral Step variability τ 0.177 ** 0.075 **
Number of turns τ −0.164 ** 0.051

* p < 0.05, ** p < 0.01. EDSS = Expanded Disability Status Scale, DWA = Digiwalk algorithm; MLA = Mobility
Lab algorithm.

In a multifactorial linear model approach, level of disease disability was solely as-
sociated with the measurement error of the DWA (T = 6.395; p < 0.001; CI 95% 0.184 to
0.348), whereas disease disability (T = −3.464; p = 0.001; CI 95% −0.086 to −0.024) and age
(T = 2.329; p = 0.02; CI 95% 0.003 to 0.039) where associated with the measurement errors
of the MLA. Sex, the use of walking aids, and the subtype of MS were not associated with
any algorithm in the respective linear model.

4. Discussion

Walk endurance tests are important to quantify walking parameters accurately [47,48].
Therefore, we applied two novel algorithm–based approaches using accelerator sensors
in comparison to the current standard measurement using the odometer in the walking
assessment of pwMS. Our results demonstrated that the DWA achieved a good performance
(measurement error < 5%) in about half of the pwMS tested (48.4%) and the MLA in
considerably more pwMS (77.6%). Overall, both algorithms achieved favorable levels
of agreement (DWA: ICC = 0.871; MLA: ICC = 0.976) with the odometer. These results
are comparable to other calculations based on accelerometers for measuring distance
traveled [49].

Sensor data for the assessment of mobility in MS have gained interest over recent
years. Creagh et al. demonstrated how signal-based features related to movement can be
extracted from sensors in smartphones and smartwatches and showed good correlations
with clinical outcomes [47]. Karle et al. performed initial approaches of a 2MWT outside
a clinical environment for pwMS. For this, the average cadences were processed from
the raw acceleration data of an activity monitor. An average cadence between a clinical
environment and an outside environment was compared [48]. Unfortunately, both studies
did not include a gold standard of measurement to verify the respective measurement
system. Our approach including two algorithms aimed for the digitalization of walking
assessment in the neurological practice through the integration of appropriate algorithms
that could optimize patient management. While we demonstrated overall performances of
good to excellent in the two algorithms in comparison to the gold standard, measurement
errors in some subgroups of pwMS increased. It was reasonable to assume that the
measurement error of a distance measurement with accelerometers was highly dependent
on the gait pattern of the person. We investigated how accurately an irregular gait pattern
affected accelerometer measurements. Thus, we found a robust association between disease
disability of the pwMS and measurement error for both algorithms (MLA and DWA).
Furthermore, there may have been an inherent error in the calculated relative measurement
error because the measurement accuracy of the odometer was unknown.
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For the DWA, there was a moderate correlation (τ = 0.359) between double support
and the measurement error. It should be taken into account that only six gait parameters
(cadence, stride length, double support, gait speed, lateral step variability, and number of
turns) were considered in our analyses. Nevertheless, there are many more spatiotemporal
gait parameters that can be tested with respect to measurement error. For example, the
number of breaks taken was not considered in our work. It should be noted that some
pwMS, especially in older age or with increased degree of disability, were not able to
perform the 2MWT continuously but needed short standing breaks in between.

Other measurement inaccuracies can also result from the rotation of the subjects
at the turning point of the measurement course. An algorithm modification should be
implemented for this. There must be an intelligent threshold for detecting the rotation.
El-Gohary et al. proposed a threshold of ±5◦/s as the beginning and end of each rota-
tion [50]. For general testing with differently impaired subjects, these thresholds need to be
evaluated. Cheng et al. have already provided reliable algorithms for detecting rotations
and rotation speeds. Similar processing algorithms can be implemented in the DWA in
the future. More accurate detection of rotations will increase the accuracy of the total
distance [51].

The DWA measurement error was more often positive than negative, whereas this
seemed to be the other way round for the MLA. Positive error values mean that a distance
value derived from the accelerometers was higher than the reference value. This in turn
suggests that the DWA more often failed to detect steps, rather than misclassifying a
signal segment as a step when there was none. In particular, the DWA was found to have
difficulties to some degree in accurately detecting steps once the gait pattern deviated
heavily from the norm. For this reason, the DWA tended to miss steps frequently in some
pwMS, resulting in the acceleration not resetting correctly to zero. As a result, acceleration,
velocity, and distance increased incorrectly. Additionally, the accurate detection of resting
phases, as well as the differentiation between resting phases, slow walking, and turning,
proved to be difficult. Any misjudgment of the person’s current state led to acceleration
errors, which in turn led to a rapidly growing error in the calculated distance.

In conclusion, the quality of the measurement was highly dependent on successful
step detection, which in turn depended on the gait pattern being as regular as possible.
Possible solutions to these problems are discussed in the next section.

5. Future

In the future, we will improve our analytical algorithm described here by adopting
the approach of Foxlin, who implemented a measurement system to track the position of
a walking person [43]. Since the distance walked can be calculated from the difference
in position between two points in time, this approach would also be suitable for our
approach. Foxlin tracks the position using calculations based on a complex sensor fusion
of accelerometers and gyroscopes. The calculation errors of velocity, distance, and attitude
originating from sensor drifts are compensated by only navigating in an open loop manner
during the strides phase of each foot. Zero velocity updates are not directly applied to
the velocity measurements by resetting it to zero but are fed into an extended Kalman
filter (EKF) as pseudo measurements. The EKF corrects the state components acceleration,
velocity, distance, attitude, and angular velocity after each measurement, reducing the
position error that previously grew cubically in time to an error growing linearly with
the number of steps taken. In this manner, the position drift that occurs during each
stride phase is corrected by monitoring the correlation between velocity and position error.
The performance of this measurement system was evaluated by indoor experiments in
which a person walked for 322 s, covering 118.5 m, resulting in a position error of only
0.3%. It is however unclear, exactly how well this algorithm will perform on pathologically
altered gait patterns, especially since the calculations also rely on detecting the stance of
the phases of the feet.
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A completely different approach would be the use of Bluetooth beacons which could
eliminate the problem of accurately detecting the stance phases of the feet that has proven
to be the main problem. Therefore, this approach could be tested in the future. Since the
main weakness of this method is the position accuracy, further tests have to show how a
position error of about 1 to 2 m affects the calculated distance.

Applying artificial intelligence is another possibility and is a promising approach.
As we have shown, machine learning algorithms enable the integration and visualization of
a wide variety of gait parameters in routine clinical practice [52]. Thus, model calculations
could be performed based on the available spatiotemporal gait data to predict the distance
traveled. For this, further studies are needed to determine the necessary input data and the
most useful (combination of) sensor systems.
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