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The adipokine leptin signals the body’s nutritional status to the brain, and particularly, 
the hypothalamus. However, leptin receptors (LEPRs) can be found all throughout the 
body and brain, including the pituitary. It is known that leptin is permissive for repro-
duction, and mice that cannot produce leptin (Lep/Lep) are infertile. Many studies have 
pinpointed leptin’s regulation of reproduction to the hypothalamus. However, LEPRs 
exist at all levels of the hypothalamic–pituitary–gonadal axis. We have previously shown 
that deleting the signaling portion of the LEPR specifically in gonadotropes impairs 
fertility in female mice. Our recent studies have targeted this regulation to the control of 
gonadotropin releasing hormone receptor (GnRHR) expression. The hypotheses pre-
sented here are twofold: (1) cyclic regulation of pituitary GnRHR levels sets up a target 
metabolic checkpoint for control of the reproductive axis and (2) multiple checkpoints 
are required for the metabolic signaling that regulates the reproductive axis. Here, we 
emphasize and explore the relationship between the hypothalamus and the pituitary 
with regard to the regulation of GnRHR. The original data we present strengthen these 
hypotheses and build on our previous studies. We show that we can cause infertility 
in 70% of female mice by deleting all isoforms of LEPR specifically in gonadotropes. 
Our findings implicate activin subunit (InhBa) mRNA as a potential leptin target in 
gonadotropes. We further show gonadotrope-specific upregulation of GnRHR protein 
(but not mRNA levels) following leptin stimulation. In order to try and understand this 
post-transcriptional regulation, we tested candidate miRNAs (identified with in  silico 
analysis) that may be binding the Gnrhr mRNA. We show significant upregulation of 
one of these miRNAs in our gonadotrope-Lepr-null females. The evidence provided 
here, combined with our previous work, lay the foundation for metabolically regulated 
post-transcriptional control of the gonadotrope. We discuss possible mechanisms, 
including miRNA regulation and the involvement of the RNA binding protein, Musashi. 
We also demonstrate how this regulation may be vital for the dynamic remodeling of 
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gonadotropes in the cycling female. Finally, we propose that the leptin receptivity of 
both the hypothalamus and the pituitary are vital for the body’s ability to delay or slow 
reproduction during periods of low nutrition.

Keywords: gonadotropes, Musashi1, mirnas, infertility, female, gonadotropin-releasing hormone receptor,  
leptin receptors, post-transcriptional regulation

introdUCtion

the Leptin signal permits reproduction
Leptin is a hormone largely produced by adipocytes that regulates 
appetite and signals levels of adiposity and nutritional status 
(1–8). When physiological conditions are normal, serum leptin 
levels correlate well with fat mass and signal optimal nutritional 
states (9–11). When nutrition is deficient, the resulting reduction 
in serum leptin becomes a critical metabolic signal for starva-
tion (12–17), stimulating increases in appetite and food-seeking 
behavior. At the same time, the low leptin signal reduces or 
prevents the activation of energetically expensive reproductive 
processes such as pregnancy and lactation (3, 14, 18–33).

Serum leptin levels are a critical link between sufficient nutrition 
and the function of the hypothalamic–pituitary–gonadal (HPG) 
axis. The importance of leptin to the HPG axis is emphasized by 
evidence in humans deficient in leptin receptors (LEPRs) (20) or 
leptin (34, 35), who are hypogonadal and infertile. Furthermore, 
low gonadotropin levels and functional hypothalamic amenor-
rhea occur when leptin is reduced by energy deficits caused by 
weight loss, excessive exercise, or eating disorders. Women with 
hypothalamic amenorrhea have low leptin levels and do not 
express the normal diurnal leptin rhythm (19, 22, 24, 36–40).

Leptin therapy normalizes reproductive hormone levels (2) 
and restores cycles in women with functional amenorrhea (39, 40). 
Specifically, leptin increases luteinizing hormone (LH) levels and 
pulse frequency, ovarian volume, serum estradiol, and numbers 
of dominant follicles (16, 22, 38–41). Leptin’s therapeutic benefit 
has also been shown in studies of a leptin-deficient prepubertal 
child (42) and of adult men (43).

Leptin’s role in reproduction has also been modeled in lower 
mammals. Fasting that lowers serum leptin also reduces pulses 
of LH in rodents or non-human primates (10, 44–48). Leptin 
antiserum administered into the ventricular system of fed rats 
disrupts cyclicity and LH secretion (49). Conversely, leptin treat-
ment increases serum prolactin and LH pulse frequency and 
amplitude in fasted rats (50, 51).

In vitro, leptin treatment of pituitary cells from fasted rats 
restores LH stores depleted by food deprivation (52). Similarly 
leptin injections reverse the loss of reproductive function, 
decrease LH levels, and prolong estrous cycles in mice that are 
food-deprived for 48  h (2). Exogenous leptin given to leptin-
deficient mice also restores fertility (27, 53, 54). Most recently, 
studies in non-human primates by Sarmento-Cabral et al. have 
reported that leptin stimulates growth hormone, prolactin, 
adrenocorticotropin and follicle-stimulating hormone (FSH) 
secretion from monolayer pituitary cultures derived from two 
groups of female monkeys (55).

The observation that a threshold level of fat (and, thus, leptin 
signaling) is required to permit puberty indicates that the leptin 
signal is vital for the timing of puberty. In fact, early studies 
showed that leptin accelerates puberty (1, 53, 56), suggesting 
that it might be a metabolic trigger, although this was disputed 
by studies that found no correlation between prepubertal serum 
leptin levels and the timing of puberty in normal rodents (57–59) 
or primates (60–63). Furthermore, the rise in leptin during devel-
opment [i.e., during the second trimester in the human fetus (64) 
or postnatally in rodents (58, 59, 65, 66)] appears to be too early 
for it to have direct impact as the trigger for puberty (6, 7, 59), 
although evidence indicates that leptin does play a permissive 
role in puberty (67).

the role of distinct Leptin-target Cells 
throughout the reproductive axis
Leptin receptors can be found in cells throughout the HPG axis, 
and much research over the past two decades has focused on the 
relative importance of each set of target cells. The preponder-
ance of evidence points to target cells in the hypothalamus as 
being most critical for mediating leptin signaling for fertility. 
However, the identity of the target cells has been a subject for 
investigation. Pioneering studies by McMinn et al. (8). reported 
that loss of LEPR in 50–75% of hypothalamic neurons caused 
obesity and glucose intolerance, but fertility and cold tolerance 
remained normal. This suggests a division of labor in the neurons 
responsive to leptin, and that LEPR deficiency must be seen in all 
neurons for the full set of deficiencies.

This presentation will discuss evidence for different groups of 
LEPR-target cells and build the case for including the pituitary 
gonadotrope. In fact, we will propose that leptin sets up an active 
partnership between leptin-responsive neurons in the hypothala-
mus and leptin-responsive gonadotropes in the anterior pituitary. 
In the later sections focused on the hypotheses, we will propose 
pathways that may be activated by leptin to permit reproduction. 
First, we will discuss evidence for a role for each of these leptin-
target cells as responders to leptin’s permissive actions.

the Case for the importance of neuronal 
target Cells to reproduction
Cre-loxP deletion of both alleles of the LEPR gene specifically in 
all neurons resulted in deletion mutant mice that were infertile 
(8). This important finding supported the original hypothesis 
that states that the major target cells for leptin’s permissive 
effects on reproduction were neurons. Because GnRH neurons 
do not have LEPRs, a number of studies were then initiated 
to identify leptin-responsive neuronal pathways that regulate 
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GnRH (4, 23, 27, 30, 57, 68–71) and report evidence for leptin 
interactions with these neurons (2, 4, 14, 31, 72–85). The relative 
importance of these neuronal pathways was then strengthened 
by evidence from two laboratories showing that restoration of 
LEPR in the neurons of LEPR-null mice partially or completely 
restored fertility (50, 82, 85). Collectively, this led to the view 
that other leptin-target cells, such as gonadotropes were con-
sidered secondary or redundant responders to leptin’s metabolic 
signals (50, 82, 85).

the Case for the importance of pituitary 
Gonadotrope Lepr-target Cells
Gonadotropes reside within the anterior pituitary, synthesize, 
store, and secrete LH and FSH in a strict temporal order dur-
ing the estrous cycle, and are stimulated by GnRH. Evidence  
supporting gonadotropes as leptin-target cells initially came from 
studies showing that they express functional LEPR (33, 86–93), 
and that leptin- or LEPR-deficient mice have reduced numbers 
of gonadotropes (6, 7, 91, 94). Cytophysiological studies showed 
that leptin modulates the expression and/or secretion of gonado-
tropins (27, 30, 33, 95–100). Fasting concomitantly reduced levels 
of serum leptin and numbers of gonadotropes defined by LH 
stores or GnRH-binding sites (52). Stores of LH were recovered 
following a 1-h treatment in vitro with leptin, which provides sup-
porting evidence for direct interactions of leptin with pituitary 
gonadotropes (52). Further evidence stems from our report that 
pituitary LEPR expression varies with the stage of the estrous 
cycle with the highest expression before the LH surge (33).

In spite of the evidence for leptin interaction with gon-
adotropes, questions still remained about their importance as 
metabolic sensors of leptin signals. A recent study tested the role 
of LEPR in gonadotrope functions in a recent study that used 
Cre-LoxP technology with a genetically engineered line of mice 
ubiquitously deficient in LEPR (101). In this study, the recombi-
nation event restored LEPR selectively in pituitary gonadotropin 
releasing hormone receptor (GnRHR) target cells and FSH levels 
were elevated, although fertility was not restored (101). However, 
lack of fertility may have been secondary to the fact that the 
hypothalamic neuronal target cells remained LEPR-null and the 
mice remained morbidly obese. The GnRH pulse signal, which is 
vital to the pituitary gonadotrope was still lacking (101).

Thus, restoration of leptin signaling to gonadotropes will 
not rescue leptin’s permissive effects on fertility in a LEPR-null 
mouse. However, evidence does indicate that gonadotrope 
LEPR plays a significant role in optimizing fertility. Our stud-
ies ablated the signaling domain of LEPR (encoded by exon 
17) in gonadotropes via Cre-LoxP technology and reported a 
significant impairment of fertility in females (33). Specifically, 
there was a reduction in the levels of pituitary GnRHR proteins 
and activin mRNA (in females). Local activin and its down-
stream pathways are believed to be vital for the synthesis of 
FSH (102–104). Analysis of fertility showed significant delays 
in the time to first litter, abnormal estrous cycles, and lower 
numbers of pups/litter in breeding cages with deletion mutant 
dams. Gonadotrope LEPR deletion mutant males showed lower 
GnRHR proteins, but their fertility was unaffected. Thus, loss of 

the signaling domain of LEPR in gonadotropes appears to cause 
subfertility selectively in females.

ablation of all isoforms of Lepr in 
Gonadotropes May result in Complete 
infertility
To strengthen the case for gonadotropes as important LEPR-
target cells, we recently produced a more severe ablation of LEPR 
selectively in LH gonadotropes with methods described in previ-
ous studies (33). All animals were handled and cared for under 
an animal use protocol that was reviewed and approved annually 
by the UAMS Animal Use and Care Committee.

We used a different floxed line of mice in which Lepr exon 1 
is flanked by LoxP, and Cre-recombinase is driven by the bovine 
Lh-beta promoter. The breeding strategy to produce this line 
is described in more detail in previous studies in which these 
Cre-bearing mice were also used (33). The resulting Cre-
recombinase ablation removes the region encoding the signal 
peptide and prevents the translation of all isoforms of LEPR 
(105). We reasoned that ablation of the signal peptide would 
have a deleterious effect on the LEPR-receptor population as 
seen in our previous studies of mice in which Lepr exon 1 was 
ablated in somatotropes (106).

The method is as follows. We produced deletion mutants in 
three breeding cages with F2-generation Lh-cre positive females 
bearing one allele of floxed Lepr exon 1 (heterozygotes) and Cre-
negative males bearing two alleles of floxed Lepr exon 1. Females 
always passed down the Cre-recombinase because the Lh-cre is 
known to be expressed in the testes (33). All mice were of the 
same FVB strain and at least 3 months of age when they entered 
the breeding cages. The reproductive competence of the homozy-
gous and heterozygous mutant females was compared with that 
of females in cages containing control mice of the same strain 
background (FVB.129P), which had delivered during the same 
time. As in our previous studies (33), we tested the period that 
normally produced 3–4 litters in the wild type FVB.129P strain 
(65–85  days). The time was extended, however, for cages with 
mutants that produced few (or no) pups.

The three breeding cages of F2-generation heterozygous 
females produced an average of eight pups/litter, with a normal 
time-span between litters of 21–22 days. Thus, their productivity 
was not different from that in the FVB.129P wild type females. 
This group of females produced the test population of 11 
F3-generation mutant homozygous females (bearing Lh-cre and 
two alleles of floxed Lepr exon 1) and 2 F3-generation mutant 
heterozygous females. This test population came from five differ-
ent F2-generation litters.

Data on the breeding study are summarized in Table 1. Three 
of the five F3-generation homozygous deletion mutant females 
showed total infertility, failing to produce pups after 240–281 days 
of breeding with a proven Cre-negative male. Two homozygous 
mutant females were fertile although they produced litters slowly 
(every 30–45  days) compared with FVB.129P females, which 
produce at 21–22 day intervals. One of these females produced 6 
litters and 42 pups in 199 days, with an average litter size that was 
nearly normal. The other mutant female produced only 4 litters 
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FiGUre 1 | Deletion of Lepr exon 1 in gonadotropes leads to severe reproductive deficiencies. Deletion mutant mice bearing two floxed alleles of Lepr (Lepr-exon 
1loxP/loxP obtained from Dr. Jeffery Friedman) were bred to female mice bearing the Cre-recombinase gene driven by the bLh-β promoter (bLhβ-cre) developed by  
Dr. Sally Camper (108). The Cre-recombinase was passed through the female line, because it was reported to be expressed in the testes (108), and all breeding 
was tested only in females. The resulting offspring carried two floxed Lepr alleles and were either positive (one allele) or negative for Cre-recombinase in 
gonadotropes. Breeding studies done as described previously (33) produced seven female homozygous mutants that were evaluated for cyclicity over a  
17-day period. (a) On average, females spent more days in diestrus I (metestrus) or II in the 17-day period days (compared with control females). (B) Mutants  
spent fewer days in proestrus and (C) In the 17-day test period, there were only 1.6 proestrous to estrus transitions in the mutants. Stars over mutant bars  
indicate significantly different values as compared to controls by the Student’s t-test.

taBLe 1 | Deleting all isoforms of leptin receptor (LEPR) in gonadotropes causes infertility.

Femalea, date of birth Genotype Lh-cre # days with male # Litters average # pups/litter total # pups

F0, 8/19/2015 Leprexon 1 f/wt

Heterozygous
65 0 0 0

F6, 8/19/2015 Leprexon 1 f/wt

Heterozygous
65 0 0 0

F1, 5/21/2015 Leprexon 1 f/f

Homozygous
199 6 7 42

F0, 6/11/2015 Leprexon 1 f/f

Homozygous
199 4 5 19

F6, 3/21/2015 Leprexon 1 f/f

Homozygous
240 0 0 0

F1, 3/21/2015 Leprexon 1 f/f

Homozygous
240 0 0 0

F0, 1/20/2015 Leprexon 1 f/f

Homozygous
281 0 0 0

aF3-generation females bearing Lh-cre and one or two floxed alleles of Leprexon 1 were bred with males bearing only floxed alleles of Leprexon 1. These seven females came from five 
different F2-generation litters and three different breeding cages. 71% of these females showed infertility.
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and 19 pups in 199 days, and one of the litters did not survive. 
Table 1 also shows that the two test F3-generation heterozygous 
females also showed no evidence of pregnancy with a proven 
Cre-negative male. Therefore, breeding with these females was 
stopped after 65 days.

The breeding generated six F3-generation homozygous mutant 
females, which could be used in parallel studies of cyclicity, com-
paring their cycles with those of eight littermate controls bearing 
no Cre-recombinase (Figure 1). We analyzed vaginal smears from 
these animals daily over a 17-day period with methods described 
in previous studies (33, 107). Two of the mutant females remained 
in diestrus during the entire 17-day test period; the remaining 4 
showed some degree of cyclicity. The average number of days in 
diestrus I or II for all mutants was significantly higher compared 
with controls (p = 0.03; Student’s t-test; Figure 1A).

In a 17-day test period, one would expect to see 4–5 proestrous 
days (assuming a 4- to 5-day cycle). Mutants exhibited on average 
<2 days in proestrus in this test period, which was significantly 
lower than control values of 4.1/17 days (p < 0.03, Student’s t-test; 

Figure 1B). We also evaluated the number of times mice exhibited 
a proestrus to estrus transition (P–E), which would indicate the 
completion of a cycle and readiness for copulation during early 
estrous. Figure 1C shows that controls had 3.4 P–E transitions in 
a 17-day test period; however, mutants had less than half of these 
P–E transitions (1.6), which was significantly lower than controls 
(p = 0.01, Student’s t-test). Thus, whereas four of the six mutant 
females cycled, the opportunities for a pregnancy in the 17-day 
period (seen by the P–E transition) were significantly reduced, 
which correlates with the low number of litters in the breeding 
cages of the two subfertile females reported in Table 1.

In conclusion, these data showed a more severe infertility 
phenotype in mice lacking all isoforms of LEPR in gonadotropes. 
This resulted in unreliable breeding or infertility, which supports 
our assertions that gonadotrope LEPR is important to the HPG 
axis. Analysis of serum levels of gonadotropins and other pitui-
tary and ovarian hormones in ongoing studies will identify the 
full mechanism behind the loss of fertility in these gonadotrope-
Lepr exon 1 deletion mutants. In spite of the hypothalamic Lepr 
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FiGUre 2 | Cartoon showing stages of remodeling in the population of gonadotropes destined to support the luteinizing hormone (LH) surge secretory activity 
during proestrous and early estrus. The activity is driven by GnRH pulses, which increase in frequency and amplitude before the LH surge. The timing of the 
production of critical gene products is noted and those in green are known to be leptin targets.
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gene remaining intact, gonadotropes having all LEPR isoforms 
deleted were unable to function normally in most (71%) of the 
F3-generation female mice tested and preformed sub-optimally 
in the remaining two mice. The infertile group also included a 
subset of F3-generation heterozygous mice (which lacked only 
one allele of Lepr exon 1 in gonadotropes). Thus, the phenotype 
could become more severe with the next generation and we may 
be limited to F2-generation litters for future analyses.

To summarize, in this introductory section, we presented 
evidence that leptin is vital to the reproductive system. We also 
presented evidence suggesting that gonadotrope LEPR may be 
vital for optimal fertility. This evidence sets the stage for our 
two hypotheses in which we integrate findings from studies of 
neuronal and pituitary leptin-target cells. The first hypothesis 
will focus on leptin’s regulation of fertility via the gonadotrope, 
specifically regarding how the cyclic production of GnRHR pro-
teins might provide a critical checkpoint for metabolic signaling. 
The second hypothesis will integrate the findings in the literature 
with those from our studies. In this hypothesis, we propose that 
leptin’s metabolic signaling involves multiple molecular gateways 
and checkpoints that can permit, delay, or stop reproduction.

HypotHesis 1: CyCLiC reGULation oF 
pitUitary GnrHr LeVeLs sets Up a 
tarGet MetaBoLiC CHeCKpoint For 
ControL oF tHe reprodUCtiVe aXis

Pituitary gonadotropes in females are a fascinating subset of 
pituitary cells that must be remodeled every cycle to support a 
preovulatory LH surge and a postovulatory rise in FSH (109). 
Depending on the gonadotrope gene marker being detected and 

the stage of the cycle, these heterogeneous cells represent at least 
15% of the pituitary population. Our studies over the past 42 years 
have shown that precise accounting of the gonadotrope popula-
tion is complicated by their dynamic remodeling, such that they 
can be difficult to identify or detect when a marker gene product 
has been downregulated or secreted. At least two gonadotrope 
markers must be detected to identify the entire population, 
especially during periods of low gonadotropin storage (estrus or 
metestrus).

Identification of the structural and molecular mechanisms 
behind the remodeling of gonadotropes and the regulators that 
drive these changes has been the subject of decades of investiga-
tive studies (109–116). Figure 2 shows a cartoon depicting some 
of the molecular and cytological changes that occur during the 
remodeling process that produces an actively secreting gonado-
trope. Included in this population would presumably be any pro-
genitor cell that contributes to the secreting, GnRH-responsive 
gonadotrope population, such as the somatogonadotrope (117).

Thanks to cytoskeletal remodeling, gonadotropes become 
more structurally elongated and stellate during diestrus and 
proestrus before the LH surge (109, 114, 118, 119), sending 
processes to blood vessels to facilitate surge-level secretion. 
Because they have actively secreted their stores during the LH 
surge and FSH rise, gonadotropin storage is significantly reduced 
on the morning of estrus (after the surge), reducing numbers of 
detectable gonadotropes (109, 110, 114, 120). Gonadotropes also 
increase their content of LEPRs during proestrus (33).

Figure 2 shows that, early in the cycle (metestrus), the cells des-
tined to support the estrous rise in FSH and proestrous LH surge 
begin to produce gonadotropin and Gnrhr mRNA, which is fol-
lowed by translation of these proteins during diestrus (121–123). 
The transcription of Gnrhr mRNA is under the control of GnRH 
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FiGUre 3 | Pituitary responsiveness to leptin: activin and gonadotropin releasing hormone receptor (GnRHR). (a,B) Individual pituitaries were placed in 400 μL 
DMEM with protease inhibitor cocktail and ITS supplement (Sigma), with or without 10 nM recombinant mouse leptin (Sigma). The pituitaries were triturated two 
times with a 26 G needle and syringe. The pieces incubated for 3 h at 37°C, followed by mRNA extraction as previously described [(33)]. cDNAs were assayed by 
real-time PCR for the levels of activin/inhibin subunit (a) and Gnrhr (B) mRNA levels. Leptin stimulates an increase in pituitary activin subunit mRNA (InhBa) level 
and does not have an effect on inhibin (InhBb) or Gnrhr mRNA levels. (C) In a separate set of experiments, we used fluorescence-activated cell sorting (FACS) to 
purify gonadotropes from control females bearing Lh-cre and floxed alleles of tdTomato-eGFP as described previously (126). The Cre-recombinase ablates the 
tdTomato leaving eGFP to be expressed in membranes of gonadotropes. Our analysis showed that the eGFP fraction was 98–99% gonadotropes by 
immunolabeling for LH and follicle-stimulating hormone (FSH). In this experiment, a female gonadotrope fraction containing 66,830 cells was split and half of the 
cells were stimulated for 3 h with 10 nM leptin. Protein extracts of these cells were assayed by EIA for GnRHR (127). (C) GnRHR proteins were higher in the 
gonadotropes stimulated with leptin (from 16.67 µg GnRHR/mg protein to 27.6 µg/mg protein). The amount of protein in the extracts did not allow for multiple 
samples and, therefore, there are no error bars. More details about the GnRHR assays are reported in Akhter et al., (33). Details about the FACS protocol can be 
found in Odle et al. (126, 127).
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pulses and rising levels of estrogen from the ovarian follicles 
(which had been stimulated by FSH early in estrus).More rapid 
pulses of GnRH in proestrus will facilitate the actual LH surge.

A critical step in this gonadotrope remodeling is the increase 
in GnRHR proteins. The changes in GnRHR depicted in Figure 2 
were first reported by early radioreceptor assays, which detected 
the timing of the cyclic increase in GnRHR (121, 123) in rodents. 
The reports showed that gonadotropes undergo an increase in 
numbers of GnRHR early in diestrus I (metestrus) to reach a 
peak in late diestrus or on the morning of proestrus. Just before 
the LH surge, GnRHR numbers fall precipitously to remain 
low throughout the remaining stages of the cycle. This renders 
the gonadotrope population relatively quiescent during the 
postovulatory period of the cycle. There are LH and FSH pulses 
during this quiescent period, but they are of lower frequency and 
amplitude than those seen during mid-cycle surge activity.

The complex mechanisms controlling the increase in GnRHR 
clearly precede the remodeling needed to increase stores of gon-
adotropins needed for the surge activity, and it is not surprising 
that this initial process is regulated by pulses of GnRH itself (109). 
We have observed that the increase in GnRHR reflects an increase 
in the percentages of living gonadotropes that bind a biotinylated 
analog of GnRH (111). Collectively, these changes culminate in 
an increased population of responsive gonadotropes, which could 
then respond in synchrony to the higher GnRH pulse amplitude 
and frequency seen at mid-cycle.

The foregoing review of gonadotrope remodeling sets the 
stage for Hypothesis 1, which states that the cyclic changes in 
pituitary GnRHR expression create a mechanism by which the 
gonadotropes are activated only when environmental conditions 
are optimal. This mechanism would constitute an ideal check-
point for metabolic regulation by leptin.

This hypothesis originated when we discovered that GnRHR 
proteins and activin subunit mRNA levels were reduced in 

pituitaries lacking LEPRs in gonadotropes. Our studies of mice 
with LEPR ablated in gonadotropes discovered that both of these 
gene products were reduced (33). More recent studies determined 
if GnRHR and activin were direct targets of leptin. We assayed 
mRNA extracts from pituitary pieces that were stimulated for 3 h 
with 10 nM leptin. Methods describing our approach to leptin 
stimulation are detailed in previous studies (33, 52, 124, 125). 
Pituitary pieces or cells in 24-h culture are exposed to leptin for 
3 h at 37°C, and then extracts of proteins and mRNA are produced, 
as described (126). Methods describing our RT-PCR assays are 
found in the legend to Figure 3 and in Ref. (33). Figure 3A shows 
leptin stimulation of pituitary activin (but not inhibin) subunit 
mRNA levels (see reference (33) for information on primer sets). 
Similarly, leptin stimulation for 3 h does not affect Gnrhr mRNA 
levels (Figure 3B). This correlates well with our previous study 
showing that lack of LEPR in gonadotropes does not affect Gnrhr 
mRNA (33).

Our in vitro studies also show that leptin stimulates GnRHR 
proteins in a dose-dependent manner, with 10 nM resulting in 
the highest levels of GnRHR proteins or percentages of cells that 
bind biotinylated analogs of GnRH (127). This study was recently 
expanded to determine if the gonadotropes were the target cells. 
We used our established fluorescence-activated cell sorting-puri-
fication protocol (126) to separate gonadotropes by their eGFP 
fluorescence (with mice bearing Lh-cre and floxed tdTomato-
eGFP). Freshly purified gonadotrope fractions (66,000 cells) were 
split. Half of the population was stimulated for 3 h with 10 nM 
leptin, and the remaining half received vehicle. Immunolabeling 
showed that the eGFP fractions were 98% gonadotropes. EIAs 
showed that the fraction contained most of the GnRHR, LH, and 
FSH, with other hormones assayed in the non-eGFP fraction. 
Protein extracts from the leptin- or vehicle-treated gonadotropes 
were assayed for GnRHR as described (33). Figure 3C shows that 
the leptin stimulation resulted in an increase in GnRHR protein 
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levels in this population of pure gonadotropes, which agrees with 
recently published evidence (127). This is the first evidence for 
leptin’s direct stimulation of gonadotropes.

Thus, collectively, our studies of gonadotrope-Lepr-null 
mice and in  vitro responses to leptin highlight the importance 
of gonadotrope leptin-target cells to the HPG axis and support 
our hypothesis that gonadotrope GnRHR represents a metabolic 
checkpoint. However, we have expanded this hypothesis to 
include a novel leptin-mediated post-transcriptional pathway 
to control translation of the Gnrhr mRNA. This expansion is 
based on the following evidence: (1) GnRHR protein levels are 
reduced in gonadotrope Lepr-null mutants, but Gnrhr mRNA 
levels are unchanged (33); (2) leptin does not directly stimulate 
Gnrhr mRNA levels (Figure 3B), and (3) leptin directly stimu-
lates GnRHR proteins in a population of purified gonadotropes 
(Figure 3C) or mixed pituitary cultures (127).

We propose that the levels of Gnrhr mRNA are normal in our 
gonadotrope-Lepr exon 17-null mutants likely because LEPR 
was not ablated in the hypothalamus, allowing GnRH secretion 
and the regulation of transcription of Gnrhr, Lh, and Fsh mRNA  
(33, 128, 129). LH and FSH stores are also normal in these mutant 
gonadotropes (33). However, the diestrous gonadotropes did not 
appear to secrete normally, as reported by low serum LH and FSH 
levels (33). Whereas we can explain the fact that Gnrhr mRNA is 
normal, the mechanism underlying leptin’s permissive modula-
tion of GnRHR protein synthesis is unknown. As a first hypoth-
esis, we, therefore, propose that leptin may stimulate translation 
by alleviating repression of Gnrhr mRNA by mRNA regulatory 
proteins and/or miRNA.

miRNAs are small (~22 nucleotides), single-stranded RNAs 
that interact with target sequences within cellular mRNAs and 

exert translational repression. A significant role for leptin signal-
ing in regulation of miRNA-mediated translational control has 
been observed in adipocytes and hepatic cells (130). In ob/ob mice, 
miR-103 and miR-107 levels are increased in the absence of leptin, 
contributing directly to insulin resistance (130). Furthermore, 
leptin signaling involves JAK–STAT pathways and precedent for 
pSTAT3-dependent downregulation of target miRNAs has been 
reported in breast cancer (131).

For our study, we initially wanted to determine which 
miRNAs might target the Gnrhr mRNA 3′-untranslated region 
(UTR). Our in  silico analysis [Targetscan 7.1 (132)] revealed 
that the Gnrhr mRNA 3′-UTR (ENSMUST00000031172.8) con-
tained 16 potential miRNA binding sites, including two that are 
also conserved in humans: miR-581/669d and miR-3061-3p. We 
began assays to detect differences, if any, in expression of candi-
date miRNAs. RT-PCR assays of whole pituitaries from control 
and gonadotrope Lepr exon 17–null diestrous females (n = 4–5 
mice/group) determined that miR-581/669d was increased 
in the absence of leptin signals to gonadotropes, consistent 
with increased repression of Gnrhr mRNA translation in the 
mutants (Figure 4B). Detailed methods of our RT-PCR assays 
for miRNA are in the Figure legend of Figure 4. The specific role 
of miR-581/669d and the remaining 14 candidate miRNAs are 
currently being investigated. Complementary to this candidate 
approach, ongoing miRNA sequence analyses will provide an 
unbiased global analysis of pituitary miRNA expression related 
to loss of LEPR.

We also identified three consensus binding elements for 
the translational regulatory protein Musashi (MSI) (MBEs) 
in the 3′-UTR of murine Gnrhr mRNA (Figure 4A). The two 
vertebrate members of the MSI family, Musashi1 (MSI1) and 
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Musashi2 (MSI2) are highly related, sequence-specific RNA 
binding proteins. MSI typically functions as a repressor of target 
mRNA translation and is specifically implicated in promoting 
stem/progenitor cell self-renewal where it functions to oppose 
translation of mRNAs encoding pro-differentiation factors and 
inhibitors of cell cycle progression under both physiological 
and pathological conditions (133). While the mouse pituitary 
is reported to express Msi mRNA (134), the function of MSI in 
the pituitary has not been determined. Ongoing studies show 
promise as they demonstrate binding by MSI to the Gnrhr 
mRNA 3′UTR and MSI repression of reporter expression driven 
by Gnrhr 3′UTR. We also have evidence that leptin reduces Msi 
mRNA (127).

Therefore, at this point, the evidence points to the hypoth-
esis that leptin may play an important role in de-repressing 
Gnrhr mRNA during the critical period of cyclic upregulation 
of these vital receptors. We propose that MSI1 as well as at 
least one miRNA may be candidate Gnrhr mRNA regulators. 
Specifically, we propose that if nutrition and energy stores are 
normal, the mid-cycle leptin surge opposes MSI1-dependent 
mRNA repression, allowing the continued translation of Gnrhr 
during diestrus to reach optimal levels needed for a full LH 
surge. We propose that our mice that lack all isoforms of LEPR 
in gonadotropes (Table  1; Figure  1) may have not been able 
to produce sufficient GnRHR to mount an effective LH surge. 
Also, based on previous data (33) and Figure 3A, we propose 
that activin levels might be reduced, which would compromise 
FSH secretion and the development of the follicles. This first 
hypothesis will now be integrated into our second hypothesis 
about the overall mechanisms by which leptin signals metabolic 
information to the HPG axis.

HypotHesis 2: MULtipLe 
CHeCKpoints are reQUired For 
MetaBoLiC siGnaLinG tHat 
reGULates tHe reprodUCtiVe aXis

As stated in the introduction, early studies of leptin regulation 
of reproduction have emphasized the hypothalamus as a pri-
mary target site for leptin and suggested that other sites might 
be less important or even redundant. The pioneering studies 
by McMinn et  al. were the first to note the diversity in the 
LEPR-responsive neurons and the fact that all must be receptor 
deficient to cause infertility (8). Two studies selectively restored 
LEPR in the hypothalamus. The first of these studies reported 
that obesity, diabetes, and infertility in Lepr-null db/db mice 
could be rescued completely by re-introducing neuron-specific 
LEPR-B transgenes (82) to restore LEPR function selectively in 
the neurons. One of the drivers that introduced LEPR into the 
LEPR-null neurons was Synapsin (SYN-1). The selectivity of 
the SYN-1 driver was shown by expression in the brain; how-
ever, weak expression was also reported in the pituitary. This 
pituitary expression of SYN-1 was recently confirmed in Lβ-T2 
gonadotropes and pituitary explants (135). Thus, based on the 
most recent evidence, we hypothesize that the Syn-1 driver may 
have introduced LEPR-B transgenes into both neuronal and 

anterior pituitary cells. Specifically, the expression of Synapsin 
in Lβ-T2 gonadotropes suggests that gonadotropes or their 
progenitor cells would have been among the restored leptin-
target cells. Thus, fertility in these mice may have been restored 
by leptin-target neurons regulating GnRH and by leptin-target 
gonadotropes expressing GnRHR.

The second study by Donato et al. used Flp/FRT recombina-
tion approaches and a strain of mice carrying a neomycin cas-
sette flanked by FRT sites targeted to the Lepr locus (50), which 
rendered the mutant mice globally LEPR-null. They selectively 
restored LEPR in the ventral premammillary (PMV) neurons 
of these mice by injecting an adeno-associated virus vector 
expressing Flp recombinase. The virus-restored mutant female 
mice showed evidence of pubertal development and cyclicity. 
In addition, five of the six females became pregnant although 
fertility was not optimal as four of these females did not carry the 
pups to term and the pups from the one female who delivered did 
not survive and died with no milk spots evident. These responses 
may also be due to the fact that the females remained morbidly 
obese. Thus, whereas the restoration of LEPR in the PMV clearly 
and selectively confirmed the importance of these neurons in 
the regulation of GnRH and the production of young, it appears 
that other leptin-target cells are vital to ensure that the progeny 
survive.

Based on our recent studies of Lepr-null gonadotropes (33), 
we hypothesize that the LEPR-null pituitaries in the study by 
Donato et  al. expressed sufficient GnRHR on gonadotropes 
to go through puberty, cycle, and become pregnant. Because 
GnRH is an important stimulator of Gnrhr mRNA transcription  
[(128, 129) and Figure 2], restoration of LEPR in the PMV may 
have resulted in sufficient GnRH secretion to induce functional 
levels of GnRHR in gonadotropes. The observation that none of 
the litters survived, however, indicates that extra-PMV, pituitary, 
and ovarian LEPR-target cells are needed to support full repro-
ductive competence. Also, the morbid obesity is a confounding 
factor. Detecting levels of gonadotropins, growth hormone, 
prolactin, estrogen, and progesterone may determine elements of 
the HPG axis that might have been most affected.

The importance of the working partnership between the 
hypothalamus and the pituitary is further elucidated in a recent 
study in which Cre-LoxP technology was used to restore only 
pituitary gonadotrope LEPR (101). As stated in the introduction, 
fertility was not restored in these animals presumably because 
LEPR-target neurons stimulating GnRH secretion remained 
deficient and unable to induce functional GnRHR signaling in 
gonadotropes (128, 129). This study provides another important 
clue to a role for leptin in gonadotropes, as they reported that FSH 
was elevated in this gonadotrope-specific LEPR model (101). As 
reported in our previous study (33), female mice bearing Lepr-
null gonadotropes have reduced activin mRNA in the absence 
of leptin signals. We also reported reduced Fsh mRNA in these 
mutant animals. As activin stimulates FSH synthesis, we suggest 
that when LEPR was restored in pituitary gonadotropes, activin 
production may have been rescued (33). In the present report, 
we add evidence that leptin directly stimulates levels of activin 
mRNA (Figure  3A), which further supports this hypothesis. 
Also, recent studies of leptin actions in monkey pituitary cells 
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for transcription of Gnrhr mRNA as well as transcription and translation of LH 
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mice lacking LEPR in gonadotropes are subfertile (33) or infertile (Figure 1; 
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of Gnrhr mRNA translation.
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show that 4  h of leptin stimulation in  vitro results in elevated 
FSH secretion (55). It is interesting to note that leptin did not 
stimulate LH secretion in vitro in these female monkeys, which 
were reported to be of mixed cycles. We have shown that LEPRs 
in LH cells are maximal during the preovulatory period (33), and 
perhaps leptin’s effects on LH secretion are dependent on the 
stage of the menstrual cycle.

Based on these findings and the studies described above, we 
hypothesize that leptin’s role in the permissive regulation of the 
reproductive cycle depends on timed events that involve multiple 
interactive target cells in the HPG axis. Figure 5 proposes a set 
of integrating pathways by which changing energy stores could 
allow leptin to signal metabolic information and permit, delay, 
or stop the next cycle. As shown in this figure, nutritional and 
fat level sufficiency will result in optimal leptin levels that in 
turn will signal target cells in the hypothalamus and pituitary 
gonadotropes. We hypothesize that leptin acts on hypothalamic 
and pituitary target cells to signal changing energy stores. The 
pathway designated in green shows how leptin may activate 
gonadotropes directly to effect transcription of activin subunits 

to raise local activin levels and stimulate synthesis of FSH. This 
would support the early estrous rise in FSH, which stimulates 
ovarian follicles to develop and secrete estradiol, which then 
exerts positive feedback on the hypothalamus and the pituitary. 
Estrogen-sensitive neuronal pathways stimulate GnRH neurons 
to increase secretion and pulse frequency. The pathway in red 
highlights the important role of leptin in stimulating the LEPR-
sensitive neurons in the hypothalamus to ultimately regulate 
GnRH neurons. The red pathway also shows that GnRH pulses 
stimulate Gnrhr mRNA, as well as LH and FSH secretion. Most of 
the elements in the green and red pathways are well established, 
although the role of leptin in stimulating activin in the green 
pathway is relatively novel.

What is most novel is the hypothetical blue pathway. Based 
on our studies of gonadotrope Lepr-null mice, we propose that 
leptin sends a third signal directly to gonadotropes that de-
represses the translation of Gnrhr mRNA. The timing of this 
gateway signal could be during the metestrous to diestrous 
increase in GnRHR proteins. Our studies of females that 
lack all isoforms of gonadotrope LEPR (Table  1; Figure  1) 
strongly emphasize the importance of this blue pathway for 
optimal reproductive success. As discussed for Hypothesis 1, 
we propose that Gnrhr mRNA translation may normally be 
inhibited by MSI1 and possibly miRNAs. Consequently, leptin 
signaling acts to de-repress the Gnrhr mRNA by blocking the 
inhibitory action of MSI1 and/or miRNA repressive activity. 
This ultimately would activate translation of Gnrhr mRNA and 
provide the full complement of receptors needed for a fully 
responsive gonadotrope population ready for the LH surge and 
estrous rise in FSH.

ConCLUsion

Our two hypotheses reconcile and integrate findings from several 
studies of leptin-target cells. First, with the use of the Syn-1-
driver, de Luca et al. (82) restored LEPR in both the brain and 
pituitary of db/db mice, which allowed multiple target cells seen 
in Figure 5 to function in partnership. Donato et al. (83) restored 
LEPR in the PMV of global LEPR-null mice, which stimulated 
GnRH to produce sufficient GnRHR and improve gonadotrope 
functions, although LEPR-target cells in the pituitary were still 
deficient and full reproduction (defined by the production of 
living pups) was not successful. As shown by Allen et al. (101) 
and Donato et al. (83), the system diagrammed in red and green 
pathways in Figure 5 will function only if leptin signaling to the 
brain is normal and only if there are GnRH pulses to stimulate 
the gonadotropes to make Gnrhr mRNA. However, as shown by 
our studies [Figure 1; Table 1; Ref. (33)], there must also be leptin 
input to gonadotropes for optimal levels of GnRHR proteins as 
well as responses to GnRHR for successful reproduction. Without 
that input, gonadotrope Lepr exon 1-null females failed to repro-
duce or had impaired fertility (Table 1).

Thus, the collective findings from the selective ablation or 
restoration of LEPR have highlighted the importance of leptin 
and LEPR to regulate function of the reproductive axis. Most 
importantly, they show that leptin’s permissive actions are 
opera ting in both the brain and the pituitary. These studies 
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have further identified important pituitary signaling molecules 
activated directly or indirectly by leptin. Our hypotheses are 
integrated into the model in Figure  5 to indicate where each 
signal is needed and to highlight the fact that they act in part-
nership to optimize gonadotrope function. We also include 
a novel regulatory pathway that may involve control of MSI1 
and/or miRNAs. Leptin regulation of these post-transcriptional 
pathways mediates the rapid de-repression and translation of 
Gnrhr mRNA, allowing for sufficient GnRHR to respond in 
synchrony and produce the LH surge. Subsequently, MSI1 and/
or miRs would re-repress the Gnrhr mRNA late in the cycle, 
resulting in lower GnRHR levels and rendering the gonado-
tropes less responsive to GnRH. Continued studies are clearly 
needed to fully elucidate the targets and molecular pathways for 
leptin control of the HPG axis.
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