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1 | INTRODUCTION

The ongoing coronavirus disease 2019 (COVID‐19) pandemic

requires population‐wide surveillance testing to test for the presence

of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)

virus.1 Quantitative reverse‐transcription polymerase chain reaction

(RT‐qPCR) using nasopharyngeal samples has been used as the gold‐

standard of detection, but it requires trained personnel, sterilized

swabs, RNA extraction, and causes discomfort in the patient being

tested.2 As alternative upper respiratory tract samples such as saliva

have proven to be reproducible and sensitive enough in detecting

severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and

are part of the recommended options for testing according to the

US Food and Drug Administration which granted accelerated

emergency use authorization to an open source protocol known as

Saliva‐Direct.3 Among the advantages of this approach saliva can be

self‐collected, it is stable at different temperatures and does not

require an RNA extraction step.4

Colombia with a population of around 48 million and

6,308,087 positive cases of COVID‐19, as of October 12,

20225 highlights the need for surveillance testing. With the

country's capacity of approximately 50,000 daily qPCR diagnostic

tests, it is important to develop diagnostic methods that allow for

easier sample collection and faster processing.6–9 The aim of this

work was to validate and implement an adapted version of the

Saliva‐Direct protocol in an economically developing country.

2 | MATERIALS AND METHODS

2.1 | Patients and biological samples

The experimental protocol used for human sample collection was

approved by the Institutional Ethics Committee at the ECCI

University on December 11, 2020 under minutes number 006.

Samples collection took place from May 30–September 20,

2021. All 34 volunteers (94% in the age range below 65 years old)

that agreed to participate had symptoms compatible with COVID or

had direct exposure to a positive case at home. None developed

critical cases or needed a hospital visit or stay.

At least half a milliliter of saliva was collected in 50ml sterile

corning tubes. No food consumption or tooth brushing was done in

the hour preceding the sample collection. Once samples were

collected at the volunteers’ home they were transported in ice and
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stored at −80°C until further processing which allowed for a

workflow that could be accomplished in most scenarios.

2.2 | Sample preparation

The Saliva‐Direct protocol version was followed with small modifications.

In short: to 8‐strip 200μl PCR tubes we added 6.25μl of a 20mg/ml

stock of Proteinase K (New England Biolabs P8107S) and 4μl of

RNAsecure (Thermo Fisher AM7006). Frozen Saliva samples were

thawed and vortexed until they were homogeneous. Subsequently,

50μl of Saliva and 50μl of TE buffer (Promega, V6231) were added to

the PCR tubes containing Proteinase K and RNAsecure. Samples were

then centrifuged and virus and proteinase K deactivated as described in

Vogels.10 Samples were frozen at −80°C until further processing.

2.3 | qPCR Saliva‐Direct

Five microliters from the previously prepared saliva sample were

added to a master mix that contained the Nucleoprotein 1 primers

and the control primers for RNAse plus their as well as the reliance

One‐Step multiplex supermix (BioRad 12010176) as described.10 For

the positive control 5 μl of Twist synthetic SARS‐CoV‐2 RNA control

(Twist Biosciences MT007544.1) was added to each well at 100

copies/μl and for the negative control 5 μl of nuclease‐free water.

The qPCR protocol was followed for Saliva‐Direct. Amplifications of

the N1 target lower than 35 cycles were counted as positives after

statistical analysis.

2.4 | Statistical analysis

For this study, the results of each volunteer as well as controls in the

Saliva‐Direct process are presented as a curve, where the x‐axis refers

to the cycle count (Ct), in a range of 1–44 cycles and the y axis

represents the values of fluorescence, with values between −53 and

20,000. We graphed 168 curves in total. For this representation, the

non‐parametric method presented in Ferraty is used.11 The functional

bag diagram (fbagplot) is made, in which the median curve is observed in

the inner region and outliers are presented in the outer region and are

considered the positive results. The inner region is defined as the region

bounded by all the curves corresponding to the points of the bag. Thus,

50% of the curves are in the interior region. The outer region is similarly

defined as the region bounded by all curves, outliers are represented by

curves of different colors. To carry out the characterization procedure of

said values in the functional graphs, it is necessary to previously specify

the coverage probability to determine the non‐peripheral region. The

default value is usually 95% corresponding to a significance level of

α = 0.05. Statistical analyses were performed in R version 4.1.3 (R Core

Team, 2022) and the Rainbow package version 6.0.312 was used to

produce the figures. For this study, the results of each volunteer in the

Saliva‐Direct process are presented as a curve or functional data,

smoothed using penalized splines as described in Hyndman & Ullah.13

F IGURE 1 Functional patient sampling boxplot. Results for 168 samples ran through Bio‐Rad CFX96 thermo‐cycler with the following
thermal profile: 52°C for 10min followed by 44 cycles of 95°C for 2min and 10 s and 55°C for 30 s. Detection was done in the FAM and Cy5
channels. The shaded area shows (the curve with greater depth) and the inner (dark gray) and outer (light gray) regions show the behavior of 95%
of all curves.
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3 | RESULTS

Functional data analysis currently corresponds to an attractive approach

for the statistical study of complex experiments, in which the observa-

tions can be represented naturally by functions. For our case, the basic

unit of information is the entire function observed instead of a chain of

data. Particular behavior was tracked in the curves of the volunteers with

positive results that would differentiate them from those with negative

results, so the 168 curves are plotted with functional bagplot and higher

density region (HDR) functional boxplot for outlier detection with the

methodology presented in Hyndman and H. L. Shang.12 This methodol-

ogy fully recognizes volunteers with negative tests and places them

within the 95% bandwidth with high similarity behavior with a functional

mean square error (FMSE) less than 10−2.

Results in Figure 1 show all curves we collected data for and in

Figure 2 we only have the curves with atypical behavior (16 curves

out of 168), the statistical analysis shows a confidence band of 95%

for samples being positive. Those with functional outlier data are

shown in Figure 2 in an HDR boxplot clearly showing positive

patients or positive controls. The outliers detected in both plots

coincide with the same results obtained by the fbagplot.

In Colombia the age group 20–29 and 30–39 reported the most

cases in the city of Bogota.14 According to the literature the younger

population tend to present a lesser mortality and lower incidence of

symptomatic cases, but it is also the population with the most social

interactions playing an important role in the spread of the virus.15–18

This highlights the need for surveillance in this population as already

reported in previous studies where the presence of the virus was

reported in saliva samples of asymptomatic carriers.19

4 | CONCLUSION

We conclude that the Saliva‐Direct approach is appropriate for

surveillance of the SARS‐CoV‐2 virus in the low‐risk population in

Colombia if the threshold on cycle count for a positive is

established in the testing lab using a functional analysis approach.

We recommend establishing the actual negative threshold using

this statistical approach to provide a more accurate diagnostic. In

addition, this method could be useful for monitoring the

epidemiology of the spread of the virus in settings such as

universities and schools particularly when paired with sample

pooling.20
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F IGURE 2 Identification of patients within atypical curves in the Bivariate higher density region (HDR) boxplot and functional HDR boxplot. The
dark and light gray regions show 50% and 99% HDR, respectively. The black line is the modal curve. The bivariate HDR boxplot shows two main
components: the first one characterizes the 99% of those with a negative test in the shaded area, the second one shows the positives outside the
shaded area in colors, these are shown by colored curves in the functional HDR boxplot. Curves 2, 4, and 10 correspond to patients with positive test
with replicates 64, 78, and 82, the other points (92, 129, 136, 142, 143, 144, and 152) or curves correspond to positive control tests.
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