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SUMMARY

This perspective discusses the importance of characterizing, quantifying, and
accounting for various sources of uncertainties involved in different layers of hy-
drometeorological and hydrodynamic model simulations as well as their complex
interactions and cascading effects (e.g., uncertainty propagation) in forecasting
compound flooding (CF). Over the past few decades, CF has come to attention
across the globe as this natural hazard results from a combination of either con-
current or successive flood drivers with larger economic, societal, and environ-
mental impacts than those from isolated drivers. A warming climate and
increased urbanization in flood-prone areas are expected to contribute to an
escalation in the risk of CF in the near future. Recent advances in remote sensing
and data science can provide a wide range of possibilities to account for and
reduce the predictive uncertainties; hence improving the predictability of CF
events, enabling risk-informed decision-making, and ensuring a sustainable CF
risk governance.

COMPOUND FLOODING

Compound floods (CFs) are natural hazards that originate from a coincidence/cascade of multiple oceanic,

hydrological, meteorological, and anthropogenic drivers with the potential to contribute to the societal or

environmental risk (Leonard et al., 2014; Raymond et al., 2020; Zscheischler et al., 2020). Such compounding

hazards might be classified into four categories of (1) preconditioned, where a pre-existing climate-driven

condition amplifies the impacts (e.g., flood in Houston, US, because of preconditioned saturated soils

(Valle-Levinson et al., 2020)), (2) multivariate, when multiple concurrent hazards hit the same geographical

region (e.g., flood in Ravena, Italy, because of extreme rainfall and storm surge, (Bevacqua et al., 2017)), (3)

temporally compounding when the succession of hazards leads to impacts greater than the sum of individ-

ual hazards (e.g., flood in Switzerland because of clusters of extreme rainfall events (Barton et al., 2016)),

and (4) spatially compounding when multiple connected locations are affected by hazards within a limited

time window (e.g., flood in Pakistan because of teleconnections of hydrometeorological extremes, (Lau

and Kim, 2012)) (Bevacqua et al., 2021; Zscheischler et al., 2020). Because of the nature of CF events, uni-

variate metrics and single modeling platforms would fail to appropriately characterize the risk associated

with CF. Exceedance probability estimates of CF hazards, for example, require joint probability analysis

based on multivariate probability distribution functions, including multivariate parametric distributions

and Copulas (Hao and Singh, 2020; Salvadori et al., 2015, 2016). Joint occurrence analysis of extreme events

via multivariate probabilistic methods enables researchers to conduct assessments at regional and global

scale (Camus et al., 2021; Eilander et al., 2020; Nasr et al., 2021). The probabilistic approaches, though use-

ful, require long overlapping observation records (e.g., >30 years of nearly complete data for estimating a

100-year return level) and if based on point measurements (i.e., gauges) fail to provide information

regarding the spatial distribution of hazards, their dependencies and their local patterns. Physics-informed

approaches are complementary to probabilistic methods and allow for simulating spatiotemporal patterns

of CF over a user-defined model domain and for a given compound event (Gori et al., 2020a, 2020b, 2022;

Muis et al., 2019). From a physical perspective, coupling process-based models (e.g., hydrological and hy-

drodynamic) are necessary for a reasonable representation of interactions between various drivers of CF.

This coupling can be achieved in various modes including one-way, loosely, tightly, and fully coupled

fields (Santiago-Collazo et al., 2019). Several recent studies reported challenges in developing coupled
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Figure 1. Schematic of cascading uncertainty resulting from the interplay of hydrologic, hydrodynamic, and oceanic models in compound flood

modeling and forecasting
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process-based models including forcing conditions and computational complexities despite the growing

access to powerful and low-cost computational resources (Bilskie et al., 2021, 2022; Huang et al., 2021; Ye

et al., 2020). The complementary nature of process-based and statistical approachesmotivated researchers

to develop ‘hybrid’ methods. Hybrid methods mainly focus on linking these two approaches to alleviate

computational burden as they focus on the most likely pair-wise forcing conditions given the correlation

structure (or statistical dependence) of flood drivers and desired return period (e.g., 50, 100, 500 years)

(Moftakhari et al., 2019; Serafin et al., 2019).

HYDROLOGICAL ANDHYDRODYNAMIC SYSTEMS FORMODELINGCOMPOUND FLOOD

EVENTS

This section discusses the hydrometeorological and hydrodynamic forecasting systems required for CF

modeling. We explain all sources of uncertainties, i.e., aleatory and epistemic, involved in different layers

of hydrometeorological and hydrodynamic model simulations, and argue that a thorough analysis of their

propagation, interaction, and cascading effects is needed that contribute to enhancing themodeling skills.

For doing so, we provide a schematic illustration that conceptualizes different sources of uncertainties and

their linkage through different layers of modeling (Figure 1).

Sources of uncertainties in hydrologic modeling

Hydrometeorological forecasts are not often accurate because models suffer from inadequate conceptu-

alization of underlying physics, non-uniqueness of model parameters, or inaccurate initialization
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(Moradkhani et al., 2018). The core of hydrologic forecasting systems is the hydrologic (HL) model. HL

models represent spatially and temporally heterogeneous properties of a real hydrologic system charac-

terized by parameters and state variables. Parameters are not often easily measurable; rather they are esti-

mated indirectly through either prior knowledge or model calibration with the consequent introduction of

errors and uncertainties (Gupta et al., 2003; Liu et al., 2005; Moradkhani and Sorooshian, 2008). Calibration

is used to estimate the model parameters by matching the model output(s) at a specific location(s) where

the equivalent observation is available. Because of equifinality or non-uniqueness, there may be more than

one combination of parameters that are equally capable of generating similar (but not necessarily identical)

model outputs (Beven and Binley, 1992). This is also known as un-identifiability. In addition to model cali-

bration, the parameter estimation problem has been referred to by other names such as parameter opti-

mization, parameter tuning, inverse problem, data assimilation, etc. HL model parameters have been esti-

mated using a variety of optimization techniques, including the shuffled complex evolution (SCE) algorithm

(Duan et al., 1992; Arsenault et al., 2014; Bárdossy, 2007; Immerzeel and Droogers, 2008) and dynamically

dimensioned search (DDS) algorithm (Tolson and Shoemaker, 2007). These global optimization strategies

are ideally suited to a class of single-criterion calibration problems. Because these methods rely on deter-

ministic nonlinear optimization approaches and only seek to identify a single optimum parameter set, they

do not account for the uncertainty associated with the model parameter(s). HL models are simplified ver-

sions of complex water cycle systems that are commonly used to forecast hydrologic conditions. These sim-

plifications are primarily owing to our limitations to simulate real-world processes that introduce structural

uncertainty. Other terms used in the literature to describe structural uncertainty include ‘‘model inade-

quacy’’ (Kennedy and O’Hagan, 2001) and ‘‘model discrepancy’’ (Smith et al., 2015). Measurement uncer-

tainty is introduced by errors in the measurements of model input (e.g., rainfall) and model output (e.g.,

streamflow). Although some researchers (Nearing et al., 2016) suggest that measurement uncertainty is

the same as structural uncertainty, we agree with others (e.g., Gupta and Govindaraju, 2019) that the

two terms must be distinguished because a modeler cannot minimize measurement error whereas struc-

tural error can be reduced (Moradkhani et al., 2018). From another perspective, as model parameters

can be tuned to compensate for structural errors, it is presumed that explicitly acknowledging structural

error or uncertainty in a model is not necessary (Xu et al., 2017a, 2017b). Although this is true when calcu-

lating best-fitting parameters at a certain location where the observation is available, an explicit represen-

tation of structural uncertainty is indispensable for an accurate and realistic assessment of the total uncer-

tainty (MacCallum and O’Hagan, 2015). This has been the main topic of many studies that explored the

benefit of ‘explicitly’ accounting for model structural uncertainty in improving HL model predictions

through the data assimilation (DA) (Abbaszadeh et al., 2019; Gupta and Govindaraju, 2019; Pathiraja

et al., 2018a, 2018b; Xu et al., 2017a, 2017b).
Sources of uncertainties in hydrodynamic modeling

Flood forecasting and water level (WL) prediction using hydrodynamic (HD) models are also subject to un-

certainties associated with the initial state of the system, observational and forcing data, model parame-

ters, and model structure. These sources of uncertainty, when not accounted for, can significantly affect

the accuracy of flood inundation maps, flood extent, and floodwater velocity maps (Bales and Wagner,

2009; Merwade et al., 2008; Muñoz et al., 2020; Thompson et al., 2008; Vousdoukas et al., 2018; Willis

et al., 2019). The initial state of the system is affected by uncertainties stemming from topographic and

bathymetric (topobathy) data including elevation errors in light detection and ranging (LiDAR) datasets

and inadequate representation of flood-protection infrastructure in digital elevation models (DEMs)

(e.g., levees, barriers, and seawalls) (Bates et al., 2021; Gallien et al., 2018; Holmquist and Windham-

Myers, 2022). Likewise, uncertainty from bathymetric data can affect velocity and current speed magnitude

estimates, and thereby complex processes such as sedimentation, backwater effect, salinization, and mix-

ing in tidal rivers (Cea and French, 2012; Neal et al., 2021; Ye et al., 2018). Uncertainties from observational

and forcing data are considered other major sources of errors that can propagate from ensemble-based

meteorological predictions to boundary conditions and accordingly translate into flood inundation extent

and WL errors (Flowerdew et al., 2009; Jafarzadegan et al., 2021b; Pappenberger et al., 2005; Saleh et al.,

2017). CF dynamics in low-lying coastal areas are influenced by various terrestrial and coastal flood drivers

and their interactions such as tides and river flow (Loganathan et al., 1987; Jay et al., 2015; Guo et al., 2015),

tides and precipitation (Lian et al., 2013; Xu et al., 2014), storm surge and river flow (Klerk et al., 2015; Svens-

son and Jones, 2002; Gori et al., 2020a, 2020b, 2022; Moftakhari et al., 2019), storm surge and precipitation

(Wahl et al., 2015; Zheng et al., 2013), river flow and sea-level rise (Moftakhari et al., 2017; Ward et al., 2018),

waves andWL (Hawkes et al., 2002; Wahl et al., 2016), and even more than two flood drivers acting together
iScience 25, 105201, October 21, 2022 3
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(Bevacqua et al., 2017; Olbert et al., 2017). Uncertainties underlying these forcings and their correlation

structure propagate through the system (Muñoz et al., 2022). Model parameter uncertainty is another

source of error that can influence WL and flood propagation over natural and urbanized areas. These

include bed roughness, surface friction, and sea surface (wind) drag, among other physical coefficients

that control the dynamics of terrestrial and coastal flood processes (Bates, 2022; Bhola et al., 2019; Hall

et al., 2005; Lin and Chavas, 2012; Werner et al., 2005). Typical values and empirical equations for roughness

values have been proposed in literature because of difficulties in direct measurement of surface friction in

the field (Liu et al., 2018; Papaioannou et al., 2017). Uncertainty from model structure refers to limitations

and a priori assumptions in the physically-based modeling (Moradkhani et al., 2018). HD models require

numerical discretization and simplification of oceanic, hydrological, and meteorological processes and

are therefore subject to process uncertainty. Overall, the two main components of model structural uncer-

tainty in HD models are the formulation and numerical schemes used to route the flow throughout the

domain and the spatiotemporal discretization of the domain (Willis et al., 2019). Although diverse numer-

ical schemes (or methods) have been developed to solve themomentum andmass balance equations (e.g.,

Eulerian, Eulerian-Lagrangian, and diffusion-wave, among others), we argue that grid-cell size is the most

influential factor in accurately simulating flood dynamics based on global-sensitivity analyses (Alipour et al.,

2022). Nevertheless, there is always a trade-off between model accuracy and computation burden (or run

time) that should be evaluated before any attempts of large-scale mesh refinement.
QUANTIFYING AND REDUCING UNCERTAINTIES

This section provides a review of approaches that are used for quantifying and reducing the uncertainties

associated with CF modeling. These include Monte Carlo Based method, Generalized Likelihood Uncer-

tainty Estimation, Data Assimilation (DA), and post-processing methods (e.g., Bayesian Model Combina-

tions and Copula-based methods). Among those statistical approaches, DA has been successfully applied

in many hydrological, meteorological, and oceanic studies as it helps account for the aforementioned sour-

ces of uncertainty.
Methods to quantify and reduce uncertainties in hydrologic modeling

DA is a state-of-the-art approach that helps account for model structural uncertainty with model param-

eter and input uncertainties by probabilistically conditioning the states and parameters of the model on

observations (Abbaszadeh et al., 2018; Clark et al., 2008; Moradkhani et al., 2005, 2018; Parrish et al.,

2012). Pathiraja et al. (2018b) presented a data-driven approach to model uncertainty characterization

for the system where the states are partially observed and minimal prior knowledge of the model error

processes is available. This approach can estimate the uncertainty in hidden model states while

improving predictions of observed variables. More recently, Abbaszadeh et al. (2019) proposed a hybrid

ensemble and variational data assimilation method that effectively combines sequential and variational

assimilation approaches to account for all sources of uncertainties involved in hydrologic predictions.

The presented approach operates simultaneously in batch processing and sequential manners, leading

to a more complete estimation of prognostic variables’ posteriors. It also explicitly quantifies model

structural uncertainty by incorporating the model error covariance matrix in the variational data assimi-

lation cost function. Another approach to account for model uncertainty is a multi-model ensemble

(Bohn et al., 2010; Madadgar and Moradkhani, 2014; Regonda et al., 2006). A forecast based on a diverse

range of models implicitly compensates for the errors associated with each model. Multi-modeling via

Bayesian Model Averaging (BMA) has become an increasingly popular procedure in hydrologic fore-

casting applications (Duan et al., 2007; Madadgar and Moradkhani, 2014; Najafi and Moradkhani,

2016). Sequential Bayesian Combination (SBC) is a variation of this method that estimates the posterior

model probability progressively over time (Hsu et al., 2009). These two techniques (BMA and SBC) have

been proven to work effectively with the ensemble DA (DeChant and Moradkhani, 2014; Parrish et al.,

2012). These advancements have led to moving toward a more complete accounting of uncertainty in

the hydrologic forecasting (Liu et al., 2012). Several studies have shown that combining multi-modeling

and DA produces more reliable probabilistic hydrometeorological forecasts than other traditional ap-

proaches (Bourgin et al., 2014; Liu et al., 2012; Moradkhani et al., 2006)(Liu et al., 2012; Bourgin et al.,

2014; Moradkhani et al., 2006). DeChant and Moradkhani (2011), used an Ensemble Streamflow Predic-

tion (ESP) in conjunction with a DA technique to quantify initial condition uncertainty and SBC to quantify

model errors. They concluded that their method provides a more complete description of seasonal hy-

drologic forecasting uncertainty.
4 iScience 25, 105201, October 21, 2022
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Methods to quantify and reduce uncertainties in hydrodynamic modeling

The accuracy of HD model simulations is affected by topobathy errors and uncertainties associated with

LiDAR-derived DEMs. Recent advances in remote sensing and machine learning (ML) techniques have

shown the benefits of using satellite, radar, and unmanned aerial imagery to correct elevations errors asso-

ciated with building artifacts, flood defense structures, forests, and wetlands (Cooper et al., 2019; Hawker

et al., 2022; Liu et al., 2021; Zhao et al., 2022). In addition, these techniques have been used to estimate

bathymetry in rivers, near shore, and intertidal zones for ungauged sites with satisfactory results (Kasvi

et al., 2019; Legleiter and Harrison, 2019; Ma et al., 2020; Moramarco et al., 2019; Neal et al., 2021). HD

models are also subject to model parameter uncertainties such as channel bed and floodplain friction

that are often represented via Manning’s roughness (n) coefficients. Roughness coefficients vary in space

according to land cover type distributions, and therefore they require a comprehensive spatially-varying

calibration to estimate themost suitable n-coefficients that minimize simulation errors and ensure the high-

est model’s performance in urban, riverine, and estuarine systems (Attari and Hosseini, 2019; Bakhtyar

et al., 2020). Uncertainties from forcing data can be estimated a priori by introducing a random (or stochas-

tic) error distribution according to the observational and forcing type, hence improving flood forecast and

WL prediction (Moradkhani et al., 2018; Saleh et al., 2017). In CF, multivariate frequency analysis, either

parametric distributions or copula-based methods, pose uncertainties associated with multivariate sam-

pling, dependencemodeling, selection and parametrization of marginals, and hazard scenario generation.

This source of uncertainty can be treated by advanced statistical methods (Sadegh et al., 2018; Jane et al.,

2022).

In the last two decades, sensitivity analysis (Alipour et al., 2022; Hall et al., 2005; Pappenberger et al., 2008;

Thomas Steven Savage et al., 2016), Monte Carlo Based methods (Apel et al., 2004; Domeneghetti et al.,

2013), Generalized Likelihood Uncertainty Estimation (Aronica et al., 2002; Domeneghetti et al., 2013; Ro-

manowicz and Beven, 2003), and Data Assimilation (Brêda et al., 2019; Durand et al., 2008; Xu et al., 2017a,

2017b) have been commonly applied for uncertainty quantification and reduction in HD models and flood

inundation mapping. Compared to DA in HL modeling, the integration of DA in HDmodeling has received

much less attention in scientific literature. This is mainly because of limited access to high spatiotemporal

resolution remote sensing data needed for assimilation in HD modeling. As an alternative to remote

sensing data, recent studies demonstrated that point-source observations can be assimilated and provide

a robust characterization of uncertainty in HD models (Annis et al., 2022; Jafarzadegan et al., 2021a; Muñoz

et al., 2022). Xu et al. (2017a, 2017b) used a Particle Filter technique to assimilate several point-source WL

observations into two-dimensional (2D) HDmodels. Jafarzadegan et al. (2021a) introduced a DA framework

that assimilates both discharge and WL while considering correlations among point-source observations.

This framework can generate probabilistic flood inundation maps while accounting for all sources of uncer-

tainties in model parameters, state variables, and boundary conditions.

Furthermore, DA has been used to improve storm surge prediction in coastal areas. Peng and Xie (2006)

developed a four-dimensional variational DA (4D-Var) to determine initial conditions by assimilating WL

and surface currents. Mayo et al. (2014) used a singular evolutive interpolated Kalman filter to assimilate

WL and estimate n-coefficients. Similarly, Siripatana et al. (2017) quantified uncertainties from n-coeffi-

cients in HD modeling using an ensemble Kalman filter (EnKF) method with appropriate ensemble size

and inflation ratio. Zheng et al. (2018) used an adjoint-free 4D-Var method to estimate wind drag coefficient

and improve storm surge forecasts. Regarding model structural uncertainty, Asher et al. (2019) developed

an optimal interpolation-based DA scheme to correct WL residuals arising from physical processes that are

not fully resolved in HDmodels (e.g., steric variations, baroclinicity, andmajor ocean currents). More recent

studies have accounted for all sources of uncertainty in HDmodeling using a pre-established EnKFmethod

for model state-variable and parameter estimation (Moradkhani et al., 2005). This method has been applied

for the probabilistic flood inundation mapping (Jafarzadegan et al., 2021a) and further adapted to WL pre-

diction and CF hazard assessment in near-real time (Muñoz et al., 2022).
HYBRID MODELING PLATFORMS FOR EFFICIENT COMPOUND FLOOD PREDICTION

Our previous studies and experiences all indicate that conventional methods based on univariate statistics

and/or single physical driver modeling fall short in the appropriate representation of CF dynamics (Mofta-

khari et al., 2017,2019; Muñoz et al., 2021). Whenmultivariate statistical methods or coupled process-based

modeling are implemented, a new set of challenges arise. Each statistical and process-based modeling

approach comes with benefits that can be combined in a hybrid model and provide a complimentary
iScience 25, 105201, October 21, 2022 5
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benefit to the other method. For example, to cover the wide range of impacts fromCF scenarios, onemight

need computationally expensive numerical models under hundreds or even thousands of synthetic sce-

narios with the same return period. This, even with the help of supercomputers, is not quite feasible. Recent

efforts to link statistical and process-based dynamical modeling approaches propose hybrid schemes that

help reduce the number of scenarios needed for a comprehensive CF analysis, with the help of a depen-

dence-informed sampling (Anderson et al., 2021; Moftakhari et al., 2019).

Integrating physics-informed and ML approaches has also been gaining attention in the scientific commu-

nity as it allows for alleviating the computational burden and efficiency required in complex large-scale HD

modeling. Typically, ML approaches are developed to provide time series of predictive WL and streamflow

at specific gauge stations of a given study region (Mosavi et al., 2018). Nevertheless, we believe that hybrid

frameworks that integrateML and HDmodels have the potential to recognize spatiotemporal features from

historic flood events and so help predict spatially distributed water depth and flood inundation extent from

fluvial and coastal drivers (Hosseiny et al., 2020; Hu et al., 2019; Kabir et al., 2020). To incorporate physics-

informed data into ML models, one might conduct geospatial analyses and feature engineering to derive

spatiotemporal features from available satellite, radar, and DEM datasets. This information, in addition to

input forcing data associated with historic flood events, could be then used to train specializedMLmodels.

One of the main limitations of developing advanced ML models for CF simulations is the lack of access to

large and reliable training data. Therefore, an essential line of research is to utilize advanced remote

sensing technologies, and statistical techniques to develop a reliable archive of historical CF events that

include forcing data and affected inundated areas corresponding to those events. Access to such a valu-

able dataset at a large scale paves the way to test past CF events, learn from them and forecast CFs

more accurately. Moreover, this dataset together with appropriate ML models can be adapted to conduct

regional CF mapping using local-scale HD models and leveraging transfer learning techniques in data-

scarce regions or ungauged locations, i.e., extracting gained knowledge from a specific location/flood

event and applying it to new locations, to recognize hidden patterns from available satellite, radar data,

and elevation data (Muñoz et al., 2021).
Summary and conclusion

CFs are natural hazards characterized by the interplay of multiple complex drivers in space and time. Such

drivers are not necessarily extreme in nature, but their compounding effects are often responsible for the

largest impacts and escalated risks that society and the environment have experienced in recent years. To

properly characterize the impacts and risks associated with compound flooding, researchers rely on either

data-driven or physically-based approaches that account for multiple concurrent or cascading drivers (e.g.,

multivariate statistical methods and coupling process-based models). Likewise, linking both approaches in

the so-called ‘hybrid’ method has gained attention in the research community as it alleviates computa-

tional burden when simulating CF hazards at a large scale. In that regard, CF can efficiently be character-

ized in space and time by (1) focusing on the most likely pair-wise forcing conditions via statistical analysis,

and (2) generating the corresponding physics-informed flood hazard map for a given return period. Never-

theless, uncertainties stemming from observational and forcing data, model parameters, the initial state of

the system, and model structure can affect the accuracy of CF modeling and forecasting. Among the sta-

tistical approaches developed for uncertainty quantification and reduction, data assimilation (DA) has been

successfully applied in many hydrological, meteorological, and oceanic studies as it helps account for the

aforementioned sources of uncertainty. DA approaches in the field of CF are, however, in an infant stage

and only a few studies have recently reported the benefits of DA for CF modeling and forecasting at a local

and regional scale. The physical models, typically used to simulate CF impacts are computationally expen-

sive. Given the key role of time management during CF hazards in a real-time scenario, the use of

ensemble-based techniques, such as DA, has gained less attention in practice. However, the recent ad-

vances in the parallel computation of physical models using supercomputers have overcome this limitation

and opened a new avenue to efficiently combine DA with hydrodynamic models for CF inundation fore-

casting in operational systems. These studies mainly focused on sequential DA using the EnKF technique,

and so future work is recommended using more advanced techniques such as Particle Filtering (PF) and

evolutionary PF. Although Kalman filtering-based data assimilation techniques have been widely and suc-

cessfully used in hydrologic studies, this technique has some inherent features that limit its superiority.

These include the Gaussian assumption of errors, linear updating rule within the EnKF, and violation of wa-

ter balance. Furthermore, machine learning (ML) and transfer learning techniques integrated with the

hybrid method can aid in the model calibration of process-based models as well as CF mapping at the
6 iScience 25, 105201, October 21, 2022
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regional scale by leveraging local scale hydrologic and/or hydrodynamic models. ML can benefit from

multisource satellite and radar imagery via specialized deep learning algorithms that can also be trained

to replicate process-based models. Therefore, future work is advised in this line of research to benefit

from physics-informed ML models. Although utilizing the physics-informed ML models is gaining popu-

larity in recent years as an efficient tool for real-time flood modeling and forecasting, designing such

emulators and their configurations are still challenging as they keep all the uncertainties involved in the

physical models and just represent them with different language within the ML models. Coupling ML

with physical models although theoretically seems promising, there have not been sufficient studies yet

to rely on and confidently demonstrate its usefulness and effectiveness in solving the unknown questions

and challenges in the hydroclimate community.
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Andréassian, V. (2014). Investigating the
interactions between data assimilation and post-
processing in hydrological ensemble forecasting.
J. Hydrol. 519, 2775–2784. https://doi.org/10.
1016/j.jhydrol.2014.07.054.
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