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Abstract

KRAS mutation is a predictive biomarker for resistance to cetuximab (Erbitux®) in metastatic 

colorectal cancer (mCRC). This study sought to determine if KRAS mutant CRC lines could be 

sensitized to cetuximab using dasatinib (BMS-354825, sprycel®) a potent, orally bioavailable 

inhibitor of several tyrosine kinases, including the Src Family Kinases. We analyzed 16 CRC lines 

for: 1) KRAS mutation status, 2) dependence on mutant KRAS signaling, 3) expression level of 

EGFR and SFKs. From these analyses, we selected three KRAS mutant (LS180, LoVo, and 

HCT116) cell lines, and two KRAS wild type cell lines (SW48 and CaCo2). In vitro, using Poly-

D-Lysine/laminin plates, KRAS mutant cell lines were resistant to cetuximab whereas parental 

controls showed sensitivity to cetuximab. Treatment with cetuximab and dasatinib showed a 

greater anti-proliferative effect on KRAS mutant line as compared to either agent alone both in 

vitro and in vivo. To investigate potential mechanisms for this anti-proliferative response in the 

combinatorial therapy we performed Human Phospho-kinase Antibody Array analysis measuring 

the relative phosphorylation levels of phosphorylation of 39 intracellular proteins in untreated, 

cetuximab, dasatinib or the combinatorial treatment in LS180, LoVo and HCT116 cells. The 

results of this experiment showed a decrease in a broad spectrum of kinases centered on the β-

catenin pathway, the classical MAPK pathway, AKT/mTOR pathway and the family of STAT 

transcription factors when compared to the untreated control or monotherapy treatments. Next we 

analyzed tumor growth with cetuximab, dasatinib or the combination in vivo. KRAS mutant 

xenografts showed resistance to cetuximab therapy, whereas KRAS wild type demonstrated an 

anti-tumor response when treated with cetuximab. KRAS mutant tumors exhibited minimal 

response to dasatinib monotherapy. However, as in vitro, KRAS mutant lines exhibited a response 

to the combination of cetuximab and dasatinib. Combinatorial treatment of KRAS mutant 

xenografts resulted in decreased cell proliferation as measured by Ki67 and higher rates of 

apoptosis as measured by TUNEL. The data presented herein indicate that dasatinib can sensitize 

KRAS mutant CRC tumors to cetuximab and may do so by altering the activity of several key-
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signaling pathways. Further, these results suggest that signaling via the EGFR and SFKs may be 

necessary for cell proliferation and survival of KRAS mutant CRC tumors. This data strengthen 

the rationale for clinical trials in this genetic setting combining cetuximab and dasatinib.
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INTRODUCTION

The epidermal growth factor receptor (EGFR) is a member of the HER family of receptor 

tyrosine kinases and consists of four members: EGFR (ErbB1/HER1), HER2/Neu (ErbB2), 

HER3 (ErbB3) and HER4 (ErbB4). Stimulation of the receptor through ligand binding 

activates the intrinsic receptor tyrosine kinase and promotes receptor homo- or 

heterodimerization with HER family members. EGFR activation leads to the downstream 

stimulation of several signaling cascades, including RAS/RAF/ERK/MAPK, 

phosphatidylinositol 3-kinase (PI3K/Akt) pathway and the phospholipase C-protein kinase C 

(PLCg/PKC) pathway. In addition, several other pathways are activated including Src family 

kinase (SFKs) and the Signal Transducers and Activators of Transcription (STATs). 

Collectively, these pathways influence several cellular responses including cell proliferation, 

survival, angiogenesis, migration, and metastasis (reviewed in (Abram and Courtneidge, 

2000; Biscardi et al., 1999b; Blume-Jensen and Hunter, 2001; Marmor et al., 2004; Prenzel 

et al., 2001; Schlessinger, 2000; Yarden and Sliwkowski, 2001)). Aberrant expression or 

activity of the EGFR is linked to the etiology of several human epithelial cancers including 

head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), 

brain cancer and colorectal cancer (CRC). Therefore, the EGFR has emerged as one of the 

most promising molecular targets in oncology.

Although EGFR is activated through ligand binding and autophosphorylation of its 

cytoplasmic tail, it is well established that Src, or Src family kinases (SFKs), are necessary 

for full activation of the EGFR (Biscardi et al., 1999a). Src is the prototype member of a 

family of non-receptor tyrosine kinases (nRTKs) including Src, Yes, Fyn, Lyn, Lck, Hck 

Fgr, Blk and Yrk. These cytoplasmic membrane associated nRTKs are transducers of 

mitogenic signaling emanating from a number of RTKs including EGFR, HER2, fibroblast 

growth factor receptor (FGFR), platelet derived growth factor (PDFGR), colony-stimulating 

factor-1 receptor (CSF-1R) and hepatocyte growth receptor (Belsches et al., 1997; Bowman 

et al., 2001; DeMali et al., 1999; Mao et al., 1997; Muthuswamy et al., 1994; Tice et al., 

1999). Investigations into the molecular interactions between SFKs and EGFR have 

revealed that SFKs can physically associate with activated EGFR (Belsches-Jablonski et al., 

2001; Maa et al., 1995; Muthuswamy and Muller, 1995). This interaction results in a 

conformational change in the SFK and leads to autophophorylation at Y419 and transient 

activity (Xu et al., 1999). This interaction of SFKs with RTKs can result in enhanced or 

synergistic SFK activation and has been demonstrated in tumor types, most notably in 

HNSCC, NSCLC and CRC (Fu et al., 2008; Koppikar et al., 2008; Mao et al., 1997; Zhang 

et al., 2007).
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Activation of SFKs occurs with high frequency during the development of CRC. An 

increase in SFK activity in CRC tumors as compared to normal adjacent mucosa has been 

reported (Bolen et al., 1987; Cartwright et al., 1989). In addition, activation of SFKs was 

reported at an early stage of colorectal tumor development in polyps with high malignant 

potential but not in small benign polyps of the colon (Cartwright et al., 1990). Further, 

premalignant ulcerative colitis epithelium has been reported to have elevated SFK activity 

(Cartwright et al., 1994), suggesting that SFKs activity may be a critical step in the 

development from non-malignant to malignant transformation in CRC. Talamonti et al 

reported increased activity and expression of SFKs in progressive stages of human 

colorectal cancer, suggesting that colon cancer progression may be dependent on increased 

SFK protein level and subsequent activity (Talamonti et al., 1993). Similar studies by 

Termuhlen et al looking at colorectal metastases to either the liver or the regional lymph 

nodes exhibited increased SFK activity levels when compared to the primary tumor 

(Termuhlen et al., 1993). Collectively these studies suggest a putative link between 

increased SFK activity and metastatic potential. Irby et al indicated that overexpression of 

normal c-Src in poorly metastatic human colon cancer cells enhances primary tumor growth 

but not the metastatic potential of these cancers (Irby et al., 1997). Additional studies by 

Irby et al cited that activating mutations in Src, as compared to increased expression and 

activity of Src, in a subset of human colorectal cancers might have a role in the malignant 

progression of human CRC (Irby et al., 1999). It has been reported that increased SFK 

expression occurs in approximately 80% of CRC specimens when compared to the normal 

adjacent colonic epithelium (Hurwitz et al., 2004). Recent studies looking at 64 individual 

CRC cell lines found a striking diversity of SFK activity. The authors reported that all lines 

tested depended on SFK activity for growth and concluded from this work SFK activity is 

important for the growth of CRC lines (Emaduddin et al., 2008). In addition to SFK activity 

and CRC progression, SFK activity has been reported as a marker of poor clinical prognosis 

(Aligayer et al., 2002). Collectively these investigations provide a wide body of evidence 

implicating Src and its family of kinases in CRC development and progression (for further 

review (Summy and Gallick, 2003)). Regardless of the form of activation, activated SFKs 

lead to the phosphorylation of several targets including the EGFR, STATS, PLCγ, PKCs, 

FAK, RAS, RAF and mucin 1 (MUC1) (Biscardi et al., 2000; Bivona et al., 2003; Blake et 

al., 1999; Bromberg et al., 1998; Chiu et al., 2002; Denning et al., 1996; Fabian et al., 1993; 

Joseloff et al., 2002; Kijima et al., 2002; Kronfeld et al., 2000; Li et al., 1994; Li and Kufe, 

2001; Li et al., 2001a; Li et al., 2001b; McLean et al., 2005; Schaller et al., 1994; Yu et al., 

1995).

Targeting EGFR has been intensely pursued in the last decade and has resulted in the FDA 

approval of five new molecular targeting agents since 2003 in four distinct solid tumors 

including metastatic, NSCLC, HNSCC, breast cancer and colorectal cancer (mCRC). One 

molecular strategy of EGFR inhibition has been the development of monoclonal antibodies 

(mAb, cetuximab and panitumumab) directed against the extracellular domain of the EGFR. 

This approach results in 1) blockade of endogenous ligand binding to the receptor, 2) 

inhibition of dimerization with other HER family members and 3) receptor internalization 

and degradation. Cetuximab and panitumumab have been approved for the treatment of 

mCRC when used alone or in combination with irinotecan in patients with irinotecan-
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refractory mCRC (cetuximab) or as a single agent in patients who do not respond to all 

available chemotherapies (panitumumab).

Despite the approval of this promising biological therapeutics many individuals do not 

respond to this class of drug. Intensive clinical trials have evaluated the outcomes of patients 

with mCRC in relation to their KRAS mutational status. The conclusions of this analysis 

demonstrated a strong correlation between mutated KRAS and a lack of response to 

cetuximab therapy indicating that KRAS status as a predictive factor (Amado et al., 2008; 

Bokemeyer et al., 2008; De Roock et al., 2008; Di Fiore et al., 2007; Karapetis et al., 2008; 

Khambata-Ford et al., 2007; Lievre et al., 2008; Punt et al., 2008; Van Cutsem et al., 2008). 

One the basis of these clinical trials ASCO published guidelines that strongly support the 

use of anti-EGFR antibodies in mCRC patients with wild type KRAS status (Allegra et al., 

2009; Bardelli and Siena, 2010). These guidelines leave very few therapeutic options for 

mCRC patients harboring a KRAS mutation.

In this report we investigated whether or not targeting the EGFR, using cetuximab, and 

SFKs, using the broad spectrum inhibitor dasatinib, in the KRAS mutant colorectal setting 

would lead to anti-proliferative effects on colon tumor growth. We found that dasatinib 

treatment could sensitize KRAS mutant, cetuximab resistant cells to cetuximab therapy in 

vitro and in vivo. This combinatorial therapy led to altered signaling in 1) components of the 

MAPK pathway, 2) the β-catenin pathway and 3) the activation of several members of the 

STAT family of transcription factors. Taken together this suggests that the EGFR and SFKs 

play a role in the KRAS mutant CRC setting and that dual targeting the EGFR and SFKs 

with dasatinib and cetuximab may be a beneficial approach in this genetic subset of mCRC 

patients.

RESULTS

Characterization and selection of KRAS mutant colorectal tumor lines

We screened 16 CRC lines for the expression of EGFR and SFKs (Figure 1A). Fourteen of 

the 16 lines expressed EGFR and all lines expressed SFKs. Relative EGFR and SFK 

expression was quantitated using ImageJ and normalized to Colo320DM and SW620 for 

EGFR and SW48 for total SFK. Next we screened each line for KRAS mutations at codon 12 

and 13 and for BRAF mutations at codon 600 by pyrosequencing (Figure 1B). Nine of 16 

lines had a KRAS mutation. Four cell lines (LS123, LS180, SW480, and SW620) had a 

mutation at codon 12, whereas five lines (DLD1, HCT115, HCT116, LoVo, and SW1417) 

had a mutation at codon 13. Two of the 16 lines (HT29 and WiDR) demonstrated BRAF 

mutations. BRAF mutations were analyzed to ensure that selected lines were mutated for 

KRAS only. To further analyze these tumor cells, we performed in vivo tumor growth 

analysis to determine ability of each CRC cell line to grow in a xenograft model. For this 

analysis 1.0 X 106 were inoculated into the dorsal flank of athymic nude mice and allowed 

to grow for 4 weeks. Tumors that reached a minimum size of 500 mm3 were considered 

xenograftable. The results of this study showed that 12 of 16 lines were able to form tumors 

in vivo (annotated with an asterisk in Figure 1A). From these results we selected three 

lines LS180, LoVo and HCT116 for further studies. To determine their dependence on 

KRAS we performed proliferation assays using siRNAs targeting KRAS (Figure 1C). 
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Results from this study showed that each line had dependence on mutated KRAS for 

proliferation. Significant reductions of KRAS protein levels were demonstrated by Western 

blot analysis for KRAS knockdown in these experiments (Figure 1C inset). In addition, 

these lines were also screened for other known dasatinib targets such as EphA2, c-KIT and 

PDGFR. However, Western blot analysis did not detect expression of these proteins in the 

three KRAS mutant lines (data not shown). Collectively, this analysis of CRC lines led to 

the selection of three KRAS mutant, EGFR- and SFK-expressing lines (LS180, LoVo, 

HCT116), two KRAS wild type lines expressing EGFR and SFKs (CaCo2, SW48), and one 

non-EGFR expressing KRAS wild type control line (Colo320DM).

Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab in vitro

We performed a series of in vitro experiments using two KRAS wild type (CaCo2 and 

SW48) and three KRAS mutant lines (LS180, LoVo and HCT116) to investigate the 

mechanisms of sensitization of KRAS mutant CRC lines to cetuximab using dasatinib. To 

determine if KRAS mutant lines were resistant to cetuximab therapy in vitro we performed a 

series of proliferation assays using plastic plates, fibronectin, laminin, fibronectin/laminin 

coated plates or Poly D-lysine/laminin (PDL/laminin) coated plates. KRAS mutant CRC cell 

lines were sensitive to cetuximab on plastic and fibronectin plates (data not shown), 

however, when plated on PDL/laminin plates, KRAS mutant lines showed decreased 

response to cetuximab whereas KRAS wild type lines showed increased sensitivity to 

cetuximab (Figure 2A). These results mimic clinical and in vivo findings. Therefore we used 

PDL/laminin plates for all in vitro studies. Next we examined if dasatinib could sensitize 

KRAS mutant CRC lines to cetuximab therapy. We performed proliferation assays on PDL/

laminin plates using DMSO control, 100 nM cetuximab, 50 nM dasatinib or the combination 

on LS180, LoVo and HCT116 cell lines. The results of these experiments indicated the 1) 
KRAS mutant lines were resistant to cetuximab 2) dasatinib induced mild growth inhibition 

on KRAS mutant lines and 3) but the combination of the two drugs exhibited abrogation of 

cell proliferation (Figure 2B). Figure 2C shows the effects of cetuximab, dasatinib and the 

combination on their respective kinase targets in KRAS mutant CRC cell lines. These results 

suggest that signaling via the EGFR and SFKs may be necessary for cell proliferation and 

survival of KRAS mutant CRC tumors. This data strengthen the rationale for clinical trials 

in this genetic setting combining cetuximab and dasatinib.

Treatment of KRAS mutant CRC lines with dasatinib plus cetuximab results in distinct 
alterations of phospho-kinase activity

The development of CRC is characterized by a number of events that lead the normal 

mucosa through a transformation to dysplastic lesions, adenoma, adenocarcinoma in situ and 

finally to invasive adenocarcinoma. Some of the events lead to deregulated expression and 

ultimate over activation in the EGFR, KRAS and SFK signaling pathways. Many other 

alterations have been well documented cell signaling pathways that lead to CRC (Fearon and 

Vogelstein, 1990). Given the beneficial results seen by the combination of dasatinib and 

cetuximab in each of the three KRAS mutant lines (Figure 2C) we were curious about 

potential mechanistic underpinnings that may have resulted in this beneficial effect. Given 

the complexity and cross-talk of each of these pathways we elected to perform Human 

Phospho-kinase array analysis on each KRAS mutant line (LS180, LoVo and HCT116) 
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treated with vehicle, cetuximab (500 nM), dasatinib (50 nM), or the combination to gain an 

aerial view. This Human Phospho-kinase array analyzed 39 individual proteins involved in 

cellular proliferation and survival. Each cell line was plated on PDL/laminin plates and 

allowed to adhere overnight. Vehicle, cetuximab, dasatinib or the combination were placed 

onto the cells and allowed to incubate for 24 hours. Protein lysates were collected and 

Human Phospho-kinase Arrays were analyzed for each treatment group in all three cell 

lines. The results of this series of experimentations were quantitated for each line and 

summarized in Figure 3. Interestingly the results of this study showed a very unique kinase 

signature for each cell line treated with the cetuximab, dasatinib or the combination.

Phospho-array analysis of LS180 identified several pathways, which were downregulated by 

the combination of dasatinib and cetuximab. These pathways included the AKT/mTOR/p70 

S6 kinase pathway (AKT and p70 S6 Kinase), MAPK/RSK (RSK1/2/3) and components of 

the β-catenin pathway (GSK α/β and β-catenin). In addition to signaling pathways several 

key transcription factors were down regulated including, STAT1, STAT3, STAT4, 

STAT5A/B, STAT6 and p53. Other signaling molecules that were down regulated in the 

combination group include: eNOS, and p27. Figure 3A presents in histogram form the 

notable changes.

In LoVo the members of the MAPK signaling pathway appeared to be down regulated with 

the combination of dasatinib and cetuximab including MEK 1/2 and MSK 1/2. In regards to 

transcription factor activity, the combination of dasatinib and cetuximab resulted modulation 

of phosphorylation of several STAT family members including STAT2, STAT3, STAT5A, 

STAT5B and STAT6. Other signaling molecules that were down regulated with the 

combination treatment were; AMPKα1, HSP27 and most notably FAK. Figure 3B presents 

in histogram form the notable changes.

Phospho-array analysis of HCT116 identified similar pathways as in LS180, These 

pathways included the AKT/mTOR/p70 S6 kinase pathway (AKT and p70 S6 Kinase), 

MAPK/RSK (RSK1/2/3) and components of the β-catenin pathway (GSK α/β and β-

catenin). However, like LS180 and LoVo the combination seemed to have effects on the 

STAT transcription factor family including STAT1, STAT2, STAT4, STAT5A, STAT5B, 

and STAT6. Other signaling molecules that were down regulated in the combination group 

include: p27, Paxillin, and AMPKa1. Figure 3C presents in histogram form the notable 

changes.

Collectively these results suggest that three independent KRAS mutant, cetuximab resistant 

CRC tumor lines, have several shared cell signaling pathways effected by the combination 

of cetuximab and dasatinib with the most notable similarities in the MAPK pathway, AKT/

mTOR pathway, β-catenin pathway and the activation of the STAT family of transcription 

factors.

Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab in vivo

Next we performed a series of mouse xenograft studies to confirm that KRAS wild type 

CRC lines are sensitive to cetuximab therapy in vivo. To test the non-specific effects of 

cetuximab, we utilized a non-EGFR, KRAS wild type line, Colo320DM (Figure 4A). A total 
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of 40 mice (20 per group) were analyzed with bilateral flank tumors. Established tumors 

(>100 mm3) were randomized and treated twice weekly with 0.3 mg of cetuximab or 0.3 mg 

of immunoglobulin G (IgG) for 3 weeks. Next, we utilized a known EGFR-expressing, 

cetuximab-sensitive NSCLC line, H226, for a positive control (Figure 4B). A total of 20 

mice (10 per group) were analyzed with bilateral flank tumors. Similarly, mice were 

randomized to cetuximab or IgG and treated twice weekly once tumors were established 

with 0.3 mg of cetuximab or 0.3 mg IgG for 4.5 weeks. The data in Figure 4A and 4B 

indicate that the EGFR negative line showed no off-target effects of cetuximab whereas 

H226 showed a similar response to cetuximab as has been previously reported (Wheeler et 

al., 2008).

Next we tested the KRAS wild type lines, SW48 and CaCo2, for response to cetuximab in 

vivo (Figure 4C and 4D). For both SW48 and CaCo2, 20 mice per cell line were analyzed 

(10 per group) with bilateral flank tumors. Mice were randomized to IgG or cetuximab and 

treated twice weekly with 0.3 mg of cetuximab or IgG. SW48 mice were treated for 3.5 

weeks whereas the CaCo2 mice were treated for 5.5 weeks based on relative tumor growth 

rates. This set of experiments confirmed that these KRAS wild type CRC lines are sensitive 

to cetuximab and manifested a response after the first treatment.

In Figure 5 we performed a series of experiments using three KRAS mutant CRC lines 

(LS180, LoVo, and HCT116) to test cetuximab and dasatinib as single agents, given 

sequentially, or in combination. Athymic nude mice were injected with cells (2×106) and 

established tumors from KRAS mutant cell lines were randomized to treatment or control 

groups. Each line was treated with cetuximab or dasatinib alone (Figure 5A, 5B, 5C, 

cetuximab; upper left panels, dasatinib; upper right panels). For LS180, 37 mice 

established tumors and were analyzed with bilateral flank tumors (19 in the vehicle group, 

18 in the dasatinib treatment group). For LoVo, 42 mice were analyzed (21 per treatment 

group) with bilateral flank tumors. For HCT116, 40 mice (20 per treatment group) were 

analyzed with bilateral flank tumors. The results confirmed the clinical finding that these 

tested KRAS mutant lines were resistant to cetuximab. Dasatinib monotherapy in HCT116 

and LS180 showed minimal tumor growth delay and was not shown to be statistically 

significant, whereas treatment of LoVo with dasatinib appeared to have a slight proliferative 

effect. These results indicated that dasatinib monotherapy is not effective in these KRAS 

mutant CRC cell lines.

Next we performed both sequential (cetuximab followed by dasatinib) and combinatorial 

treatment regimens (Figure 5A, 5B, 5C, sequential; lower left panels, combination; lower 
right panels). In the sequential experiments, mice were randomized to treatment (cetuximab 

followed by dasatinib) or control (IgG followed by vehicle) groups. For each line (LS180, 

LoVo, and HCT116), 20 mice were analyzed (10 per treatment group) with bilateral flank 

tumors. Mice were given cetuximab or IgG (0.3 mg) twice weekly by intraperitoneal 

injection until tumors demonstrated a resistant phenotype - defined as growth without 

deviation from the IgG controls. At this time, cetuximab and IgG were ceased and dasatinib 

or vehicle was started the next day for five days a week by oral gavage (70 mg/kg). 

Treatment with dasatinib or vehicle was continued for the specified times. The results of 

these experiments indicated that sequential treatment could lead to an anti-tumor growth 
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effect (Figure 5A, 5B, 5C, lower left panels). The most pronounced effect was in seen in 

the LS180 and LoVo sequential experiments.

In the combinatorial experiments, mice were randomized to treatment or control groups. For 

each line (LS180, LoVo, and HCT116), 30 mice from each line (15 per treatment group) 

were analyzed with bilateral flank tumors. Established tumors were treated with either the 

combination of IgG and vehicle or cetuximab (0.3mg, twice weekly) and dasatinib 

(70mg/kg, 5 times weekly) for the time indicated (Figure 5A, 5B, 5C, lower right panel). 
These experiments demonstrated statistically significant tumor growth inhibition in the 

combinatorial treatment regimen compared to vehicle controls that was distinguishable after 

the first treatment in LS180 and LoVo cell lines (P≤0.001). HCT116 demonstrated a 

statistically significant response at the beginning (P<0.05) and by the end of treatment 

(P<0.001); although response was modest compared to the other two KRAS mutated cell 

lines. Collectively, this series of mice xenograft experiments suggests sequential or 

combinatorial treatment regimens of cetuximab and dasatinib may be effective in KRAS 

mutant CRC tumors. In addition the combination of cetuximab and dasatinib appears to be 

more efficacious than the sequential experiments.

Combinatorial dasatinib and cetuximab treatment decreases proliferation and enhances 
apoptosis

To determine the impact of the combination of dasatinib plus cetuximab we examined rates 

of cell proliferation and apoptosis in tumor samples from each line. Cell proliferation was 

analyzed by immunohistochemistry for Ki67. Each tumor shown Figure 6A was collected 3 

hours after the last dasatinib or vehicle treatment and 24 hours after the last cetuximab or 

IgG treatment. In each respective line, Ki67 expression is decreased in the treatment samples 

(+) compared to vehicle controls (−) (Figure 6A, Ki67 panels). To further analyze the 

effects of cetuximab and dasatinib on tumor growth, terminal deoxynucleotidyl transferase-

mediated dUTP nick end labeling (TUNEL) assay was completed on tumor samples. Figure 

6A TUNEL assay panels demonstrate apoptosis in each KRAS mutant cell line was 

increased by the combination treatment (+) compared to vehicle controls (−). Quantification 

of the immunohistochemistry staining for Ki67 and TUNEL is shown in Figure 6B. 

Concomitant treatment samples were obtained from mice euthanized at 3, 12, and 24 hour 

time points after the last dasatinib or vehicle treatment and 24, 27, 36, and 48 hours after the 

last cetuximab or IgG treatment. Five random fields, 4 sections for each sample were 

analyzed at 400× and compared to control slides for false positive DAB staining. The rates 

of Ki67 expression in LoVo and HCT116 demonstrated statistically significant differences 

in proliferation between treatment and control groups (66% and 68% decrease in 

proliferation, respectively). LS180 demonstrated decrease in proliferation of 27%. All lines 

demonstrated a statistically significant increase in percentage of apoptosis compared to 

vehicle controls based on TUNEL assays. LS180 demonstrated a 97% increase in apoptosis, 

LoVo demonstrated a 93% increase in apoptosis, and HCT116 demonstrated a 71% increase 

in apoptosis. Collectively, this series of experiments suggests that the combination of 

cetuximab and dasatinib may lead to decreased tumor growth by increasing cell death 

(apoptosis) and decreasing cell proliferation (Ki67) in KRAS mutant CRC lines.
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DISCUSSION

Colon cancer continues to be the second most common cancer-related death in the United 

States (Jemal et al., 2008). The etiology of mCRC is a complex series of genetic events that 

are characterized by several alterations including p53, EGFR and SFK expression and 

mutations in KRAS (Fearon and Vogelstein, 1990; Summy and Gallick, 2003). The EGFR 

protein is expressed in ~ 85% of mCRC as measured by the specific binding of 125I-EGFR 

to tumor plasma membrane preparations, Western blotting and immunohistochemistry 

(Normanno et al., 2003). In addition, It is estimated that 30–40% of patients with CRC have 

a KRAS mutation (Bardelli and Siena, 2010; Normanno et al., 2009). Further, it has been 

demonstrated in several clinical trials that patients with mCRC and a KRAS mutation do not 

respond to cetuximab therapy (Benvenuti et al., 2007; Cappuzzo et al., 2008; De Roock et 

al., 2008; Di Fiore et al., 2007; Karapetis et al., 2008; Khambata-Ford et al., 2007; Lievre et 

al., 2008). These trial results leave a large population of patients with mCRC that cannot 

benefit from cetuximab therapy. The data presented herein indicate that dasatinib can 

sensitize cetuximab resistant, KRAS mutant CRC tumors to cetuximab. Further, this 

combinatorial treatment was marked by downregulation of components of the MAPK, AKT/

mTOR, β-catenin and STAT pathways.

We screened 16 CRC lines for EGFR and SFK expression, and KRAS or BRAF mutations 

and dependency on KRAS signaling (Figure 1). Next we determined if these model systems 

mimic clinical findings in that KRAS mutant CRC lines would be resistant to cetuximab 

therapy. To test this hypothesis we treated all KRAS mutant lines in vitro and challenged 

them with increasing concentrations of cetuximab (data not shown). The results of this 

indicated that KRAS mutant CRC lines showed a robust response to cetuximab on plastic 

plates and did not mimic what is seen in vivo and the clinic. Therefore we performed a series 

of cell culture experiments using plastic plates, fibronectin, laminin, fibronectin/laminin or 

PDL/laminin coated plates. These experiments indicated that PDL/laminin plates could most 

closely mimic clinical findings showing that KRAS mutant CRC lines were resistant to 

cetuximab (Figure 2A). This finding suggests that the interaction between the extracellular 

matrix in vitro, and most likely in vivo, plays a critical role in KRAS mutant CRC response 

to EGFR targeting agents. Viloria-Petit and colleagues reported that cetuximab resistant 

lines established in vivo, were sensitive to cetuximab in vitro (with plastic plates) after 

establishment of cell lines taken from mouse xenografts (Viloria-Petit et al., 2001). 

Collectively these findings underscore the importance of the experimental approach to study 

therapeutic targeting KRAS mutant CRC lines and indicate that factors in the cell’s 

environment are critical in the treatment of KRAS mutant CRC.

In figure 2B and 2C three KRAS mutant lines were tested for their response to cetuximab, 

dasatinib or the combination. Each line was resistant to cetuximab and semi-responsive to 

dasatinib. However, the combination of the two molecular targeting agents led to decreased 

proliferative potential as compared to either agent alone (Figure 2B). We verified that the 

cetuximab and dasatinib could reduce the activity of their respective targets (Figure 2C). 

Although, the EGFR couples growth factor signaling to the RAS/RAF/MEK/ERK pathway, 

and mutations in KRAS uncouple this pathway from the receptor, the EGFR still plays a role 

in the activation of other key pathways such as the PI3K/AKT pathway, STATs pathway 
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and the PLCγ/PKC pathways (Marmor et al., 2004). These pathways may still be activated 

by the EGFR, even in the KRAS mutant setting. To determine the effects of co-inhibition of 

SFKs and the EGFR we used phospho-array analysis on the three KRAS mutant CRC lines 

treated with vehicle, dasatinib, cetuximab or the combination. The results of these 

experiments revealed common pathways inhibited by the combination of these two agents in 

mutant KRAS CRC lines. Firstly, in LS180 and HCT116 the β-catenin pathway appeared to 

be downregulated (Figure 3A and 3C). This was evident by the decrease in phosphorylation 

of GSK3α and GSK3β. Decreased activity in this enzyme results in decreased β-catenin 

phosphorylation (also noted in the phospho-array), thus allowing it to translocate to the 

nucleus and where it binds the Lef/Tcf transcription factors and activating target genes 

involved in cancer progression. Secondly, in LS180 and HCT116, downregulation of the 

AKT/mTOR/p70S6 Kinase pathway was noted. In both lines activating phosphorylation 

events on AKT were decreased. AKT, through a series of complex signal transduction 

cascades, leads to the activation of the mTOR1 complex (Engelman, 2009). This serine-

threonine kinase then phosphorylates p70 S6 kinase which leads to the increased translation 

of mRNAs that encode proteins for cell cycle regulators (MYC and cyclin D1) as well as 

ribosomal proteins and elongation factors involved in translation (reviewed in (Rini, 2008)). 

Finally, in all three lines tested, the combination of dasatinib and cetuximab resulted in the 

downregulation two pathways involved in tumor proliferation: 1) members of the STAT 

family and 2) members of the MAPK signaling cascade. The STAT family is comprised of 

seven members, STAT1-4, STAT5a, STAT5b and STAT6. Binding of growth factors or 

cytokines to their receptors results in intrinsic kinase activity or recruitment of receptor-

associated kinases (janus kinase (JAK) and SFKs). These phosphorylated receptors in turn 

phosphorylates STATs on key residues leading to their dimerization and translocation to the 

nucleus where they regulate genes involved in cell proliferation, apoptosis, and angiogenesis 

and tumor growth. In terms of the MAPK signaling pathway the combination of dasatinib 

and cetuximab impacted proteins within this cascade albeit at different levels of the 

pathway. At the terminal end of the classical RAS/RAF/MEK/ERK cascade sits two proteins 

the 90 kDa ribosomal S6 kinase (RSK1) and MSK1/2. RSKs are phosphorylated at the end 

of the classical where ERK phosphorylates RSK1 in the kinase activation loop (Richards et 

al., 1999). Activation of RSK1 can lead to the phosphorylation of the pro-apoptotic protein 

BAD that, when phosphorylated, abrogate BAD’s pro-apoptotic function (Shimamura et al., 

2000). In addition, RSK1 can phosphorylates IkBa, the inhibitor of NF-kB, inducing its 

degradation and allowing its translocation and function in the nucleus (Ghoda et al., 1997). 

Decreased RSK1 phosphorylation was noted in LS180 and HCT116. MSK1/2 are believed 

to play a pivotal role in the activation of the CREB transcription factor by phosphorylation 

of serine 133 (Wiggin et al., 2002). This molecule along with MEK1/2 was down regulated 

in LoVo. Collectively these data suggest that therapeutic treatment with dasatinib and 

cetuximab results in the downregulation of several critical pathways involved in the 

progression of cancer.

Both in vitro and in vivo (Figures 2B and 5C) the HCT116 data demonstrate a statistically 

significant response to the combination of cetuximab and dasatinib, but not as robust as 

compared to LS180 or LoVo. This may be explained due to the reported PI3 kinase mutation 

in HCT116 (Jhawer et al., 2008; Wee et al., 2009), which would lead to enhanced signaling 
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through the AKT pathway, independent of cetuximab treatment. However, AKT activity, as 

measured by phospho-array analysis (Figure 3C) did show decreased AKT activity as 

compared to either agent alone. This suggests that other, yet to be identified mechanisms 

exist for the decreased response to the combination in the HCT116 cell line.

Dasatinib is an orally bioavailable and promising therapeutic agent for the treatment of 

several human malignancies including chronic myelogenous leukemia, non-small cell lung 

cancer, small cell lung cancer, advanced breast cancer (including triple negative), pancreatic 

cancer, prostate cancer and head and neck squamous cell carcinoma (reviewed in (Kim et 

al., 2009). Dasatinib was discovered through the synthesis and testing of a series of thiazole-

based compounds with activity against SRC and ABL kinases to target imatinib-resistant 

BCR-ABL mutants (Kantarjian et al., 2006). Dasatinib, although relatively specific for 

ABL, BCR-ABL and the SFKs, it possesses a broad-spectrum of inhibition of kinases 

including Kit, PDGFR, EphA receptors and several others (Hantschel et al., 2008). Non-

specific effects must always be considered when developing a mechanism but regardless, the 

effect of cetuximab and dasatinib on anti-tumor growth is evident and dasatinib’s broad 

spectrum of kinase inhibition may, in part, be linked to its clinical success thus far as well as 

in combination with cetuximab in the KRAS mutant CRC setting. The combination of 

cetuximab and dasatinib has shown to be effective in other circumstances these include in 

the situation of overcoming acquired resistance to cetuximab in NSCLC (Li et al., 2009; 

Wheeler et al., 2009). In addition, clinical trials looking at this combination are currently in 

recruitment in HNSCC, mCRC and other solid tumors (clinical trials.gov).

KRAS is clearly a marker of resistance to cetuximab in monotherapy for CRC and patient 

screening is still essential. However, our results suggest KRAS mutant CRC lines are 

dependent on both signals from the EGFR and SFKs. Thus, the relationship between EGFR 

and SFK signaling in the presence of KRAS mutations will be an area of intense 

investigation. The concomitant treatment of dasatinib and cetuximab may be a viable option 

for KRAS mutant CRC patients without PI3K, or further downstream mutations. In addition, 

future directions may include investigations of this combination in the KRAS wild type 

setting. In summary, this study combines two FDA-approved agents, dasatinib and 

cetuximab, in the KRAS mutant CRC setting. From the data provided it appears that 

dasatinib can sensitize KRAS mutant tumors to cetuximab. This work may provide rationale 

for further investigative clinical trials using dasatinib plus cetuximab in patients with 

KRAS-mutant, cetuximab-resistant mCRC.

MATERIALS AND METHODS

Compounds

Cetuximab (C225, Erbitux™) was purchased from the University of Wisconsin Pharmacy. 

Dasatinib (BMS-354825, Sprycel™) was generously provided by Bristol-Myers Squibb 

(New York, NY).
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Cell culture and transfection

The human CRC cell lines CaCo2, Colo320DM, DLD1, HCT15, HCT116, HT29, LoVo, 

LS123, LS180, SK-CO-1, SW48, SW480, SW620, SW948, SW1417, and WiDr were 

purchased from ATCC (Manassas, VA). All cell lines were maintained in their respective 

media with 10% fetal bovine serum with 1% penicillin and streptomycin, except for CaCo2, 

which was maintained in 20% FBS and 1% penicillin and streptomycin. Colo320DM, 

DLD1, and HCT15 were maintained in RPMI 1640; HCT116 and HT29 were maintained in 

McCoy’s media; LoVo was maintained in F12 media; CaCo2, LS123, LS180, SK-CO-1, 

and WiDr were maintained in minimum essential medium eagle; SW48, SW480, SW620, 

SW948, and SW1417 were maintained in L15 media (Life Technologies, Inc., Gaithersburg, 

MD). LS180, LoVo and HCT116 cells were seeded in 96-well plates Poly D-lysine/laminin 

plates (BD Biosciences, San Jose, CA) and transiently transfected with small interfering 

RNAs (SiRNA; siKRAS (Dharmacon, Lafayette, CO)) using LipofectAMINE RNAiMAX 

according to the manufacture’s instructions (Invitrogen). The Non-targeting siRNA pool was 

obtained from Dharmacon. Cells were then lysed for analysis of protein knockdown by 

Western blot or use in cell proliferation assays 72 hour after siRNA transfection.

Cell proliferation assay

Exponentially grown cells were seeded in 96-well plates Poly D-lysine/laminin plates (BD 

Biosciences). Following 72 hours treatment, 10ul of tetrazolium salt from cell counting kit 

(Dojindo Molecular Technologies, Japan) was added to each well. After two to four hours, 

the percentage cell growth was calculated by comparison of the A540 reading from treated 

versus control wells.

Pyrosequencing

Genomic DNA was isolated from cell lines using a standard proteinase K-phenol-

chloroform extraction method. For polymerase chain reaction amplification of the relevant 

fragments, we used PyroMark KRAS and BRAF kits (Qiagen, Valencia, CA) according to 

the manufacturer’s protocols. The resulting PCR products were electrophoresed in 1.5% 

agarose gel to confirm successful amplification and 40 uL of each sample was sequenced 

using a Pyrosequensing PSQ96HS System (Biotage, Uppsala, Sweden) according to the 

manufacturer’s protocol.

Immunoblotting analysis

Whole cell protein lysate was obtained with lysis buffer (50 mM HEPES, pH 7.4, 150 mM 

NaCl, 0.1% Tween-20, 10% glycerol, 2.5 mM EGTA, 1 mM EDTA, 1 mM DTT, 1 mM 

PMSF and 10 μg/ml of leupeptin and aprotinin), sonicated, fractionated and quantified. 

Cellular fractionation was performed as described previously (Wheeler et al., 2008). Protein 

was quantitated using the Bradford method (Bio-Rad Laboratories, Hercules, CA). Western 

blotting was performed as described previously (Wheeler et al., 2008). Briefly, equal 

amounts of protein were fractionated by SDS–PAGE. Thereafter, proteins were transferred 

to PVDF membrane (Millipore, Billerica, MA) and analyzed by incubation with the 

appropriate primary antibody. Proteins were detected via incubation with HRP-conjugated 

secondary antibodies and ECL chemiluminescence detection system (GE Healthcare, 
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Piscataway, NJ). The antibodies used in this study were as follows: EGFR, HRP-conjugated 

goat-anti-rabbit IgG, and goat-anti-mouse IgG were purchased from Santa Cruz 

Biotechnology Inc. (Santa Cruz, CA). pEGFR 1173, SFK, pSFK and β-actin were obtained 

from Cell Signaling Technology (Beverly, MA). Ki67 antibody was purchased from AbCam 

(Cambridge, MA) and α-tubulin was obtained from Calbiochem (San Diego, CA). Image J 

was used to evaluate densitometry of EGFR and SFK western blots.

Phospho- kinase Array

LS180, LoVo and HCT116 cell lines were analyzed the panel of phosphorylation profiles of 

kinases after treatment with cetuximab, dasatinib and combination of these compounds 

(Human Phospho-Kinase Array, ARY003, R&D Systems, Minneapolis, MN). This array 

specifically screens for relative levels of phosphorylation of 39 individual proteins involved 

in cellular proliferation and survival. After treatment with cetuximab, dasatinib and 

combination of cetuximab and dasatinib, cell lysates were incubated with the membrane. 

Thereafter, a cocktail of biotinylated detection antibodies, streptavidin-HRP and 

chemiluminescent detection reagents were used to detect the phosphorylated protein. The 

relative expression of specific photophorylated protein was determined following 

quantification of scanned images by ImageJ compared to cetuximab, dasatinib, combination 

of cetuximab plus dasatinib and untreated control.

Mouse xenograft model

Athymic nude mice (4 to 6-week-old males) were obtained from the Harlan laboratories 

(Indianapolis, IN). All animal procedures and maintenance were conducted in accordance 

with the institutional guidelines of the University of Wisconsin. Mice were randomized into 

treatment or control groups. Mice were injected in bilaterally in the dorsal flank of the 

mouse at respective day 0 (2×106 cells). Once tumors reached 100–200 mm3, mice were 

started on their respective treatments (cetuximab, IgG, dasatinib, vehicle, the combination of 

cetuximab and dasatinib, or the combination of IgG and vehicle). Cetuximab dose for all 

experiments was 0.3 mg intraperitoneally twice weekly. The dose for all experiments was 70 

mg/kg of dasatinib five days a week by oral gavage. Tumor volume measurements were 

evaluated by digital calipers and calculated by the formula (π)/6 × (large diameter) × (small 

diameter)2.

Mouse tumor collection and protein isolation

Tumors were collected at 0, 3, 12, and 24 hours post-treatment. Mice were sedated using 

isofluorane mixed with oxygen until unconscious. Mice were euthanized by cervical 

dislocation and tumors were promptly collected, washed in PBS, and frozen on dry ice or 

fixed in formaldehyde. Tumors were crushed using a mortar and pestle until the tumor was 

the consistency of a powder. Whole cell protein lysate was obtained with lysis buffer (50 

mM HEPES, pH 7.4, 150 mM NaCl, 0.1% Tween-20, 10% glycerol, 2.5 mM EGTA, 1 mM 

EDTA, 1 mM DTT, 1 mM PMSF and 10 μg/ml of leupeptin and aprotinin), sonicated, and 

quantified. Cellular fractionation and protein quantitation were performed as stated above.
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Ki67 and TUNEL Assays

The ApopTag Plus Peroxidase in situ apoptosis detection kit was purchased from Millipore. 

Samples were prepared according to manufacturer’s recommended protocol with the 

modification of antigen retrieval instead of proteinase K. Antigen retrieval was performed in 

citrate buffer (pH=6.0) with 0.05% tween 20. For immuohistochemistry, tumor samples 

were fixed in paraformaldehyde for 24 hours, paraffin embedded, and serially cut onto 

slides. Samples were deparaffinized and antigen retrieval was performed in citrate buffer 

(pH=6.0) with 0.05% tween 20. Samples were then incubated with Ki67 primary antibody 

(AbCam, Cambridge, MA). Samples were washed and incubated in secondary antibody one 

hour followed by with Vectastain Elite ABC kit (Vector Laboratories, Burlingame, CA). 

DAB staining was done using Ultravision Plus Detection System (Lab Vision Corporation, 

Fremont, CA). Images were captured using Biospot Advanced program software. ImageJ 

was used to obtain total number of cells (via thresholding that was maintained across all 

samples). Color deconvolution was used to identify the positive staining and was 

thresholded across all image samples. All images for treatment (cetuximab plus dasatinib) 

and control (IgG plus vehicle) were averaged and standard error mean was calculated. Ki67 

samples were normalized to the vehicle images and TUNEL samples were normalized to the 

treatment (cetuximab plus dasatinib) images.

Statistical analysis

Student T-test was used to determine the significance of the cell proliferation or tumor 

growth volumes between treatment and control groups for each in vitro and in vivo 

experiment respectively. Statistical analysis to compare treatment and control groups in 

positive immunohistochemistry staining was also done with a t-test. Differences between 

clones were considered statistically significant if P ≤ 0.05.
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Abbreviations

ABL v-abl Abelson murin leukemia viral oncogene homolog 1

ASCO American Society of Clinical Oncology

BCR breakpoint cluster region

CRC colorectal cancer

CSF-1R colony stimulating factor 1 receptor

DMSO dimethyl sulfoxide

EGFR epidermal growth factor receptor

FBS fetal bovine serum

eNOS endothelial nitric oxide synthase
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FAK Focal adhesion kinase-1

FDA food and drug administration

FGFR fibroblast growth factor receptor

GAPs GTPase activating proteins, GSK α/β, glycogen synthase kinase α/β

HNSCC head and neck squamous cell carcinoma

HSP27 heat shock 27kDa protein 1

IgG immunoglobulin G, IHC, immunohistochemistry

mAb monoclonal antibody

mCRC metastatic colorectal cancer

MAPK mitogen-activated protein kinase

MEK MAPK kinase

MSK mitogen and stress-activated protein kinase

MUC1 mucin 1

nRTK non-receptor tyrosine kinase

NSCLC non-small cell lung cancer

PI3K phosphatidylinositol 3-kinase

PDGFR platelet derived growth factor receptor

PLCγ phospholipase C-gamma

PKC protein kinase C

RSK ribosomal s6 kinase

RTK receptor tyrosine kinase

SFKs Src-family kinases

STAT signal transducer and activator of transcription

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
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Figure 1. Characterization of colorectal tumor lines
A) Analysis of EGFR and SFK expression in colon cancer lines. CRC tumor lines were 

grown and whole cell lysates were obtained, fractionated by SDS-PAGE and immunoblotted 

for the indicated proteins. α-tubulin was used as a loading control. All sixteen-tumor lines 

were tested for in vivo tumor growth using mouse xenografts. Tumor lines that grew greater 

than 500mm3 in vivo are denoted by *. Densitometry measurements of EGFR and SFK 

relative to Colo320DM (1.0) for EGFR and SW48 (1.0) for SFK are shown. B) KRAS and 

BRAF mutational status was determined via pyrosequencing. C) KRAS mutant lines LS180, 

LoVo and HCT116 are dependent on KRAS. KRAS mutant lines LS180, LoVo and 

HCT116 were treated with transfection reagent only, scramble siRNA (10nM), or KRAS 

siRNA (10nM). Proliferation was measured at 72 hours after treatment using the 

proliferation assay as described in the experimental procedures and plotted as a percentage 

of growth relative to the untreated control cells. Data points are represented as mean ± SEM 

(n = 4). *p < 0.05. Inset denotes confirmation of KRAS knockdown.

Dunn et al. Page 20

Oncogene. Author manuscript; available in PMC 2011 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab in vitro
(A) KRAS mutant colorectal lines are resistant to cetuximab when compared to KRAS wild 

type lines. Two KRAS wild type lines (CaCo2 and SW48) and three KRAS mutant lines 

(LS180, LoVo and HCT116) were tested for response to cetuximab. Cells were plated on 

Poly D-lysine/laminin 96 well plates, allowed to adhere overnight and treated with vehicle 

(PBS) or 160 nM of cetuximab for 72 hours. B) Dasatinib sensitizes KRAS mutant lines 

LS180, LoVo and HCT116 to cetuximab. Cells were plated on Poly D-lysine/laminin 96 

well plates and allowed to adhere overnight. Cells were treated with vehicle (PBS), 500 nM 

of cetuximab, 50 nM dasatinib or the combination (CTX + DSB) for 72 hours. Proliferation 

was measured at 72 hours after drug treatment using the proliferation assay as described in 

the experimental procedures and plotted as a percentage of growth relative to the untreated 

control cells. Data points are represented as mean ± SEM (n = 7). *p < 0.05.
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Figure 3. Human Phospho-Kinase array in KRAS mutant LS180, LoVo and HCT116 cells lines
A) AKT/mTOR/p70 S6 kinase pathway (AKT and p70 S6 Kinase), MAPK/RSK 

(RSK1/2/3), components of the β-catenin pathway (GSK α/β and β-catenin) and STAT 

family members were downregulated by the combination of dasatinib and cetuximab in 

LS180 cells. B) Members of the MAPK signaling pathway were downregulated with the 

combination of dasatinib and cetuximab in LoVo cells. C) AKT/mTOR/p70 S6 kinase 

pathway (AKT and p70 S6 Kinase), MAPK/RSK (RSK1/2/3), components of the β-catenin 

pathway (GSK α/β and β-catenin) and STAT family members were downregulated by the 

combination of dasatinib and cetuximab in HCT116 cells. After treatment with cetuximab, 

dasatinib and combination of cetuximab and dasatinib, cells were collected and cell extracts 

were incubated with membrane containing antibodies to 39 individual proteins. The 

membranes were washed and incubated with a cocktail of biotinylated detection antibodies, 

streptavidin-HRP and chemiluminescent detection reagents to measure the levels of 

phosphorylated protein. Quantitation of phosphorylated protein was completed using 

scanned images from ImageJ software. Data points are represented as mean of duplicate.
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Figure 4. KRAS wild type colorectal tumors are sensitive to cetuximab in vivo
For the following series, all mice were randomized to cetuximab or IgG treatments. All mice 

received 0.3 mg of their respective treatment intraperitoneally twice weekly. A) A non-

EGFR expressing line (Colo320DM) was used as a negative control randomizing 20 mice to 

cetuximab and 20 mice to IgG treatment. Mice received 3 weeks of treatment. B) A known-

sensitive non-small cell lung cancer line (H226) was utilized as a positive control 

randomizing 10 mice to cetuximab and 10 mice to IgG treatment. Mice received 4.5 weeks 

of treatment. C and D) Mice (n=20) were inoculated with a KRAS wild type line (SW48 

and CaCo2, respectively) and randomized to cetuximab or IgG treatment. SW48 mice 

received 3.5 weeks of treatment. CaCo2 mice received 5.5 weeks of treatment. Statistical 

significance is denoted by * (P≤0.001).
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Figure 5. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab
For the following series of experiments, all mice were randomized to treatment or control 

groups and treated with the following doses: cetuximab or IgG – 0.3 mg/kg intraperitoneally 

twice per week; dasatinib – 70 mg/kg by oral gavage five days a week. The same doses were 

used for sequential and combinatorial experiments. Statistical significance is denoted by * 

(P≤0.001). (A, B, C upper left panel) Cetuximab response was tested by inoculating mice 

with a KRAS mutant line (LS180, LoVo, and HCT116, respectively) and randomizing to 

cetuximab or IgG. LS180 mice received 3 weeks of treatment. LoVo mice received 3 weeks 

of treatment. HCT116 received 2.5 weeks of treatment. (A, B, C upper right panel) 
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Dasatinib response was tested by inoculating mice with a KRAS mutant line and 

randomizing to dasatinib or vehicle treatment. LS180 mice received 2.5 weeks of treatment. 

LoVo mice received 3 weeks of treatment. HCT116 mice received 4.5 weeks of treatment. 

(A, B, C lower left panel) Sequential treatment response of cetuximab then dasatinib was 

tested by inoculating mice with a KRAS mutant line and randomizing to cetuximab followed 

by dasatinib or IgG followed by vehicle. Cetuximab was ceased and dasatinib was started 

the next day once tumors displayed resistance. LS180 mice received one week of 

cetuximab/IgG and 2.5 weeks of dasatinib/vehicle. LoVo mice received 3 weeks of 

cetuximab/IgG and 2.5 weeks of dasatinib/vehicle. HCT116 mice received 2 weeks of 

cetuximab/IgG and 2.5 weeks of dasatinib/vehicle. (A, B, C lower right panel) 
Concomitant treatment response of cetuximab and dasatinib was tested by inoculating mice 

with a KRAS mutant line and randomizing to cetuximab plus dasatinib or IgG plus vehicle. 

LS180 mice received 2.5 weeks of concomitant treatment. LoVo mice received 3.5 weeks of 

concomitant treatment. HCT116 mice received 4 weeks of concomitant treatment.
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Figure 6. Combinatorial cetuximab and dasatinib treatments decrease proliferation and enhance 
apoptosis
A) Tumor samples from LS180, LoVo and HCT116 in vivo experiments were prepared and 

analyzed for proliferation (Ki67) and apoptosis (TUNEL). (−) denotes combinatorial IgG 

and vehicle control and (+) denotes combinatorial cetuximab plus dasatinib treatment. All 

representative samples are tumors collected three hours after the final dasatinib or vehicle 

treatment and 24 hours after the final cetuximab or IgG treatment. White arrows denote 

positive staining nuclei in Ki67 samples. Black arrows denote positive staining on TUNEL 

assay samples. Hematoxylin eosin stained section (magnification 400×). B) Quantitation of 

immunohistochemistry positive staining for Ki67 and TUNEL in combinatorial treatments. 

Graph of the Ki67 (upper) and TUNEL (lower) expression as percent of positive cells (5 

random fields, 4 sections for each sample, * P≤0.05). Concomitant treatment samples were 

obtained from mice euthanized at 3, 12, and 24 hour time points after the last dasatinib or 

vehicle treatment and 24, 27, 36, and 48 hours after the last cetuximab or IgG treatment. 
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ImageJ was used to quantify the positive staining. CTX, cetuximab; DSB, dasatinib; IgG, 

immunoglobulin G,
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