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a b s t r a c t

Data used for modelling the household transmission of infectious diseases, such as influenza, have inherent

multilevel structures and correlated property, which make the widely used conventional infectious disease

transmission models (including the Greenwood model and the Reed–Frost model) not directly applicable

within the context of a household (due to the crowded domestic condition or socioeconomic status of

the household). Thus, at the household level, the effects resulting from individual-level factors, such as

vaccination, may be confounded or modified in some way. We proposed the Bayesian hierarchical random-

effects (random intercepts and random slopes) model under the context of generalised linear model to

capture heterogeneity and variation on the individual, generation, and household levels. It was applied to

empirical surveillance data on the influenza epidemic in Taiwan. The parameters of interest were estimated

by using the Markov chain Monte Carlo method in conjunction with the Bayesian directed acyclic graphical

models. Comparisons between models were made using the deviance information criterion. Based on the

result of the random-slope Bayesian hierarchical method under the context of the Reed–Frost transmission

model, the regression coefficient regarding the protective effect of vaccination varied statistically significantly

from household to household. The result of such a heterogeneity was robust to the use of different prior

distributions (including non-informative, sceptical, and enthusiastic ones). By integrating out the uncertainty

of the parameters of the posterior distribution, the predictive distribution was computed to forecast the

number of influenza cases allowing for random-household effect.

© 2014 Elsevier Inc. All rights reserved.
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. Introduction

The statistical analysis of infectious disease data with probability

odels can not only elucidate how pathogens spread across suscep-

ible population but also identify factors accounting for the trans-

ission of infectious diseases. Specifically, it is of great interest to

uantify the force of an infectious agent’s spread and the associated

actors. However, it should be noted that data on the transmission

f pathogens during an epidemic period have inherent multilevel

tructures, from the individual, through the household, then finally

o the community, using the transmission of influenza as an example.

oreover, when it comes to the evolution of the same epidemic wave

nfectious process across generations can also be treated as a separate

evel. Correlations between generations and across hierarchical levels

ake intractable the elucidation of the spread of infectious disease
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ased on conventional probability models. Because the transmission

f pathogens at the community level is so different from that at the

ousehold level, it is therefore interesting in the study of some in-

ectious diseases, such as influenza, to model the transmission mode

ased on household data before applying the model to community

ata.

Becker’s chain binomial model is a seminal instrument for eluci-

ating the nature of infectious disease transmission using the corre-

ated property between successive observations during the propaga-

ion of epidemics within households [1]. Stemming from the chain

inomial model, Becker’s proposed linear logistic models allow for

he escape probability that depends on relevant covariates of inter-

st (such as the number of exposed infectives and generations) [1].

lternative methods of modelling the transmission of diseases using

ousehold data with final size distributions have been proposed [2–4].

sing such an approach, Longini and Koopman estimated the escape

robability of influenza within a household [2]. House and Keeling

pplied deterministic dynamic models to demonstrate the effects of

trategies targeted at an individual or household while considering

he heterogeneity of different household sizes [5,6]. By applying the

http://dx.doi.org/10.1016/j.mbs.2014.11.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2014.11.006&domain=pdf
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methods analogous to the branching process, Ball et al. extended the

susceptible-infected-recovered (SIR) model to incorporate two types

of mixing patterns (within-group and between-group transmission)

and demonstrated that a control strategy should take into account

certain heterogeneities, such as households [3,7,8]. The two separate

model parameters pertaining to infection rates underpinning 2-level

mixing epidemic model have been estimated by a data augmenta-

tion method using the entire at-risk population [9,10] proposed by

Demiris and O’Neill or sample data proposed by O’Neill [11].

When data are analysed without considering temporal order, these

methods provide a solution that considers possible latent epidemic

chains. Although the use of a final size distribution alleviates the dif-

ficulty of identifying the temporal order of the onset of the disease, it

may lose information on the generation time effect when data on the

evolution of the epidemic wave are available. Namely, these models

dispense with the need for classifying household cases as the same

episode and explicitly model within and between household infec-

tions. Cauchemez et al. proposed a Bayesian approach to elucidate

the transmission of influenza within households using prospective

follow up data on the disease onset in households but accurate tem-

poral information on the onset of the disease is not available [12].

Note that the majority of these models put emphasis on the thresh-

old of epidemic based on the estimation of reproductive number with

and without considering the containment of infection control, partic-

ularly universal vaccination. While these statistical models under the

context of the SIR model are well developed for quantifying infec-

tious process so as to evaluate the effectiveness of different strategies

of infection control by using the estimated reproductive number the

perspective of their application is at population (macro) level. Their

models, although still workable we suppose by using the multi-type

extended models for example [9–11], have been barely extended to

model the heterogeneity of multilevel levels making allowance for

correlation within each level.

To this end, we extended Becker’s framework to accommodate

data on such a hierarchical structure. Levels of susceptible individ-

ual, generation, and household were considered as a unified analyti-

cal framework under the context of generalised linear random-effect

models [13]. Such a typical example can be noted in the O’Neill et al.

study [14] that extended the flexibility of the Becker model by using

the random household effect models in conjunction with the MCMC

method to model the escaped probabilities at community and house-

hold level each of which was specified by a statistical distribution to

account for the heterogeneities of the levels. Although their approach

has advanced in the Becker model it still leaves room to be desired

and may have several extensions. First, the mechanisms of disease

transmission such as the Greenwood model [15] and the Reed–Frost

model [16] originally proposed by the original Becker’s framework

can be incorporated to make the model biologically plausible. Sec-

ond, the heterogeneity of escape probability across households (so-

cioeconomic status) and individual attributes (such as age and sex)

can be also taken into account by using the random-intercept model.

Third, allowing for regression coefficients to vary with different lev-

els can be accommodated by using the random-slope model. The

classical example of this situation is that the effect of vaccination

on protecting individuals from disease vulnerability should also con-

sider contextual factors, such as the heterogeneity of socioeconomic

status across households, which have been confirmed as significant

factors in previous studies [5,6,17–20]. In spite of the attractiveness of

these random-effect models, it should be noted that considering the

effect and variation across different levels increases the number of

parameters and makes estimation of parameters intractable from the

viewpoint of statistical computation. The most serious problem is

the problem of identifiability between parameters already noted in

the O’Neill study [14]. To tackle these statistical technique problems,

we resorted to the application of Bayesian underpinning together

with the two transmission models.
 h
Our major objective is to propose a framework incorporating the

forementioned multilevel data structure inherited from the epi-

emic data on influenza using Bayesian generalised linear models to

acilitate hypothesis testing. We constructed hierarchical models with

he following levels: subject, generation, and household. Correlations

nd contextual effects were modelled as the parameters of random in-

ercepts and random slopes in the model. The MCMC method, in con-

unction with the Bayesian directed acyclic graphical (DAG) model,

as utilised to derive posterior distributions for the parameters of

nterest. The rest of this article is organised as follows. In Section 2,

e demonstrate the application of our model to surveillance data

n an influenza epidemic. Section 3 presents the Becker model and

he proposed Bayesian hierarchical models based on the Greenwood

nd Reed–Frost transmission models. Following the Becker method,

he logistic regression form was used to accommodate the effects of

actors at an individual level. Section 4 describes the procedures of

arameter estimation and model building, including the elicitation of

rior distributions, Gibbs sampling, and model selection. The results

f the analyses, as well as the predictive distribution and estimated

ffects of vaccination by the elicitation of informative priors to incor-

orate prior knowledge on the effects of vaccination, are presented

n Section 5, and we conclude with a discussion.

. Data source and motivation

Our intention in constructing Bayesian hierarchical models was

otivated by the multilevel data structure of the observations of

he influenza epidemic within household information. Between July

001 and March 2002, Taiwanese surveillance data were collected to

over the yearly period of seasonal influenza [21]. Data on whether

ubjects developed influenza-like symptoms were derived using the

ational Health Insurance database. Cases of influenza were iden-

ified according to clinical diagnosis by a physician in the form of

nternational Classification of Disease, 9th Revision, clinical modifi-

ation (ICD-9-CM) codes 487 (influenza), 487.0 (influenza with pneu-

onia), 487.1 (influenza with respiratory manifestations), and 487.8

influenza with other manifestations). Information on the character-

stics of the subjects, such as age (divided into three groups: less than

r equal to 6 years, �65 years, and 7–64 years), sex, vaccination status,

nd date of diagnosis were also collected. Household information was

dentified by linking the current empirical data with the nationwide

ousehold registration database of Taiwan, thus providing a unique

dentification number for each household. Following the definition of

he Becker model [1], the first case in a household, identified by the

ate of diagnosis, was classified as the introductory case. Subsequent

ases within the same household that had intervals between succes-

ive dates of diagnosis �7 days were classified as cases of subsequent

enerations, and the other household members free from influenza

oved to the next generation [22,23]. Cases within the household

iagnosed on the same day were classified as cases within the same

eneration. If the interval between successive dates of diagnosis was

7 days, the case was classified as the next episode (wave) of an

pidemic. Data used for further analysis were confined to subjects

ith household sizes ranging from two to five with at least one case

f influenza. The subjects used for estimating the parameters of the

odels were derived from a random sample of 10% of the households

roviding data.

Considering the data collected on the epidemic of influenza, at

east two nested levels exist: the household level and the individual

evel nested within the household level. In addition to the character-

stics of each susceptible subject, such as age, sex, and vaccination

tatus, the environmental contexts of each household, including en-

ironmental crowding, the social network, and socioeconomic sta-

us, are thought to affect the spread of disease. This effect can result

n variations of the baseline risk of contracting influenza between

ouseholds, as has been observed in previous studies and was further
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odelled using a random household effect [1,24,25]. Aside from the

orrelations between subjects within each household, heterogeneity

xists between generations as an epidemic evolves. Such a generation

ffect has been previously modelled in the Becker model [1] and was

lso observed in the work of Fraser et al. [26] during the H1N1 strain

pidemic. Variations within the joint effects of factors at the indi-

idual level and at the household level represent the heterogeneities

nherited from these subpopulations. In addition to variation in the

aseline risk of contracting influenza across households, the effect

f the influenza vaccine, which should be evaluated after the imple-

entation of a risk-based vaccination project including the voluntary

ptake of vaccine, may also vary from household to household due to

he interaction between the environmental contexts and the effects

f vaccination at the individual level. This variation should also be

aken into account.

These correlations within a household, inherited from the data,

esult in a violation of common assumptions, such as independence

nd homogeneity between observations, and lead to the phenomenon

f overdispersion in the construction of probability models. Trans-

ission probabilities change across households and generations and

ary between individuals with different characteristics. The nested

elationships between levels are also observed. As a result, a multi-

evel structure occurs in our data on the influenza epidemic, and the

ource of this variation arises from levels that should be jointly eval-

ated in combination with relevant factors at an individual level. As

entioned above, we are motivated by this intuition to construct

ayesian hierarchical models to accommodate these correlational

tructures while preserving the mechanism of transmission (such as

he Greenwood model and the Reed–Frost model) by which disease

preads within households to analyse the collected data.

. Model specification

.1. Becker’s linear logistic model

Under the framework of the chain binomial model, the effect of

ach risk factor on the escape probability can be assessed by stan-

ard methods of analysing binary outcomes. Becker [1] proposed a

inear logistic model allowing for the escape probability, depending

n the relevant covariates of interest. Let t act as a non-negative in-

eger denoting the generation of the evolution of infectives within

household, with introductory cases belonging to generation zero.

et Ytj indicate whether a susceptible subject escaped from dis-

ase after being exposed to j infectives in the generation t − 1,

cting as a Bernoulli random variable with the parameter qtj. The

ernoulli parameter represents the escape probability indicated by

umber of exposed infectives j and generation t, and the proba-

ility of being vulnerable to disease, ptj, is 1−qtj. The logistic form

og{(mtjqtj)/[mtj(1 − qtj)]} = αt + βt × j was adopted in Becker’s gen-

ralised linear model [1], with mtj denoting the number of suscepti-

les exposed to j infectives in generation t − 1. The effects of genera-

ions and the number of infectives on the escape probability were thus

ssessed by the model. The Greenwood model [15], which assumes

he risk of being infected for susceptible subjects is independent of the

umber of infectives (saturated infection), is equivalent to reducing

t to α and specifying β t as zero. On the other hand, the Reed–Frost

odel [16] asserts that the event of escaping infection when exposed

imultaneously to two infectives is equivalent to escaping infection

hen exposed to one infective in each of two successive occasions

nd depicts the transmission mechanism of close contact, which is

quivalent to reducing β t to β . Applying Becker’s generalised linear

odel to our data, we are able to incorporate factors at an individual

evel alongside the generation level and the exposed number of in-

ectives in the model to evaluate their combined effects on the risk of

usceptibility to influenza. This gives

ogit(phtk) = αt + β0 × jht + β ′Xhtk, (1)
here phtk denotes the probability of becoming an influenza case of

ubject k in generation t and household h, which is the complement

f the escape probability qhtk in the Becker model. Thus, the random

ariable is Yhtk, which represents the realisation of empirical data on

he epidemic of influenza for a susceptible subject k of generation t

nd household h escaping from influenza. The number of infectives

ht is considered a generation-level covariate that is nested within a

ousehold, and Xhtk denotes the vector of covariates of the individ-

al k, nested in generation t and household h, after including age,

ender, and vaccination status into our data. β is the vector of the

orresponding regression coefficients. Because of the mild nature of

nfluenza, we assume the homogeneous generation effect (β0) rather

han the time-varying property (β t) on the number of infectives. This

s Becker’s original linear logistic model, considering the generation

ffect with a Reed–Frost underpinning. Assuming a constant baseline

robability of cases’ becoming influenza across generations, Becker’s

inear logistic model without the generation effect based on the Reed–

rost transmission model can be written as follows:

ogit(phtk) = α + β0 × jht + β ′Xhtk.

ecker’s generalised linear model can be further modified using the

reenwood transmission model as the mechanism of the spread of

nfluenza, which gives

ogit(phtk) = αt + β ′Xhtk

or the Greenwood model with the generation effect and

ogit(phtk) = α + β ′Xhtk

or the Greenwood model without the generation effect.

.2. Bayesian acyclic graphical model for multilevel data

To estimate the parameters with the hierarchical random effects of

ouseholds and effects of individual-level covariates, a methodology

eveloped for the analysis of DAG models was utilised. To address the

ultilevel data structure, several statistical methods have been pro-

osed, including the individual-specific random effects model [27,28]

nd the population-based average method [29]. The former, using

he Bayesian DAG model, has been widely used in the literature

30–32]. Details of the DAG model have been described by

piegelhalter et al. [33].

In terms of multilevel property, we have three levels in the data:

he individual level, generation level, and household level. According

o the process by which the data gathered, the levels were assumed

o be nested within one another: individuals within generation and

enerations within households. As in Becker’s linear logistic model,

e expressed the model using the indexes k, t, and h for the individual,

eneration and household levels, respectively. The baseline risk for

susceptible subject’s being vulnerable to influenza may vary from

ousehold to household due to contextual effects at the household

evel. This argument gives

ogit(phtk) = αh + β0 × jht + β ′Xhtk, (2)

here αh captures the variation of a case’s baseline risk of developing

nfluenza across households, forming a random-household effect in

he model.

.2.1. Hierarchical models based on the Greenwood model

We first extend Becker’s linear logistic model based on the Green-

ood model to incorporate the variation of contextual effects across

ouseholds. The model specified in (2) is simplified to give

ogit(phtk) = αh + β ′Xhtk

αh = α00 + α0h, (3)

α0h ∼ N
(
0, σ 2

αh

)
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where the common intercept α00 represents the average baseline

risk of being vulnerable to influenza. The normal distributed random

variable α0h with a mean of zero and the variance, denoted as σ 2
αh

,

captures the heterogeneity at a household level (a random intercept

with a cluster effect on household). The parameter corresponding to

the effect of the number of infectives is zero (β0 = 0) as the Greenwood

model is adopted.

The effect of each generation on the probability of experiencing

influenza cases is also of great interest and can be a separated base-

line risk as αt from the variation across households (αh). The model

specified in (3) can be extended to give

logit(phtk) = αh + αt + β ′Xhtk

αh = α00 + α0h (4)

α0h ∼ N
(
0, σ 2

αh

)
.

As in Becker’s linear logistic model, αt represents the effect of each

generation on the baseline probability of turning into influenza cases.

The normal variate α0h models the variation across the household

level (a random-intercept model with a cluster effect on household,

considering the generation effect).

Aside from the variation in the baseline probability of produc-

ing influenza cases, the contextual effect may interact with the ef-

fect of vaccination in reducing susceptibility to influenza, especially

when the uptake of vaccination is voluntary. To model the variation

of vaccination’s effect across households, the model in (3) is modified

accordingly to give

logit(phtk) = α + βh × Vhtk + β ′Xhtk

βh = β00 + β0h, (5)

β0h ∼ N
(
0, σ 2

βh

)

where Vhtk is the vaccination status of subject k of generation t and

household h, and βh represents the effect of vaccination on the prob-

ability of being susceptible to influenza with common value β00 and

normal variate β0h, allowing the value to change from household

to household. Parameter σ 2
βh

captures the extent of this variation (a

random slope with a cluster effect on household). The model speci-

fied in (5) can be extended with a similar concept as (4) to produce

a model with a generation effect and a random slope reflecting the

interaction between the effect of vaccination and environmental con-

text of a household, based on the Greenwood transmission model (a

random-slope model with a cluster effect on household, considering

the generation effect):

logit(phtk) = α + αt + βh × Vhtk + β ′Xhtk

βh = β00 + β0h. (6)

β0h ∼ N
(
0, σ 2

βh

)

3.2.2. Hierarchical models based on the Reed–Frost model

Hierarchical models based on the Reed–Frost model as the mech-

anism of disease transmission, incorporating variation across house-

holds (a random intercept with a cluster effect on household), are

constructed by specifying the model in (2) as follows:

logit(phtk) = αh + β0 × jht + β ′Xhtk

αh = α00 + α0h, (7)

α0h ∼ N
(
0, σ 2

αh

)
where the zero-mean normal variate α0h with variance denoted as

σ 2
αh

captures the variation of the contextual effect on the risk of con-

tracting influenza across households (a random intercept with a clus-

ter effect on household). Parameterβ0 represents the effect of number

of infectives on the probability of contracting influenza, which corre-

sponding to the Reed–Frost transmission model. Similarly, based on
he Reed–Frost model, a hierarchical model that accounts for varia-

ions in the effect of vaccination across households is given by modi-

ying (2) as follows:

ogit(phtk) = α + β0 × jht + βh × Vhtk + β ′Xhtk

βh = β00 + β0h (8)

β0h ∼ N
(
0, σ 2

βh

)
.

As in the hierarchical models based on the Greenwood model, the

ffect of each generation on the risk of turning into influenza cases

an be separated from the baseline risk by adding the αt term to (7)

nd (8) to give corresponding hierarchical models that consider the

eneration effect, based on the Reed–Frost model.

An example of the DAG representation of the proposed Bayesian

ierarchical models based on the Reed–Frost model is given in

ig. 1. Models incorporating random intercepts (black eclipse nodes)

nd random slopes (grey eclipse nodes) are both depicted. Consid-

ring the hierarchical model based on the Reed–Frost underpinning,

iven the parameter q[h, t, k], the random variable Y[h, t, k] represents

hether a susceptible k of household h and generation t escaped

rom influenza. The random variable follows a Bernoulli distribution,

nd the probability of being vulnerable to influenza for the subject

[h, t, k] is the complement of q[h, t, k], which is in turn linked with

he covariates at an individual level (age[h,t,k], sex[h,t,k], and vac-

ination[h,t,k]), with the intercept changing for each household (αh

n the model with random intercept). The household-specific inter-

ept (αh) is then further decomposed into the average value of the

aseline risk and the variation across households (α00 and α0h, black

clipse nodes), modelling the heterogeneity of the baseline risk at

he household level. Considering the model with random slope, the

ffect of vaccination for each subject allows for a household-specific

alue (βh), which is further decomposed into the average effect and

ariation across households (β00 and β0h, grey eclipse nodes), cor-

esponding to the interaction between the contextual effect at the

ousehold level and the effect of vaccination at the individual level.

he number of infectives who can expose influenza to the susceptible

f household h and generation t denoted by jht is also included in the

ystematic component to accommodate the Reed–Frost transmission

odel. Following Becker’s linear logistic model, a logit link is adopted.

ystematic components and the variations that arose from the level

f household are specified in (7) and (8) for the model with random

ntercepts (black eclipse nodes) and the one with random slopes (grey

clipse nodes), respectively, as depicted in Fig. 1.

. Estimation and model selection

.1. Likelihood function

Following the Becker model, random variable Yhtk can be modelled

sing Bernoulli distribution:

Yhtk =
{

1 if escaped from disease
0, otherwise

htk|qhtk ∼ Bernoulli(qhtk).

phtk = 1 − qhtk

0 ≤ qhtk ≤ 1

The overall likelihood function for the empirical data is thus given

y

=
households∏

h=1

generations∏
t=1

subjects∏
k=1

qhtk
Yhtk(1 − qhtk)

1−Yhtk .

.2. Assignment of the prior distribution

Non-informative priors N(0,106) were used for individual-level

arameters β as well as for the parameter of the effect of the
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Fig. 1. Acyclic graphical model for Bayesian hierarchical models based on the Reed–Frost model.

Model with random intercepts (black eclipse nodes)

Yhtk|qhtk ∼ Bernoulli(qhtk)
phtk = 1 − qhtk

logit(phtk) = αh + β0 × jht + βage × agehtk + βsex × sexhtk + βvaccination × vaccinationhtk

αh = α00 + α0h

α0h ∼ N(0, σ 2
αh

)

Model with random slopes (grey eclipse nodes)

Yhtk|qhtk ∼ Bernoulli(qhtk)
phtk = 1 − qhtk

logit(phtk) = α + β0 × jht + βage × agehtk + βsex × sexhtk + βh × vaccinationhtk

βh = β00 + β0h

β0h ∼ N(0, σ 2
βh

).
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umber of infectives (β0) on the risk of being vulnerable to in-

uenza. In models containing such random-household effects, non-

nformative priors N(0,106) were assigned for the regression coeffi-

ients α00, representing the average risk in random-intercept models,

nd β00, representing the average effect of vaccination in random-

lope models. In hierarchical models, the random variables capture

he variation across households, α0h and β0h, which were mod-

lled using the normal distributions N(0, σ 2
αh

) and N(0, σ 2
βh

), respec-

ively. The non-informative hyperpriors with uniform distributions

(0, 103) were assigned to the square roots of the variances σαh
and

βh
. In hierarchical models considering generation effects, the non-

nformative priors N(0, 106) were assigned to the regression coeffi-

ients αt. In addition to non-informative priors, informative priors,

ncluding sceptical and enthusiastic ones, on the regression coeffi-

ient of vaccination (β00) were elicited to evaluate their effects on

he posterior distribution. By reviewing the evidence provided in the

ochrane Library, the effect of reducing the risk of influenza-like ill-

ess (ILI) by vaccination was estimated at 10%–35% [34,35]. Based

n this prior knowledge and assuming an exchangeable property,

e were able to assign the sceptical prior to β00 according to the

ogarithm of one minus the quantity of risk reduction as N(0, 7 ×
0−3), with the enthusiastic prior as N(−0.27, 7 × 10−3). Details of

he derivation of the informative priors based on the results of a

iterature review are provided in Appendix A in the supplementary
aterial.
.3. Gibbs sampling, model selection, and the predictive distribution

A Gibbs sampler was used to derive samples of a stationary distri-

ution by which inferences on posterior distributions were made. The

nitial values for the regression coefficients, including the parameters

f individual-level factors (β), the parameter of number of infectives

β0), and the parameters of the average values of the random effects

t the household level (α00 and β00), were set as zero. In the hierar-

hical models with random intercepts and random slopes, the initial

alues of the hyperpriors of σαh
and σβh

were set at one. Full condi-

ional distributions based on the DAG of models were used to update

he process of sampling. All of the estimates of parameters to derive

ummary statistics of posterior distributions were computed by 5000

terations carried out with a thinning interval of three after a burn-in

eriod of 5000 iterations. Such a MCMC simulation yielded a total

f 1667 updated posterior samples. Estimates based on the posterior

istributions of parameters were derived using the MCMC method,

hich was carried out using WinBUGS [36]. Examples of the Bayesian

ierarchical model with random intercepts based on the Greenwood

odel and based on the Reed–Frost model using WinBUGS based on

AG are given in Appendix B in the supplementary material. Poste-

ior distributions for the parameters of other proposed models were

valuated similarly.

Comparisons between models were guided by the deviance infor-

ation criterion (DIC). Using the posterior estimates of the proposed
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Table 1

Characteristics of the study subjectsa.

Study subjects Sampled households of sizes 2–5b

2 3 4 5

Flu Non-flu Flu Non-flu Flu Non-flu Flu Non-flu Flu Non-flu

Number 6,616,738 15,834,203 92,027 80,397 117,036 183,798 144,933 311,283 100,291 273,429

(29.5) (70.5) (52.4) (46.6) (38.9) (61.1) (31.8) (68.2) (26.8) (73.2)

Gender (male) 3,153,296 8,304,946 41,929 42,214 56,569 96,351 71,425 165,382 47,485 139,981

(47.7) (52.5) (45.6) (52.5) (48.3) (52.4) (49.3) (53.1) (47.4) (51.2)

Vaccine 272,073 656,150 8948 7854 4131 8164 2115 7091 1396 7231

(4.1) (4.1) (9.7) (9.8) (3.5) (4.4) (1.5) (2.3) (1.4) (2.6)

Age (SD) c 30.6 35.8 40.1 44.3 29.0 36.1 25.7 33.1 25.6 32.8

(21.9) (19.6) (23.1) (19.2) (21.7) (19.0) (19.1) (17.7) (18.9) (18.3)

a Data are presented as numbers (%) of subjects, unless otherwise stated.
b Subjects of sampled households with more than one influenza case.
c Average (standard deviation) of age.

Fig. 2. Heterogeneity across households in terms of the proportion of influenza cases (solid line), proportion of vaccinated subjects (dotted dashed line), proportion of children

(short dashed line), and secondary attack rate (long dashed line).
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Bayesian hierarchical models, we were able to give a predictive distri-

bution. The prediction was applied to another set of randomly sam-

pled data consisting of 456,224 subjects and 27,782 influenza cases

derived from 168,060 households. Based on the results of model com-

parisons, the predictive distribution of the number of influenza cases

according to the household sizes and vaccination statuses using mod-

els with the Reed–Frost underpinning were evaluated to demonstrate

the consequences of including contextual effects in the model.

5. Results

5.1. Descriptive findings

During the study period, 6,616,738 flu cases were observed among

the 22,450,941 people living in Taiwan. From these cases, a total of

13,039,481 subjects derived from 3,752,035 households of sizes rang-

ing from two to five with at least one influenza case were collected.
sing the sampling fraction of 10%, 1,303,194 subjects derived from

75,288 households were enrolled to construct the hierarchical mod-

ls. The mean age of the sampled subjects was 32.9 (standard devia-

ion: 19.8) years, and the proportions of males and of those vaccinated

ere 50.8% and 3.6%, respectively. Table 1 shows the characteristics

f the study population and the sampled subjects, stratified by house-

old size. The average proportion of household members diagnosed

s influenza cases decreased from 52.4% in households of size two to

6.8% in households of size five, with corresponding secondary attack

ates of 2.7%, 4.2%, 5.2%, and 5.3% in households of sizes two, three,

our, and five, respectively. The data used for analysis were confined

o households with at least one case, including the introductory and

econdary cases. Fig. 2 shows these differences across the sizes of

ouseholds alone, including the proportions of children (�6 years of

ge) and vaccinated subjects. This figure represents the heterogene-

ty between households that may affect the probability of influenza

ransmission within households.
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Table 2

Estimated results of Beckerʼs linear logistic models (estimates (95% credible interval)).

Greenwood model Greenwood model with Reed–Frost model Reed–Frost model

a generation effect with a generation effect

Intercept −2.77 (−2.78, −2.76) −2.81 (−2.82, −2.79) −2.78 (−2.79, −2.77) −2.82 (−2.83, −2.81)

Number of infectives – – – – 0.28 (0.25, 0.32) 0.29 (0.25, 0.33)

Age �6 1.50 (1.48, 1.53) 1.50 (1.48, 1.53) 1.50 (1.48, 1.53) 1.50 (1.48, 1.52)

�65 −0.34 (−0.40, −0.29) −0.33 (−0.38, −0.28) −0.34 (−0.39, −0.29) −0.33 (−0.38, −0.27)

Sex (male) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20) −0.21 (−0.23, −0.20) −0.22 (−0.23, −0.20)

Vaccination −0.04 (−0.12, 0.03) −0.04 (−0.11, 0.03) −0.04 (−0.12, 0.03) −0.04 (−0.11, 0.04)

Generation effect Second – – 0.29 (0.27, 0.32) – – 0.30 (0.27, 0.33)

Third – – 0.42 (0.34, 0.50) – – 0.43 (0.35, 0.50)

Fourth – – 0.80 (0.46, 1.09) – – 0.81 (0.46, 1.11)

Table 3

Estimated results of Bayesian hierarchical models based on the Greenwood model (estimates (95% credible interval)).

Random intercept Random slope (vaccination status)

Greenwood model Greenwood model with Greenwood model Greenwood model with

a generation effect a generation effect

Intercept α00 −2.84 (−2.85, −2.82) −2.81 (−2.82, −2.79) −2.77 (−2.78, −2.76) −2.81 (−2.82, −2.79)

σαh
0.35 (0.31, 0.38) 0.02 (0.00, 0.07) – – – –

Age �6 1.52 (1.50, 1.55) 1.50 (1.48, 1.53) 1.50 (1.48, 1.52) 1.50 (1.48, 1.53)

�65 −0.34 (−0.39, −0.29) −0.33 (−0.38, −0.28) −0.35 (−0.40, −0.30) −0.34 (−0.39, −0.28)

Sex (male) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20)

Vaccination β00 −0.04 (−0.12, 0.03) −0.04 (−0.11, 0.04) −0.58 (−1.00, −0.23) −0.64 (−1.02, −0.32)

σβh
– – – – 1.11 (0.66, 1.52) 1.18 (0.81, 1.54)

Generation effect Second – – 0.29 (0.27, 0.32) – – 0.30 (0.27, 0.32)

Third – – 0.42 (0.34, 0.49) – – 0.42 (0.34, 0.50)

Fourth – – 0.79 (0.47, 1.09) – – 0.80 (0.47, 1.11)
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.2. Becker’s linear logistic model with and without a generation effect

The estimated results of Becker’s linear logistic model based on

he Greenwood model and the Reed–Frost model, with and without

he generation effect, are shown in Table 2. The Greenwood model

nd Reed–Frost model revealed similar trends when covariates at the

ndividual level were considered. Compared with young adults, the

robability of being vulnerable to influenza was higher for children

�6 years of age) and lower for the elderly (>65 years). Males had

lower risk of contracting influenza. The estimated result of the re-

ression coefficient for the number of infectives in the Reed–Frost

odel was 0.28 (95% credible interval (CI): 0.25–0.32), which mani-

ests the effect of increasing the risk of being vulnerable to influenza,

ith an approximately 30% increase in the odds per increment of in-

ectives (Table 2, third column). The estimated effects of vaccination

n the risk of turning into influenza cases were −0.04 (95% CI: −0.12

o 0.03), using both the Greenwood model and the Reed–Frost model,

uggesting the protective effect of vaccination, although both of the

anges included zero (Table 2, first and third columns). The trend of

ncreasing the probability of being vulnerable to influenza by genera-

ions was observed in both models incorporating a generation effects

Table 2, second and fourth columns).

.3. Bayesian hierarchical models based on the Greenwood model

Table 3 shows the estimated results of applying the Bayesian hi-

rarchical models containing random intercepts and random slopes

ith a cluster effect on households (σαh
and σβh

, respectively) based

n the Greenwood underpinning. In the random-intercept Bayesian

ierarchical model, the estimated variation of the household (σαh
)

as 0.35 (95% CI: 0.31–0.38), which was approximately 12% of the

stimated result of average baseline risk, α00 (Table 3, first column).

onsidering the random-intercept model with a generation effect,

he variation at the household level decreased to 0.02 (95% CI: 0.00–

.07), which was 0.7% of the estimated result of α00 (Table 3, second
olumn). The estimated effect of vaccination (β00) using the model

ith random intercepts was similar to that of Becker’s linear logis-

ic model and also included a 95% CI containing zero. Considering

he random-slope model, the estimated average effect of vaccination

β00) was −0.58 (95% CI: −1.00 to −0.23), which corresponded to the

rotective effect of vaccination and an odds ratio of 0.56 (95% CI: 0.37–

.80) (Table 3, third column). A similar protective effect of vaccination

as observed in the random-slope model with a generation effect

Table 3, fourth column). The variation of the household level for the

ffect of vaccination (σβh
) was 1.11 (95% CI: 0.66–1.52) which was

lmost twice the estimated value of the common effect, β00. A sim-

lar extent of the variation of vaccination effects across households

as still observed after including a generation effect in the model

Table 3, third and fourth columns).

These results suggest that the variation in the baseline risk of being

ulnerable to influenza was reduced substantially after a generation

ffect was considered. However, the vaccination effect statistically

ignificantly varied from household to household, as was still shown

ven after including the generation effect into the model. In the mod-

ls considering the interaction between the effects of vaccination

nd household, reflecting the contextual effect of the environment,

he estimated protective effect of vaccination was enhanced, and the

5% CI departed from zero. To show the differences among Becker’s

inear logistic model, the Bayesian hierarchical model with random

ntercepts, and the latter model with random slopes, we illustrated

hese three models using estimated results based on the Greenwood

odel with a generation effect by simulating the logit predicted val-

es of the vaccinated and unvaccinated subjects of ten households

nd by controlling for covariates at the subject level, considering

ges between 6 and 65 years and females. Fig. 3 shows the results

f the simulation of four generations, as arranged from top to bot-

om. The predicted values of 10 households are represented by 10

ine patterns. The slope of each line represents the estimated effect

f vaccinating the specific household estimated by the three models.

or Becker’s linear logistic model based on the Greenwood model,



20 C.Y. Hsu et al. / Mathematical Biosciences 261 (2015) 13–26

Fig. 3. Graphical illustration of the difference between Becker’s linear logistic model and the Bayesian hierarchical models using the Greenwood model with a generation effect

for the effect of vaccination on the logit predicted value (vertical axis). The figures from top to bottom represent the results from the first to fourth generations. Simulated results

of ten households are represented by the ten different line patterns in each figure.
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risk.
there was no variation between households, and 10 lines overlapped

(Fig. 3, first column). The intercepts of the logit-predicted values in-

creased from −2.81 in the first generation (Fig. 3, first column and

first row) to −2.02 in the fourth generation (Fig. 3, first column and

fourth row), showing that the risk of being vulnerable to influenza

increased as the epidemic evolved. In the random-intercept model

based on the Greenwood model (Fig. 3, second column), the trend

of increasing the risk of being vulnerable to influenza with succes-

sive generations was preserved, and the spread of the logit-predicted

values of the ten simulated household are shown as parallel lines
ue to the α0h term in the model specified in (4), which repre-

ents the heterogeneity in the baseline risk of being vulnerable to

nfluenza across households and the contextual effect. Regarding the

reenwood model with a random slope (Fig. 3, third column), the

ariation between households shows the effect on the slope (β0h,

odel specified in (8)), representing the interaction between the

ffect of vaccination and the contextual effect. Moreover, it is no-

able that the heterogeneity in the slope is much greater than that of

he intercept after separating the generation effect from the baseline
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Table 4

Estimated results of Bayesian hierarchical models based on the Reed–Frost model (estimates (95% credible interval)).

Random intercept Random slope (vaccination status)

Reed–Frost model Reed–Frost model with Reed–Frost model Reed–Frost model with

a generation effect a generation effect

Intercept α00 −2.84 (−2.86, −2.83) −2.82 (−2.83, −2.81) −2.78 (−2.80, −2.77) −2.82 (−2.83, −2.81)

σαh
0.34 (0.30, 0.37) 0.02 (0.00, 0.07) – – – –

Number of infectives 0.28 (0.24, 0.32) 0.29 (0.25, 0.33) 0.28 (0.25, 0.33) 0.29 (0.26, 0.33)

Age �6 1.52 (1.50, 1.54) 1.50 (1.48, 1.52) 1.50 (1.48, 1.53) 1.50 (1.48, 1.52)

�65 −0.34 (−0.39, −0.28) −0.33 (−0.38, −0.28) −0.34 (−0.39, −0.29) −0.33 (−0.39, −0.28)

Sex (male) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20)

Vaccination β00 −0.04 (−0.11, 0.04) −0.04 (−0.11, 0.03) −0.63 (−0.95, −0.29) −0.69 (−1.15, −0.29)

σβh
– – – – 1.14 (0.76, 1.49) 1.23 (0.77, 1.66)

Generation effect Second – – 0.30 (0.27, 0.32) – – 0.30 (0.27, 0.32)

Third – – 0.43 (0.35, 0.50) – – 0.43 (0.35, 0.51)

Fourth – – 0.81 (0.48, 1.12) – – 0.81 (0.50, 1.11)

Table 5

Comparison of DIC for models.

Model DIC Dbar pD

Becker’s linear logistic models

Greenwood model 406,496 406,491 5

Greenwood model with a generation effect 405,931 405,923 8

Reed–Frost model 406,298 406,292 6

Reed–Frost model with a generation effect 405,721 405,712 9

Bayesian hierarchical model, random intercept

Greenwood model 406,168 399,677 6490

Greenwood model with a fixed generation effect 405,897 405,879 19

Reed–Frost model 406,029 399,823 6206

Reed–Frost model with a fixed generation effect 405,641 405,672 −30

Bayesian Hierarchical model, random slope (vaccination status)

Greenwood model 406,178 405,117 1061

Greenwood model with a fixed generation effect 405,686 404,401 1285

Reed–Frost model 406,020 404,839 1181

Reed–Frost model with a fixed generation effect 405,300 404,083 1217
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.4. Bayesian hierarchical models with the Reed–Frost model

Modelling the mechanism of influenza transmission within house-

olds as resulting from close contact, we extended Becker’s linear

ogistic model based on the Reed–Frost model to build hierarchical

odels, with the estimated results shown in Table 4. The effect of

he number of infectives was similar in how it described increased

isk of contracting influenza to the corresponding Becker linear logis-

ic model. Similar to the Bayesian hierarchical models based on the

reenwood model, the reduction in the estimated variation across

ouseholds (α0h) after including the generation effect in the model

as observed to decrease from 0.34 to 0.02 (Table 4, first and second

olumns). Using the random-intercept model, the estimated protec-

ive effect of vaccination was −0.04 (β00) with the 95% CI including

ero (Table 4, first and second columns). This quantity moved away

rom zero using the random-slope model, incorporating the interac-

ion between the effect of vaccination and the household-level con-

ext and was estimated as −0.63 to −0.69, with a corresponding odds

atio of 0.53 to 0.50 (Table 4, third and fourth columns).

.5. Comparison between models

Table 5 presents the DIC values of a variety of models. As far as

ecker’s linear logistic models are concerned, the Reed–Frost model

ad lower DIC values then the Greenwood model (viz., a difference of

98). Table 5 also shows that making allowances for the generation

ffect would reduce the DIC value by 565 based on the Greenwood

odel. The corresponding reduction of DIC value by 577 was noted

or the Reed–Frost model, suggesting the necessity of modelling the

eneration effect.
Compared with their fixed-effect counterparts in Becker’s linear

ogistic models, which allowed for variation across households (a ran-

om effect), the reduced DIC values figured substantially in those

ayesian hierarchical models with random intercepts and with ran-

om slopes. The random-intercept model based on the Greenwood

odel resulted in the reduction of the DIC value by 328 compared with

he Greenwood model of the fixed-effect model. A corresponding 269

eduction in the DIC values was noted for the Reed–Frost model. With

espect to the Bayesian hierarchical models with random slopes, the

odel based on the Greenwood model reduced the DIC values by

18 compared with the fixed-effect model based on the Greenwood

odel. A corresponding reduction of the DIC value by 278 was noted

n the comparison between models based on the Reed–Frost model.

owever, the reduction in the DIC value by including the random

ntercept parameter in the models already containing the genera-

ion effect was modest (34 for the Greenwood model and 80 for the

eed–Frost model). This finding suggests the significant contribution

f generation effect. The comparisons between the fixed-effect mod-

ls and the random-effect models demonstrate the significance of in-

luding random-effect parameters (viz., σαh
and σβh

) to improve the

onventional probability model by taking the heterogeneity between

ouseholds into account when tackling the phenomenon of overdis-

ersion. Considering a random slope for generations in the model

educed the DIC value further (211 for the Greenwood model and 341

or the Reed–Frost model) compared with the model with random

ntercepts. This result suggests that the heterogeneity accounting for

he overdispersion in modelling the process of the influenza epidemic

ies mainly in the variation of the effects of vaccination across house-

olds, after including the generation effect in the model.

To summarise, the Bayesian hierarchical model with random

lopes based on the Reed–Frost model with a generation effect in-

orporating random variation across households into the effect of

accination (random slope) is the model with the lowest DIC value

405,300, Table 5). The next-best model is the random-intercept

ayesian hierarchical model with a generation effect based on the

eed–Frost model (405,641, Table 5). Details on simulated poste-

ior samples of parameters, including autocorrelation plots, correla-

ions between parameters, and effective sample sizes, are provided in

ppendix C.

.6. Estimated results by the elicitation of informative priors

Applying the Bayesian approach offers the advantage of intro-

ucing prior distributions and thus has the potential to incorporate

nowledge on the spread of influenza based on previous studies or

bservations of epidemics into the model. Informative priors, includ-

ng sceptical and enthusiastic ones on the protective effect of vac-

ination, were incorporated. Combined with the weight of the evi-

ence derived from the collected data using the proposed Bayesian
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Table 6

Estimated results of Bayesian hierarchical models with random slopes using sceptical priors and enthusiastic priors on the effect of vaccination (estimate (95% credible

interval)).

Greenwood model with a generation effect Reed–Frost model with a generation effect

Enthusiastic prior DIC: 405,871 Sceptical prior DIC: 405,525 Enthusiastic prior DIC: 405,657 Sceptical prior DIC: 405,340

Intercept α00 −2.81 (−2.82, −2.79) −2.81 (−2.82, −2.79) −2.82 (−2.83, −2.81) −2.82 (−2.83, −2.81)

Number of infectives – – – – 0.29 (0.25, 0.33) 0.29 (0.25, 0.33)

Age �6 1.50 (1.48,1.53) 1.50 (1.48, 1.52) 1.50 (1.48, 1.52) 1.50 (1.48, 1.52)

�65 −0.34 (−0.39, −0.29) −034 (−0.40, −0.29) −0.33 (−0.39, −0.28) −0.34 (−0.39, −0.29)

Sex (male) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20) −0.22 (−0.23, −0.20) −0.21 (−0.23, −0.20)

Vaccination β00 −0.32 (−0.48, −0.18) −0.10 (−0.23, 0.01) −0.32 (−0.45, −0.17) −0.12 (−0.25, 0.00)

σβh
0.81 (0.56, 1.03) 0.39 (0.03, 0.71) 0.80 (0.55, 1.00) 0.40 (0.07, 0.75)

Generation effect Second 0.30 (0.27, 0.32) 0.30 (0.27, 0.32) 0.30 (0.27, 0.32) 0.30 (0.27, 0.33)

Third 0.42 (0.34, 0.50) 0.42 (0.34, 0.50) 0.43 (0.35, 0.50) 0.43 (0.35, 0.50)

Fourth 0.80 (0.47, 1.11) 0.79 (0.46, 1.12) 0.81 (0.50, 1.11) 0.81 (0.50, 1.11)

Enthusiastic prior: β00 ~ N(−0.27, 7 × 10−3); Sceptical prior: β00 ~ N(0, 7 × 10−3).
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hierarchical models, we were able to obtain estimates on the protec-

tive effect, updated by data. Table 6 provides the estimated results and

DIC values reflecting the use of these informative priors and random-

slope models with generation effects based on the Greenwood model

and the Reed–Frost model. Even if the sceptical prior showing prior

belief in the effect of vaccination were to concentrate around the null,

the estimated protective effect (β00) would be −0.1 to −0.12, cor-

responding to a risk reduction of 10%–12%, although the tail would

extend across zero (95% CI: −0.23 to 0.01 in the Greenwood model

and −0.25 to 0.00 in the Reed–Frost model). Using an enthusiastic

prior showing a belief in risk reduction attributable to vaccination

that concentrated at 25%, the estimated effect (β00) updated by data

was −0.32 for the Greenwood model and the Reed–Frost model. This

figure corresponds to a risk reduction of approximately 30%, which

lies between 25% (i.e., the prior belief) and 45% (i.e., the evidence

provided by the data) and results from the average of the prior and

the evidence derived from the data, as weighted by their strength.

The comparison of the DIC between models with the two informative

priors shows that the model with sceptical priors performs better.

5.7. Predictive distribution using models based on the Reed–Frost model

Fig. 4 shows the predicted number of influenza cases stratified by

the sizes of households and vaccination statuses using the results of

four models based on the Reed–Frost model. The figures from top to

bottom in Fig. 4 represent the predicted number of cases using the

fixed-effect model based on the Reed–Frost model, the fixed-effect

model based on the Reed–Frost model with a generation effect, the

random-intercept model based on the Reed–Frost model with a gen-

eration effect, and the random-slope model based on the Reed–Frost

model with a generation effect. The predictions were applied to all

subjects (Fig. 4, first column), to those not having been vaccinated

(Fig. 4, second column), and to those who were vaccinated (Fig. 4,

third column). Considering the results of the prediction as they were

applied to the overall group and the unvaccinated group, the pre-

dicted number of influenza cases was close to the observed one, with

a narrow 95% CI range for all models, except for the fixed-effect model

based on the Reed–Frost model with a generation effect. Although the

point estimates of the predicted number of cases were close to the

observed values for the prediction using the fixed-effect model based

on the Reed–Frost model with a generation effect (Fig. 4, second row),

the ranges of the 95% CIs were wide. Considering the prediction ap-

plied to the unvaccinated group, the predicted results deviated from

the observed numbers of cases substantially in almost all sizes of

households for all models, owing to the low vaccination rates (4.1%,

Table 1) and relative small sizes of samples compared with the unvac-

cinated group. Despite this deviation, the ranges of the 95% CIs for the

fixed-effect model based on the Reed–Frost model with a generation

effect and the random-slope model based on the Reed–Frost model
ith a generation effect covered the observed number of cases in the

accinated group.

. Discussion

By using the Bayesian hierarchical model, our approach extended

ecker’s linear logistic model, which takes into account the corre-

ations between observed cases in epidemic data across households

hile preserving the mechanisms of disease transmission within the

odel. The Bayesian hierarchical model has been used to cope with

he heterogeneity found in longitudinal follow-up studies charac-

erised by multilevel structures [30–32]. The flexible framework of the

ayesian hierarchical approach makes it feasible to model data with

omplex structures. O’Neill et al. proposed the model’s use for par-

ially observed household and temporal data by applying the MCMC

ethod to incorporate the concept of random infectiousness and ran-

om susceptibility in the model [14]. Methods on data augmentation

or the longitudinal household data of influenza outbreaks, such as

he MCMC simulation, were also developed, although the problem of

onvergence when estimating parameters was noted and was coped

ith alternative MCMC algorithm [14]. This problem may result from

ssues of identifiability, mainly for the parameters pertinent to the

wo escaped probabilities from household and community. Follow-

ng the Becker model [1], we extended the method of analysing in-

ectious disease data with household structures by making use of the

ayesian hierarchical approach to tackle correlated features between

bservations. The proposed method provides a framework using ran-

om effects underpinned by a generalised linear model to address

he dependent data for infectious diseases within a household. This

s tantamount to the application of the Bayesian hierarchical model

o address the issue of overdispersion, partly due to the multilevel

tructure and partly to the dependent property of the data.

There are several merits of our proposed methods. The first is the

roposed Bayesian hierarchical models that are capable to dealing

ith correlated data with multilevel structure while incorporating

he mechanisms of disease transmission including the Greenwood

odel and the Reed–Frost model. The second advantage is that in

ddition to evaluating the effect of individual attributes (such as age,

ex, and vaccination status) on the force of disease transmission, the

eterogeneity across households can be also taken into account and

uantified by using the random-intercept and random-slope models.

he third is the simplicity of applying proposed method by using

inBUGS to fit the model without the need for specialised software.

In addition to the correlated property and multilevel data struc-

ures, individual factors that were considered included sex, age, vac-

ination status, and generation. Male sex and old age groups showed

ower probabilities of being vulnerable to influenza. As the epidemic

volved, the probability of contracting influenza was higher. The vac-

ination effect was not significant in Becker’s linear logistic models
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Fig. 4. Plots of the predicted (filled circle) and observed (hollow triangle) numbers of influenza cases (horizontal axis) and their corresponding 95% CIs against household sizes

(vertical axis). The figures from top to bottom represent the results using the fixed-effect model based on the Reed–Frost model, the fixed-effect model based on the Reed effect

model with a generation effect, the Bayesian hierarchical model with a random intercept based on the Reed–Frost model with a generation effect, and the Bayesian hierarchical

model with random slope based on the Reed–Frost model with a generation effect.
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r in the Bayesian hierarchical random-intercept models, whereas

he protective effect of vaccination was statistically significant in the

andom-slope Bayesian hierarchical model. The difference in the risk

f being vulnerable to influenza between males and females is very

ikely reflective of differential exposure to influenza infections. Re-

arding the differences observed among the age groups, the lower risk

ssociated with the elder group and the higher risk associated with

he younger group are consistent with the observations of Cauchemez

t al. [24] and may be due to a history of previous exposure to the

nfluenza virus that may confer a protective effect. The inverse rela-

ionship between the size of households and the probability of being
nfluenza cases listed in Table 1 was also observed in several stud-

es [24, 37–39]. Although the trends of proportion of influenza cases

y household size vary from study to study, possible factors such

s the proportion of child [24], contact pattern, hygiene behaviour,

entilation status [40], and difference in social network pattern [39]

mplying the heterogeneity across households may contribute to the

bserved pattern.

The impression that the probability of contracting influenza differs

rom household to household is supported by variations within the

nvironmental factors of each household, such as crowded domestic

onditions, the proportion of the family consisting of children, the



24 C.Y. Hsu et al. / Mathematical Biosciences 261 (2015) 13–26

e

w

m

l

o

i

i

h

f

t

r

o

c

s

o

p

I

f

w

a

S

n

t

p

l

a

c

m

n

s

p

f

o

o

d

o

b

h

t

o

t

T

s

t

r

f

n

A

p

c

a

t

l

i

c

a

p

W

r

e

t

u

t

t

contact patterns between household members, and the proportion

of family members who have been vaccinated. A descriptive anal-

ysis of our data by the sizes of households also shows such varia-

tion (Fig. 2), prompting us to apply hierarchical models with random

effects. Similar findings on variations across households were also

observed by Cauchemez et al. [24] in their work on the pandemic

of influenza. The work of House and Keeling also demonstrated that

heterogeneity across households should be considered before im-

plementing preventive strategies [5]. From the history of modelling

infectious disease data, incorporating generation effects and variation

across households are two approaches that have been found to be use-

ful in improving the performance of models [1] due to their allowing

for heterogeneity, which accounts for overdispersion. This approach

is also supported by the fundamental theories of infectious diseases

[41], which indicate that the delineation of the process of the spread of

infectious disease between hosts will be fruitful only after the cluster

effect arising from environmental contexts has been considered. Al-

though the previous work on the methods of modelling the epidemic

of influenza within households tackled the relevant difficulties, such

as latent epidemic chains [2,3,14] and partially observed infectious

processes [7–12,14], the approach of quantifying such heterogeneity

has been barely addressed. The proposed Bayesian hierarchical frame-

work on modelling infectious disease data also provides an approach

to test the significance of random-effect parameters by comparing

the DIC values between models. In our proposed models, both pa-

rameters of the random intercept (αh) and the random slope (βh) sig-

nificantly improved the fitting of Becker’s linear logistic model. After

including a generation effect, which partially accounts for the base-

line variation in the risk of contracting influenza, the improvement

observed in the models with random intercepts diminished substan-

tially in terms of DIC values. The comparison between the Bayesian

hierarchical models with generation effects and random intercepts

and those with random slopes shows that heterogeneity can be fur-

ther addressed by considering the random-slope parameter, which

reveals significant variation in the effect of vaccination across house-

holds. Significant improvements in model-fitting statistic in terms of

DIC values were noted after incorporating a generation and random

effects, as noted in Table 5. Among our Bayesian hierarchical mod-

els, the model with best performance in terms of DIC values was the

random-slope model based on the Reed–Frost model with a genera-

tion effect, suggesting the existence of random variations on the effect

of vaccination across households. Meanwhile, the probability of be-

ing vulnerable to influenza increased with respect to generation. The

superior performance of the Reed–Frost model compared with the

Greenwood model was also observed in Table 5 because the number

of exposed infectives also increased the risk of being vulnerable to

influenza during the spread of influenza within the households.

The contrast between random-effect models and the fixed-effect

ones is presented in Table 5 showing the value of Dbar and pD for

each model. In general, the DIC values of models with random-effect

(random-intercept or random-slope) were reduced in comparison

with the counterparts of the fixed-effect. This is entirely attributed

to the lower value of Dbar of the random-effect model when com-

pared with the counterpart of the fixed-effect. However, including

the random effects in the model also led to the reduction in degree of

freedom resulting from the complexity of the model. Such a penalty

is represented by the higher value of pD of the random-effect model

in comparison with the counterpart of the fixed-effect. The penalty of

the elevated pD was offset by the gain of reducing Dbar. The net gains

gave the support of random-effect models.

With respect to the comparisons made between the random-

intercept models and the random-slope models, the estimated re-

sults based on the Bayesian hierarchical models with random inter-

cepts showed some protective effect of vaccination, although the 95%

CIs included zero. However, considering the interaction between the

effects of vaccination and the contextual effects of households, the
stimated effect of vaccination using the Bayesian hierarchical models

ith random slopes departed from zero, with odds ratios of approxi-

ately 0.50 to 0.53. This paradox, when evaluated together with the

ow proportion of vaccination (4.1%, Table 1) and the voluntary nature

f being vaccinated within the target population reveals the possibil-

ty that the significant protective effect of vaccination observed only

n models with random slopes was due to the contextual effects of

ouseholds, such as their socioeconomic statuses. Vaccination there-

ore represents a proxy for this context, which shows its effect in

erms of interaction. In their work based on a survey of nationally

epresentative samples in the United States for patients aged 18 and

lder, Galarce et al. [18] reported that receiving the influenza vac-

ine is associated with sociodemographic factors and other factors,

uch as urbanisation and influenza-related beliefs. Similar findings

n the differences in receiving an influenza vaccination among peo-

le across socioeconomic strata have also been noted in Taiwan [19].

n addition to variation in receiving the influenza vaccination, the ef-

ect of the socioeconomic gradient on influenza was revealed in the

ork of Stone et al. [20]. Discrepancies between the vaccination rate

nd the risk of infection were also disclosed in the work of Gu and

ood [42]. These studies suggest possible links between socioeco-

omic factors, influenza vaccination, and the risk of being vulnerable

o influenza. Using Bayesian hierarchical models with random slopes

ermits meaningful estimation of the vaccination effect across the

evel of households (σβh
), which quantifies this linkage in the form of

n interaction. Additionally, the outcome used in our analysis was the

linical diagnosis of influenza as observed among individuals seeking

edical consultations, which may also be subject to the socioeco-

omic status of each household.

In addition to elucidating the transmission of pathogens and as-

ociated factors, predicting the extent of an epidemic using the pro-

osed model based on current data is another goal of modelling in-

ectious disease. Based on the results of our prediction, the trends

f the spreading infectious disease can be assessed, and a decision

n the proper allocation of resources can be better made. For a pre-

iction that more accurately reflects the progression of an epidemic,

bservable relevant factors, as well as unobserved variables, should

e incorporated into the model. The Bayesian hierarchical approach

as the advantage of incorporating unobserved variables, such as con-

extual effects and socioeconomic status, into the model in the form

f random effects; therefore, it is able to provide a predictive distribu-

ion based on the current data, making use of the posterior estimates.

he comparison of predictive distributions between the models pre-

ented in Fig. 4 shows the benefit of including random slopes into

he model. The prediction using the Bayesian hierarchical model with

andom slopes based on the Reed–Frost model with a generation ef-

ect provides a precise result that is close to the observed value, with a

arrow 95% CI range in the overall group and the unvaccinated group.

lthough the predicted result in the vaccinated group may be com-

romised, the ranges of the 95% CIs cover the observed values and

an act as foundations upon which the extent of the epidemic may be

ssessed. The random-effect parameter on vaccination (βh) provides

he flexibility to account for heterogeneity across households. The

ow vaccination rate and the predominance of unvaccinated subjects

n most of the influenza cases resulted in the predicted number of

ases being largely influenced by the unvaccinated group, even after

djusting for age, sex, and heterogeneity across households.

The prior distributions elicited by the Bayesian approach provide a

lace to incorporate the results of previous observations and studies.

hen the non-informative prior was used, the posterior distributions

eflected the weight of evidence based only on the data, whereas the

licitation of the informative prior provides an approach to evaluating

he parameter of interest based on different prior beliefs that can be

pdated by the current data. The estimated results of the effect of

he vaccination shown in Table 6, using the enthusiastic prior and

he sceptical prior, illustrate this approach. Considering movements
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oth towards and away from the null and the effect of vaccinations,

he posterior estimates provide results informed by the data. The

eighting factors of the prior belief and the data are the inverses of

heir variances. In our case, the inverse of the variance of the prior

istribution dominates the information derived from the data and

hifts the estimated effect of vaccination towards the prior belief.

The MCMC method, combined with the DAG, provides an intu-

tive approach for constructing hierarchical models by representing

he hierarchies between levels graphically, capturing the property of

onditional independence, which further facilitates the derivation of

ull conditional posterior distributions used by the Gibbs sampler.

till, the MCMC method does not guarantee convergence or proper

ixing during the sampling process. Reparameterisation is often re-

uired to improve performance [43]. Additionally, it is time consum-

ng to generate sufficient posterior samples upon which inferences

an be made; this process may be adversely affected by reparameter-

sation. This is especially true when applying hierarchical models to

ur empirical data and using households as cluster effects. Although

he proposed method is flexible in accommodating the correlations

cross levels in data with hierarchical structures, identifiability was

till unavoidable for certain parameter. Correlations of the posterior

amples of parameters between the individual level and the gen-

ration level were observed for the effect of vaccination (β00) and

he random effect (σβh
), as illustrated in the scatter plots of models

n Appendix C (Figs. C.2.3.1–C.2.3.4). To consider the correlation be-

ween β00 and σβh
, we applied the normal-inverse-χ2 (NIC) method

o model the joint effect of the two parameters [44]. The joint prior

istribution p(β ,σ 2) is defined in terms of the marginal prior distri-

ution for σ 2 and the conditional distribution of β given σ 2, specifi-

ally, p(β ,σ 2) = p(σ 2)p(β|σ 2). The model specification based on the

reenwood model and the Reed-Frost model with a generation ef-

ect alongside the estimated results using sceptical prior are given in

ppendix D in the supplementary material. Except for the standard

eviation parameter (σβh
), estimated result for the effect of vaccina-

ion were robust to different prior distribution chosen (Table 6 and

able D in Appendix D).

The minimum effective sample sizes of 20–30 for the Bayesian hi-

rarchical model with random slope based on the Greenwood model

nd the Reed–Frost model were due to the correlation between the

ffect of vaccination and its variation across households. Several itera-

ion algorithms including longer thinning intervals, running multiple

hains, and longer iterations were explored with the estimated results

nd effective sample size listed in Tables E.1–E.4 in Appendix E in the

upplementary material. Although the effective sample size varied

ith these sampling algorithms, the estimated results were consis-

ent. Moreover, the results based on three chains with different initial

alues proposed by Gelman et al. [43] also led to consistent estimates

see Figs. E.1 and E.2 in Appendix E). In addition to applying Gibbs

ampling algorithm, we also explored the effective sample size, esti-

ated results, and acceptance rate using rejection sampling (Tables

.5 and E.6 in Appendix E). The estimated results for parameters using

ejecting sampling algorithm were consistent with those using Gibbs

ampling. The results based on 5000 burn-in and 5000 iterations with

thinning interval of three were thus reported due to the consistency

n the estimated results of these updating strategies. Based on these

xplorations, we think the estimation of some parameters of interest

ay be affected by high correlation but this issue can be ameliorated

y longer simulation and validated by multiple chains and different

ampling algorithms.

Using ILI as case definition makes it possible to utilise surveillance

ata to explore the transmission of disease and the effect of vaccina-

ion taking into account the relevant factors including individual level

actors and heterogeneity across households. However, the nature of

onitoring the disease status rather than the infectious status of the

urveillance should be noted before making inference base on the

esults. The estimated secondary attack rate was lower than studies
ased on prospective design [24,45]. Although the secondary attack

ate within household raged from <4% to >30% depends on the defini-

ion of case and area of study [46] and also determined by viral strain

nd household structure, the lower estimates of the secondary at-

ack rate may associate with the selection of only subjects diagnosed

s influenza rather than those with respiratory symptoms. Also, the

dentification of influenza cases relies on subjects with influenza seek-

ng for medical consultation which may also contribute to the lower

econdary attack rate. The use of clinical definition also introduces

nother source of variation, since virus such as parainfluenza virus,

denovirus, coronavirus, respiratory syncytial virus, bacteria, and other

ntypable virus may also cause ILI [47]. These underlying variations

n the causative agent for ILI may contribute to the deviation between

he predicted and observed number of cases presented in Fig. 4. Al-

hough nationwide laboratory surveillance network was unavailable

ntil the year 2003 [48], recent studies showed the positive rate for

nfluenza among subjects with ILI was around 22–27% and may reach

0% during epidemic [49,50]. They also indicated the parallel trend

etween reported ILI cases and the number of isolated influenza virus.

hese findings, together with the result of studies on the association

etween ILI and influenza infection [51,52] support the use of ILI as

proxy variable for the surveillance of number of isolated influenza

irus.

What our proposed method is lacking of is to deal with the real

pidemic data on within-group and between-group transmission of

isease such as influenza, which is often modelled by two separate

arameters with 2-level mixing epidemic models assuming indepen-

ence to consider the heterogeneity of infection rates among different

roups with good approximation while the population size is suffi-

iently large or the outbreak sufficiently small [7,8,14] or relaxing

he assumption of independence with a data augmentation method

9–11]. Such a multi-type epidemic model considered local contact

s well as global contact. Both are integrated into data augmenta-

ion scheme [9–11]. It is therefore worthwhile to make allowance

or information on both local and global contact with our proposed

ayesian hierarchical model as considered in the O’Neill work [11]

f such hierarchical data either with temporal outcome or final size

utcome or a mixture of both at different population structures are

vailable.

As far as the sampled data rather than the entire population used

s concerned, it is very interesting to note that O’Neill has already

roposed a very well generalised framework of data augmentation

o deal with the sampled epidemic of final size outcome and found

he precision of estimates for threshold parameter improves as the

ampling fraction decreases [11]. However, our information is based

n temporal data rather than final size outcome it is not sure whether

he similar finding will be obtained as in the O’Neill work. The finding

n the inverse relationship between the precision of estimates for

hreshold parameter and the sampling fraction from the O’Neill study

11] would spur us to investigate this issue in the future using samples

f temporal individual and household data together with information

ossibly available from different hierarchical population structures

e.g. schools closures).

In conclusion, the proposed Bayesian hierarchical models are flex-

ble in accommodating the mechanisms of disease transmission, in-

luding the Greenwood and the Reed–Frost models, along with factors

n an individual level. The models are also capable of taking depen-

ent structures inherited from data on influenza epidemics into ac-

ount to address the problem of overdispersion when constructing

robability models. Although Becker’s linear logistic model is capa-

le of testing the Greenwood and Reed–Frost models, it cannot fully

ccount for the characteristics of infectious disease data mentioned

bove. Hierarchical models with Bayesian underpinnings are one so-

ution to such correlated data with multilevel structures. Applying

he proposed Bayesian hierarchical models to the empirical data used

o monitor the influenza epidemic demonstrates that the parameters
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on the individual, generation, and household levels can be derived

based on inferences made using the MCMC method in conjunction

with DAG. The Bayesian hierarchical models are also capable of un-

covering the interactions between contextual effects, such as socioe-

conomic status and vaccination, to elucidate their joint effect on the

occurrence of influenza. The Bayesian approach is beneficial to the

incorporation of prior knowledge on the effect of relevant factors and

to the derivation of predictive distributions to assess the evolution of

epidemic processes.

Supplementary materials

Supplementary material associated with this article can be found,

in the online version, at doi:10.1016/j.mbs.2014.11.006.
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