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Abstract

Vale do Rio Juruá in western Acre, Brazil, is a persistent malaria transmission hotspot partly

due to fish farming development that was encouraged to improve local standards of living.

Fish ponds can be productive breeding sites for Amazonian malaria vector species, includ-

ing Nyssorhynchus darlingi, which, combined with high human density and mobility, add to

the local malaria burden.This study reports entomological profile of immature and adult Ny.

darlingi at three sites in Mâncio Lima, Acre, during the rainy and dry season (February to

September, 2017). From 63 fishponds, 10,859 larvae were collected, including 5,512 first-

instar Anophelinae larvae and 4,927 second, third and fourth-instars, of which 8.5% (n =

420) were Ny. darlingi. This species was most abundant in not-abandoned fishponds and in

the presence of emerging aquatic vegetation. Seasonal analysis of immatures in urban land-

scapes found no significant difference in the numbers of Ny. darlingi, corresponding to

equivalent population density during the rainy to dry transition period. However, in the rural

landscape, significantly higher numbers of Ny. darlingi larvae were collected in August (IRR

= 5.80, p = 0.037) and September (IRR = 6.62, p = 0.023) (dry season), compared to Febru-

ary (rainy season), suggesting important role of fishponds for vector population mainte-

nance during the seasonal transition in this landscape type. Adult sampling detected mainly

Ny. darlingi (~93%), with similar outdoor feeding behavior, but different abundance
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according to landscape profile: urban site 1 showed higher peaks of human biting rate in

May (46 bites/person/hour), than February (4) and September (15), while rural site 3 shows

similar HBR during the same sampling period (22, 24 and 21, respectively). This study con-

tributes to a better understanding of the larvae biology of the main malaria vector in the Vale

do Rio Juruá region and, ultimately will support vector control efforts.

Introduction

The link between anthropogenic environmental change and the emergence of malaria is well-

documented in the Amazon basin [1–3]. Increased human population and land use/land cover

change (LULC) influence the biological community, including Anophelinae mosquitoes, par-

ticularly those with some degree of synanthropy and competence to transmit Plasmodium sp.

that circulate in the Amazon region [4]. This vast region is responsible for 99.5% of human

malaria in Brazil, mainly Plasmodium vivax (>90% in 2019) [5]. Disease indicators vary

according to the types of LULC and the socio-environmental aspects of occupied environ-

ments, influencing spatiotemporal malaria distribution trends [6]. Although from 2008–2016

Brazil reported annual reductions of the disease, with 2016 having the lowest incidence in the

past 35 years, in 2017 the incidence increased by 50% compared with the previous year,

decreasing only in 2019 [5]. This resurgence emphasizes the need for routine and integrated

surveillance, even when disease rates are low, a characteristic feature of seasonal infectious dis-

eases [7]. A key factor involved in the successful eradication policy of mosquito-borne diseases

with a broad distribution and different focal transmission, such as malaria in the Amazon, is

the identification and characterization of vector sources, following evaluation of potential

tools for an integrated intervention framework [8].

Fish farming has been associated with malaria risk in the Amazon in Brazil [9], Peru [10],

Colombia [11,12], and in sub-Saharan Africa in Nigeria [13] and Cote d’Ivoire [14]. The Vale

do Juruá, Mâncio Lima municipality, is a classic example of the potential hazards of extensive

fish farming in a periurban/urban setting. A local government program provided resources to

residents to construct fish farms, frequently located in their backyards. The unwanted effect of

this development program was the increased number of suitable larval habitats of Nyssor-
hynchus darlingi and other local malaria vectors which affect density and spatial distribution

and threaten control strategies in the area [15–17]. Nowadays, the Vale do Juruá in western

Acre is the region with the highest malaria numbers in Brazil, for both P. vivax and P. falcipa-
rum. In a scenario where anthropogenic fish farms have been demonstrated to be major con-

tributors to vector abundance and Plasmodium transmission, larval source management

(LSM) can be a practical component of integrated vector management (IVM) to reduce or

eliminate immature stages of mosquito vectors [18–20]. Further, the recognition that variation

in larval habitats, particularly in nutrient availability, strongly influences mosquito fitness, lon-

gevity, and malaria transmission dynamics, has renewed interest in larval environments

[21,22]. On the other hand, LSM as part of a vector-borne disease control management plan

has limitations when dealing with natural aquatic habitats in rural and forest areas, especially

when breeding sites are extensive, inaccessible, and require frequent intervention such as

clearing aquatic vegetation [23,24]. To address the application and effectiveness of any control

strategies on mosquito borne-disease transmission, local vector biology information is essen-

tial, considering the diversity of Ny. darlingi in different environmental profiles of the Amazon

Basin, reflected in malaria epidemiology. Although entomological surveys addressing
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Anopheline larvae and the main vector Ny. darlingi presence in fishponds have been con-

ducted in the Vale do Jurua [15–17], these studies did not focus on follow-up with short inter-

vals between observations (one/two months per collection), nor characterize environmentally

the fishponds associated with larvae sampled.

In the present study, an entomological survey of larvae and adult malaria vectors was con-

ducted to evaluate the presence of the main vector Ny. darlingi in fishponds and neighboring

households in Mâncio Lima, Acre. To address this, our study examined: (i) aquatic habitat

parameters associated with Anophelinae larval abundance; (ii) differences in the abundance of

Ny. darlingi during the rainy to dry seasonal transition; (iii) the microgeographic effect of

urban and rural landscapes on the population dynamics of Ny. darlingi; and (iv) a comparison

of human biting rates (HBR) and patterns of Ny. darlingi biting times influenced by different

landscape scenarios.

Methods

Ethics statement

This study was approved by the World Health Organization Ethics Review Committee

(0002669). Verbal consent was obtained from residents for collections on their properties,

with the collaboration of the Mâncio Lima Endemics Diseases Coordination. A monthly report

of fishpond physiochemical conditions was provided to each resident. Adult captures were

conducted only by the authors, who used antimalarial prophylaxis as recommended by the

Brazilian Ministry of Health.

Study area

The municipality of Mâncio Lima is located in western Acre state, Brazil (7˚ 36’ 50" S 72˚ 53’

45" W) along Highway BR 364 (Fig 1). An Anophelinae larval survey in artificial and natural

breeding-sites reported four times more immatures in fishponds [15] compared with natural

habitats. A time-series analysis (2003 to 2013), strongly suggested a spatiotemporal association

between fish farming and malaria incidence [16]. The estimated population of Mâncio Lima is

17,545 [25], with the municipality registering for P. vivax: 6,632 infections in 2016 (API = 378

per 1000 habitants) and 7,049 infections in 2017 (API = 400); for P. falciparum: 1,172 in 2016

(API = 70) and 1,752 in 2017 (API = 99.8) (http://www2.datasus.gov.br/DATASUS, 2018).

Notifications for monthly malaria shows significant linear correlation (>0.5) with rainfall: for

P. vivax in 2016: r = 0.75, in 2017: r = 0.43; for P. falciparum: in 2016: r = 0.51, in 2017: r = 0.47

(S1 Fig). The most recent livestock census (2016) registered a total of 5,392 cattle in Mâncio

Lima, mainly in rural areas (unpublished document, Institute of Agriculture and Forestry

Defense of Acre, 2016).

Study design

This research entailed an observational study of malaria vector ecology. For the Anophelinae

survey, independent geographical areas were delimited based on two sampling criteria: the

presence of a human residence occupied for at least the past 12 months for adult mosquito col-

lection, and nearby fishponds for larval collection, whether economically active (used for pisci-

culture at the moment of the survey), or abandoned. Two perimeters (500 m and 1000 m)

were virtually attributed for each residence to delimit each study site, and to support the locali-

zation of fishponds (Fig 1). These distances were chosen based on the flight range of Ny. dar-
lingi in a rural settlement in Rondonia state, between 500 and 1000 m [26]. To test the

influence of an urban area on local transmission, two sites (Sites 1 and 2) were selected near
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Federal Highway BR 364; and one site (Site 3) that was more distant from the highway (Fig 1).

Highway BR 364 is important for socio-economic landscape concepts in Acre state: usually,

urban landscape profiles include paved streets and have several residences and other human

dwellings (schools, hospital, commercial facilities), and this may be reflected in a higher num-

ber of families and houses, leading to the establishment of more fishponds. On the other hand,

rural landscape profiles consist of a lower human presence, fewer dwellings, and primary or

secondary forest cover, if the landscape has not been exploited for logging, agriculture, or live-

stock [27]. The presence of at least one fishpond near the house (within at least 500 m), positive

previous larvae and adult captures (in December 2016), ease of access to the property, and co-

operation of the residents were other considerations for the three residence selections and the

respective representative sites.

Larval and adult capture

Monthly larval collections were performed for six months in 2017 spanning rainy and dry sea-

son (February, March, April, May, August, and September). Each fishpond was sampled by 1)

Fig 1. Satellite image of Mâncio Lima municipality, showing the three study sites. Site 1, urban, yellow, near Federal Highway BR 364 and Mâncio Lima

town; Site 2, urban, red, near Federal Highway BR 364 and more distant from Mâncio Lima; Site 3, rural, green, distant from both BR 364 and Mâncio Lima.

Each site shows the residence at center, and the two perimeters: 0.5 and 1.0 km. The insert is a map of Brazil indicating the location of Mancio Lima in Acre

state. Content is the intellectual property of Esri and is used herein with permission. Copyright © 2021 Esri and its licensors. All rights reserved.

https://doi.org/10.1371/journal.pone.0246215.g001
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determining fixed sampling-points along fishpond margins (n = 4, A-D); and 2) sampling by

dipper at 10 sampling-points along each margin. The 10 dips were evenly distributed accord-

ing to the length of each margin. Dippers were standard: 10 cm in diameter, with a volume of

350 ml and a 1.5 m long handle, and white in color for better visibility of immatures [28]. Lar-

val specimens were placed in 50 ml microtubes labeled according to sampling date, site, fish-

pond number and sampling-point margin letter (A-D) and number (1–10). All material was

fixed in the field in 80% ethanol. Presence of aquatic fauna collected in the dippers were also

recorded (i.e., Culex sp., amphibians, fish).

Adult collections were performed at each of the three sites in February, May, and Septem-

ber 2017. We used human landing catch (HLC), performed only by the professionally trained

authors (two people indoors and two peridomestic simultaneously, rotating every two hours at

each spot), using manual aspirators to capture mosquitoes, for 12 h /night (18:00–06:00). Col-

lected mosquitoes were separated by date, location, and hour of capture. In months and sites

with low mosquito density, we sampled one additional night (12h) and adjusted later for analy-

sis. In February, there were two night collections at Site 1, and one in Sites 2 and 3, respec-

tively. In May and September, two collections were done at Site 2, and one in Sites 1 and 3.

Mosquitoes were stored in silica gel in microtubes (50 ml) identified with a code that included:

month, site, date, and hour of collection. On rainy nights, adult captures were suspended and

conducted on the following non-rainy night.

Field-collected specimens were identified at the Laboratory of Infectious Diseases of the

Federal University of Acre (UFAC—campus Cruzeiro do Sul, Acre state) and at the School of

Public Health of the University of São Paulo (USP—campus São Paulo, São Paulo state).

Adults and the larval stages L2–L4 were identified using a stereomicroscope and entomological

keys (Forattini, 2002). Because of the challenge to identify L1 morphologically [29], three larval

groups were defined: Anophelinae L1 stage; Anophelinae L2–L4 stages and Ny. darlingi L2–L4

stages: in this approach, Anophelinae L2–L4 group included no Ny. darlingi species. After

morphological identification, adults and larvae were sent to the Biotechnological Institute of

University of State of São Paulo (UNESP—Campus Botucatu, São Paulo State) for further

molecular analysis.

Environmental variables

Fishponds were classified and measured according to environmental and physical-chemical

conditions. For the environment, categorical variables included periodicity (permanent or

temporary during the 6-month study period); abandoned fishpond- no maintenance by the

owner (yes or no); associated vegetation on the margins of fishpond (if present: emerging, sub-

merged, floating); the presence of Culex sp., amphibians, and fish. For periodicity and aban-

doned by the owner, classification was at the fishpond level; for vegetation and presence of

other animals, classification was at the sampling-point level. Physical-chemical variables

included pH, temperature, and conductivity, measured using an ExTECH multiparameter

(extech.com/) probe that presented continuous values. However, due to functionality limita-

tions, data from this device were collected only in the first three months (February, March,

April). For the remaining three months (May, August, September), pH, nitrates (mg/L),

nitrites (mg/L), carbonate hardness (KH) and dissolved chlorine (mg/L) were collected using a

JBL ProScan kit (jbl.de/en), by immersion of a test strip in the water and reading by smart-

phone app downloaded at Google Play Store (play.google.com/store/apps/details?id=de.jbl.

proscan). The data collected using the JBL Proscan kit had a more limited range, i.e., categori-

cal variables. Collections using the ExTECH multiparameter probe were obtained at the sam-

pling-point level; for the JBL Proscan test kit, data were obtained at the fishpond level.
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Turbidity and shading were also obtained only during the last three months of the survey

(May, August, September). Water turbidity was determined at the fishpond level using a

LaMotte (lamotte.com) water column test kit, with discrete values ranging between 0–200 JTU

(where 0 represents translucent water), at the fishpond level. Shading by canopy was collected

at the sampling-point level with a TerraGes spherical densitometer according to the manufac-

turer’s specifications (terrages.pt), with continuous values ranging between 0–24.96 1⁄4"-

squares (where 0 represents shaded and 24.96 represents completely exposed), at the sam-

pling-point level. This information is summarized in S1 Table.

Monthly precipitation data were obtained from the CPTEC/INPE website (clima1.cptec.

inpe.br/). Adverse weather/air conditions (rain, mist, wind, smoke from burning) were noted

when they occurred during the adult night collections. Field information was digitally stored

through Open Data Kit (ODK). Data were compiled in EXCEL (Microsoft). Visual resources

(photographs) were also obtained from each sampling-point, by ODK function. Georeferen-

cing of the residences and fishponds was conducted using GPS Garmin device and Google

Earth Pro TM software.

Data setting and statistical analysis

Statistical analyses were conducted to establish the association between larval groups, environ-

ment, and physical-chemical variables, using multilevel regression models. The seasonal pat-

tern, according to rainfall trends of western Amazon Basin (Rainy Season: Oct-Feb; Dry

Season: Apr-Sept, see S1 Fig), was analyzed, considering the repeated measures framework

used for larval sampling: the month of the collection was assumed to be a variable factor, with

February being the chosen reference baseline according to rainfall seasonality effect on Culici-

dae biology abundance [29]. Therefore we chose February to represent a rainy month; Septem-

ber to represent a dry month; and the interval between February and September as the rainy-

dry transition (S1 Fig). Larval counts of three groups (Anophelinae L1; Anophelinae L2 –L4;

Ny. darlingi L2—L4) were considered the outcome variables.

Overdispersion was observed in data distribution resulting from large numbers of zero val-

ues, thus a binomial negative regression analysis was used [30]. According to assumptions of a

negative binomial distribution, and the respective nature of dependent variables, regression

coefficients are presented as incidence rate ratios (IRRs), defined by the number of events

(Anophelinae counts) by fishpond (analysis unit) [31]. For all tests, the statistical significance

level assumed was 0.05. An initial univariate regression was performed to verify any associa-

tions between single independent variables. Considering the non-randomized approach, mul-

tivariate regression was performed to verify adjustments in the coefficients. A cut-off value for

p of less than 0.2 of univariate analysis was chosen, and the order of insertion of the indepen-

dent variable in the multivariate regression was from the lowest to the highest p-value consid-

ering the univariate analysis [32]. Multicollinearity was assessed for the following independent

variables used in multivariate analysis, since they were measured at the same sampling level:

linear correlation for numerical variables (continuous physical-chemical) and Spearman rank

correlation coefficient for ordinal variables (categorical physical-chemical).

Considering the hierarchical data structure (samplings-points nested within fishponds), a

mixed-effects model was conducted, mainly due to its flexibility in repeated measures model-

ing of unbalanced data [33]. The dataset was structured in a long format, with the ith row func-

tioning as a time-point per specific sampling-point, and respective fishpond (the subject of the

analysis) [34]. Considering the biology of Anophelinae the three study sites were not consid-

ered independent, the usual procedure for mixed models that simulates repeated measures

ANOVA, due to geographic proximity between sites (mainly Sites 1 and 2) [35]. In addition to

PLOS ONE Ecology of Nyssorhynchus darlingi in setting dominated by fish farming in Amazonian Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0246215 April 8, 2021 6 / 22

http://lamotte.com
http://clima1.cptec.inpe.br/
http://clima1.cptec.inpe.br/
https://doi.org/10.1371/journal.pone.0246215


the overall regression, to distinguish effects among sites, regressions were performed for each

site. An unconditional model was built first, followed by a model with a random component to

indicate the subject of the repeated term. A two-level model was chosen, combining sampling-

points at the first level and fishponds at the second level as the random component, according

to the data structure (sampling-points nested in fishponds). Due to some gaps in variables

measured during the monthly survey, a full dataset was the primary design (six-months), using

the respective independent environmental variables: periodicity, abandoned, associated vege-

tation, presence of animals, and collection month. For physical-chemical variables, the turbid-

ity of water and shading, which were not possible to measure during the whole six-month

survey, three-month datasets were designed according to independent variables: pH, tempera-

ture and conductibility (continuous data) in February, March, and April; shading, turbidity

and pH, nitrates, nitrites, carbonated hardness and dissolved chlorine (ordinal data), measured

in May, August, and September. For three-month physical-chemical datasets, individual

regressions were not performed for each site, due to reduced sampling effort. This information

is summarized in S1 Table.

For comparison of categorical variables between sites, as well as the hypothesized adult

abundance difference between indoor and outdoor, a Chi-square test was used. Outliers and

systematic errors were verified through box-plot graphs. All statistical analyses were performed

using Stata 14.2 (data analysis and statistical software—StataCorp LP, College Station, TX,

USA). A robust option for the variance component estimators (VCE) was chosen according to

the Stata configuration.

Results

Sampling sites

Sixty-three fishponds in the three sites were identified and followed during the 2017 study

period. Total numbers of fishponds monitored throughout the field survey was variable

because of seasonal precipitation or occasionally being emptied by owners, and some fish-

ponds could not be reached across flooded fields at some point during the sampling period.

Fig 2 shows satellite images for the three sites with each nearby residence and the fishponds

surveyed; number of fishponds sampled by period, along with dry conditions and other char-

acteristics is presented in S2 Table. S3 Table shows environment variables by site: both urban

Sites 1 (~66%, 92/139) and 2 (~88%, 126/143) show a higher number of not abandoned fish-

ponds compared with rural Site 3 (~22%, 12/64) (p< 0.001). No significant difference in fish-

pond periodicity was identified between three sites (p = 0.625); all sites had high numbers of

permanent fishponds: (Site 1: ~86%, 120/139; Site 2: 85% 122/143; Site 3: ~84%, 46/55).

Larval collection

During the six-month sampling period of 2017, 10,859 larvae were collected: n = 5,512 corre-

sponded to the group of Anophelinae L1 stage species; n = 4,927 to the group of Anophelinae

L2–L4 stage species; and n = 420 to the group of Ny. darlingi L2–L4 stages. Urban Site 1 shows

the highest number of larvae (n = 6,065), followed by rural Site 3 (n = 3,017) and urban Site 2

(n = 1,777). Rural Site 3 had the highest density of larvae per fishpond (54.85), followed by

urban Sites 1 (43.63) and 2 (12.46). For the Ny. darlingi L2–L4 group, urban Site 1 had the

highest total number (249) and density per breeding site (1.80); urban Site 2 had 97 and 0.68,

respectively; rural Site 3 had 74 and 1.32, respectively.

Anophelinae species and Ny. darlingi (both in L2–L4 stages) distributed by fishpond, site,

and period are shown in Fig 3. The higher proportion of non-Ny. darlingi Anophelinae species

compared with Ny. darlingi in practically all fishponds during the rainy season from February
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through May (except for Fishpond number 07, Site 1, in February) is noteworthy. The exclu-

sive presence of Ny. darlingi was observed in some fishponds at urban Site 2, however, these

count values were minimal (1 or 2 specimens). For the dry season (August and September),

urban Site 1 had more fishponds that were positive exclusively for Ny. darlingi: 01 in August;

01, 04, 08, 11 18, 25, and 26 in September. Urban Site 2 also had some fishponds with Ny. dar-
lingi exclusively, but also with low counts. Rural Site 3 had Ny. darlingi in August and Septem-

ber in fishponds 54, 55 and 58 where this species was not observed during the rainy season

months.

Fig 2. Satellite image of three study sites, with respective residence (R) and fishponds. Content is the intellectual

property of Esri and is used herein with permission. Copyright © 2021 Esri and its licensors. All rights reserved.

https://doi.org/10.1371/journal.pone.0246215.g002
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Statistical analysis

Table 1 shows the IRR coefficient results for the six-month dataset using univariate analysis,

by identified Anophelinae larval group. Table 2 shows the multivariate analysis results, accord-

ing to the selection criteria for independent variables. The Spearman rank coefficient detected

no correlation between independent variables of the six-month dataset, with values lower than

0.1, except for the presence of Culex sp. and amphibians (0.34), and submerged aquatic vegeta-

tion with floating vegetation (0.23).

Considering the February baseline value and a statistical significance at 95% C.I., seasonal-

ity differences were not detected in the overall regression for the three identified Anophelinae

larval groups. For each site, Anophelinae L1 shows a particular pattern in the univariate regres-

sion: a decrease in counts for August and September in urban Site 1, and April and May in

Fig 3. Summary of larvae collected in the study. Anophelinae spp. and Ny. darlingi (both L2 to L4 stages), distributed by fishpond, site and period.

https://doi.org/10.1371/journal.pone.0246215.g003
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Table 1. Incidence Rate Ratio (IRR), 95% Confidence Interval and p values for Anophelinae identity-group, for six month survey univariate two level negative bino-

mial regression.

Anophelinae identity-group Independent Variable Univariate Two-level Negative Binomial

Overall Site 1 Site 2 Site 3

IRR (95% C.I.) p IRR (95% C.I.) p IRR (95% C.I.) p IRR (95% C.I.) p

Anophelinae species (L1) Month Collection February 1 1 1 1

March 1.23 (.78–1.92) 0.373 1.19(.64–2.23) 0.572 .87 (.23–3.26) 0.839 1.19(.61–2.30) 0.613

April 1.29 (.73–2.25) 0.374 1.16(.58–2.33) 0.658 3.75(.90–15.60) 0.069 :39ð:18 � :82Þ 0:013

May .94 (.55–1.61) 0.842 1.07(.56–2.06) 0.822 1.05(.28–3.89) 0.940 :35ð:13 � :81Þ 0:016

August .56 (.24–1.28) 0.175 :13ð:04 � :35Þ 0:000 4:21ð1:27 � 13:99Þ 0:019 .64 (.19–2.20) 0.487

September .63 (.29–1.34) 0.256 :25ð:09 � :64Þ 0:004 1.99 (.63–6.29) 0.239 1.21(.38–3.85) 0.742

Periodicity Temporary 1 1 1 1

Permanent 2.19 (.55–8.70) 0.262 1.32 (.45–3.87) 0.608 5.01 (.73–34.07) 0.100 2:12ð1:20 � 3:75Þ 0:009

Abandoned Yes 1 1 1 1

No .37 (.13–1.02) 0.056 1.63 (.70–3.77) 0.249 2.49 (.26–23.44) 0.423 1.08 (.32–3.59) 0.900

Associated Vegetation Emerging 1:86ð1:07 � 3:25Þ 0:021 1.05 (.43–2.59) 0.906 3:98ð1:25 � 12:68Þ 0:020 1.45 (.93–2.28) 0.097

Submerged .74 (.39–1.38) 0.343 .48 (.20–1.14) 0.101 .83 (.39–1.75) 0.629 .64 (.16–2.47) 0.521

Floating 1.06 (.60–1.89) 0.874 .73 (.31–1.70) 0.473 1.83 (.84–4.01) 0.129 .82 (.46–1.47) 0.511

Presence Culex sp. 1:73ð1:16 � 2:57Þ 0:007 1:69ð1:04 � 2:74Þ 0:032 1.79 (.64–5.05) 0.264 1.84 (.9–3.78) 0.094

Amphibian 1.53 (.96–2.44) 0.073 1.32 (.86–2.03) 0.193 5.78 (.56–59.4) 0.140 1.34 (.59–3.01) 0.474

Fish 3:34ð1:58 � 7:04Þ 0:002 5:55ð2:19 � 14:09Þ 0:000 .45 (.072–2.84) 0.398 2.09 (.72–6.06) 0.175

Anophelinae species (L2, L3, L4) Month Collection February 1 1 1 1

March 1.12 (.69–1.79) 0.649 1.30(.677–2.51) 0.426 1.12 (.44–2.86) 0.807 .77 (.38–1.54) 0.457

April 1.17 (.69–2.01) 0.550 1.20 (.66–2.18) 0.543 4:65ð1:11 � 19:46Þ 0:035 :30ð:17 � :54Þ 0:000

May 1.07 (.63–1.82) 0.796 1.25 (.64–2.46) 0.512 1.93 (.72–5.21) 0.193 :33ð:15 � :73Þ 0:007

August .85 (.38–1.92) 0.709 :28ð:08 � :87Þ 0:028 3:51ð1:22 � 10:18Þ 0:020 1.09(.33–3.67) 0.878

September .87 (.41–1.84) 0.717 .49 (.16–1.56) 0.232 2.28 (.72–7.25) 0.161 1.11 (.45–2.95) 0.835

Periodicity Temporary 1 1 1 1

Permanent 2.88 (.54–15.31) 0.214 1.24 (.21–7.33) 0.805 13:9ð1:54 � 125:35Þ 0:019 1.69 (.82–3.5) 0.150

Abandoned Yes 1 1 1 1

No .44 (.15–1.26) 0.129 2.34 (.83–6.64) 0.107 1.82 (.18–18.42) 0.610 1.15 (.35–3.77) 0.811

Associated Vegetation Emerging 1:82ð1:01 � 3:31Þ 0:050 .95 (.43–2.07) 0.902 3:71ð1:06 � 13:04Þ 0:040 1.89 (.68–5.19) 0.217

Submerged .55 (.27–1.12) 0.098 :29ð:13 � :68Þ 0:004 .56 (.22–1.45) 0.235 .98 (.21–4.60) 0.985

Floating 1.41 (.78–2.53) 0.252 1.37 (.61–3.10) 0.445 1.77 (.65–4.86) 0.264 :73ð:64 � :83Þ 0:000

Presence Culex sp. 1:78ð1:16 � 2:74Þ 0:009 1:86ð1:09 � 3:19Þ 0:023 1.06 (.32–3.57) 0.917 2:2ð1:1 � 4:39Þ 0:025

Amphibian 1.37 (.74–2.52) 0.313 1.11 (.55–2.23) 0.762 5.44 (.87–33.83) 0.069 1.29 (.46–3.65) 0.620

Fish 2:92ð1:23 � 6:93Þ 0:015 2:84ð1:08 � 7:51Þ 0:035 3.92 (.33–46.71) 0.279 4.18 (.54–32.11) 0.169

Ny. darling (L2, L3, L4) Month Collection February 1 1 1 1

March .74 (.34–1.60) 0.449 .55 (.18–1.65) 0.294 .94 (.22–3.93) 0.928 1.31 (.35–4.93) 0.683

April 1.01(.48–2.11) 0.984 .89 (.32–2.45) 0.831 1.82(.27–12.35) 0.538 .21 (.02–2.26) 0.194

May .81 (.41–1.57) 0.532 .74 (.30–1.81) 0.512 .56 (.11–2.79) 0.480 1.03 (.14–7.58) 0.971

August 1.39 (.57–3.41) 0.465 .39 (.09–1.58) 0.190 3.01 (.75–11.94) 0.118 5:80ð1:08 � 30:94Þ 0:039

September 1.55(.68–3.54) 0.291 .91 (.28–2.88) 0.879 1.61(.42–6.09) 0.481 6:25ð1:19 � 32:76Þ 0:030

Periodicity Temporary 1 1 1 1

Permanent 1.21 (.38–3.77) 0.742 .86 (.22–3.36) 0.835 5.89 (.46–75.12) 0.172 .654 (.18–2.27) 0.504

Abandoned Yes 1 1 1 1

No 1.81 (.66–4.95) 0.243 10:27ð2:7 � 39:07Þ 0:001 1.00 (.21–4.87) 0.996 .91 (.19–4.27) 0.906

Associated Vegetation Emerging 2:08ð1:25 � 3:46Þ 0:005 1.61 (.94–2.76) 0.079 3.07 (.96–9.78) 0.058 2.08 (.49–8.72) 0.318

Submerged 1.45 (.68–3.07) 0.334 1.27(.50–3.22) 0.611 .79 (.26–2.42) 0.692 2.77 (.43–17.63) 0.279

Floating 1.37 (.73–2.57) 0.320 1.62 (.73–3.60) 0.232 1.48 (.43–5.0) 0.527 � 0:000

Presence Culex sp. 1.23 (.73–2.07) 0.433 1.27 (.72–2.25) 0.407 2.2 (.55–8.78) 0.261 .57 (.21–1.55) 0.274

Amphibian 1.32 (.63–2.76) 0.455 1.05 (.53–2.08) 0.888 6:53ð2:34 � 18:21Þ 0:000 .88 (.065–11.78) 0.924

Fish 1.24 (.6–2.57) 0.558 1.55 (.64–3.73) 0.328 .71 (.11–4.85) 0.723 1.48 (.22–9.81) 0.683

Statistically significant values at the 0.05 level are highlighted.

�IRR value omitted due low decimal number (10−10).

https://doi.org/10.1371/journal.pone.0246215.t001
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Table 2. Incidence Rate Ratio (IRR), 95% Confidence Interval and p values for Anophelinae species identity-group, for six-month survey multivariate two level neg-

ative binomial regression.

Anophelinae identity-group Independent Variable Multivariate Two-level Negative Binomial

Site 1 Site 2 Site 3

IRR (95%C.I.) p IRR (95%C.I.) p IRR (95%C.I.) p
Anophelinae species (L1) Month Collection February 1 1 1

March 1.14 (.56–2.31) 0.721 .89 (.23–3.50) 0.870 1.21(.62–2.37) 0.579

April 1.30 (.52–3.24) 0.568 2.30(.57–9.28) 0.242 :33ð:16 � :69Þ 0:004

May 1.31 (.56–3.04) 0.534 1.07(.29–3.92) 0.916 :25ð:13 � :50Þ 0:000

August :21ð:07 � :56Þ 0:003 3:70ð1:05 � 13:03Þ 0:041 .54 (.16–1.79) 0.317

September :31ð:10 � :91Þ 0:033 1.19 (.33–4.22) 0.789 1.19(.31–4.55) 0.797

Periodicity Temporary 1 1

Permanent 2.98 (.53–16.77) 0.214 1.98 (.88–4.45 0.096

Associated Vegetation Emerging 5.27 (.91–30.46) 0.063 2:79ð1:51 � 5:17Þ 0:001

Submerged .67 (.38–1.20) 0.182

Floating .62 (.14–2.73) 0.531

Presence Culex sp. 1.50 (.99–2.27) 0.056 1.07 (.66–1.74) 0.773

Amphibian .97 (.55–1.73) 0.932 6:10ð1:13 � 32:94Þ 0:036

Fish 1.94 (.72–5.23) 0.192 2.03 (.76–5.39) 0.157

Anophelinae species (L2, L3, L4) Month Collection February 1 1 1

March 1.43 (.76–2.67) 0.268 1.09 (.42–2.80) 0.864 .81 (.37–1.76) 0.593

April 2:00ð1:11 � 3:59Þ 0:020 2.56 (.73–8.99) 0.141 .46 (.17–1.25) 0.129

May 2:48ð1:29 � 4:76Þ 0:006 1.64 (.58–4.62) 0.351 .46 (.15–1.41) 0.175

August .55 (.18–1.68) 0.293 2.74 (.95–7.88) 0.062 1.71 (.55–5.33) 0.353

September .81 (.26–2.50) 0.721 1.46 (.31–6.77) 0.628 2.40 (.60–9.58) 0.214

Periodicity Temporary 1 1

Permanent 9:01ð1:36 � 59:77Þ 0:023 1.12 (.61–2.06) 0.721

Abandoned Yes 1

No 1.65 (.76–3.56) 0.201

Associated Vegetation Emerging 3:04ð1:14 � 8:15Þ 0:027 66 (.22–1.96) 0.454

Submerged :34ð:19 � :58Þ 0:000

Presence Culex sp. 2:24ð1:36 � 3:69Þ 0:001 1.96 (.82–4.72) 0.131

Amphibian 6:47ð1:89 � 22:14Þ 0:003

Fish 1.12 (.43–2.86) 0.819 6.14 (.86–43.76) 0.070

Ny. darlingi (L2, L3, L4) Month Collection February 1 1 1

March .65 (.21–1.98) 0.452 1.11 (.22–5.54) 0.897 1.31 (.35–4.86) 0.681

April 1.01 (.36–2.81) 0.989 1.36 (.20–9.14) 0.753 .21 (.02–2.31) 0.204

May .66 (.26–1.64) 0.371 .83 (.16–4.36) 0.825 1.04 (.14–7.55) 0.967

August .48 (.11–2.00) 0.314 2.71 (.57–12.88) 0.209 5:80ð1:11 � 30:41Þ 0:037

September 1.11 (.34–3.65) 0.864 1.32 (.31–5.67) 0.705 6:62ð1:29 � 33:89Þ 0:023

Periodicity Temporary 1

Permanent 3.84 (.55–26.57) 0.173

Abandoned Yes 1

No 11:40ð3:06 � 42:52Þ 0:000

Associated Vegetation Emerging 2.12 (.83–5.45) 0.117 2.23 (.79–6.23) 0.126

Submerged � 0:000
Presence Amphibian 5:86ð2:42 � 14:156Þ 0:000

Statistically significant values at the 0.05 level are highlighted.

�IRR value omitted due low decimal number (10−10).

https://doi.org/10.1371/journal.pone.0246215.t002
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rural Site 3; and an increase in counts for urban Site 2 in August. The IRR values observed in

the multivariate analysis were maintained relative to the univariate IRR values, indicating that

these results were not influenced by possible confounding factors. The Anophelinae L2—L4

group also shows a unique pattern for each site, however, in this case the IRR values were sub-

stantially different between the univariate and multivariate analysis. For the Ny. darlingi L2—

L4 group, there was a similar pattern in both urban sites (1 and 2), with no significant statisti-

cal difference in monthly larval numbers for the baseline value (February). In rural Site 3, an

increase was observed for August [5.8 (95% C.I.:1.11–30.41)] and for September [6.62 (95% C.

I.:1.29–33.89)]. Multivariate and univariate regression showed comparable IRR values in the

three sites. For periodicity and abandoned characteristics, permanent condition was signifi-

cant for Anophelinae L1 group in rural Site 3, for univariate analysis only for the Anophelinae

L2—L4 group, whereas urban Site 2 shows an increase in larval number for both univariate

and multivariate regression. The non-abandoned condition for Ny. darlingi shows an increase

in larval number in urban Site 1, for both univariate and multivariate regression. Emerging

associated vegetation shows an increase of larval number in the overall regression for all three

Anophelinae groups. Presence of Culex sp. and fish was significant for Anophelinae L1 and L2,

L3 and L4, in the overall regression. Urban Site 1 showed a similar association for both groups,

however only the Anophelinae L2—L4 group maintains this value in multivariate analysis. The

presence of amphibians was positively associated with Anophelinae L1 and L2- L4 groups in

urban Site 2 only in the multivariate regression. The Ny. darlingi group showed a positive asso-

ciation with amphibian presence only in urban Site 2, for both univariate and multivariate

regressions.

Table 3 shows IRR coefficient results for a three-month dataset using univariate analysis, by

identified Anophelinae larval group. Table 4 shows multivariate analysis, according to the

selection criteria for independent variables. The Spearman rank test shows a high correlation

between the categorical physical-chemical variables nitrates and nitrites (r = 0.89), and a low

correlation between carbonate hardness and pH (r = 0.38), and carbonate hardness and dis-

solved chlorine (r = 0.4). Physical-chemistry variables for continuous values (pH, temperature,

and conductibility) were not statistically associated at 95% C.I. with the abundance of any of

the three larval groups. Turbidity shows a significant negative association for the Anophelinae

L1 only in the univariate regression [0.98 (IC95%:.97-.99)]. Ny. darlingi L2—L4 shows a signif-

icant positive association with turbidity in multivariate analysis only [1.01 (IC95%:1.00–1.01),

p = 0.045]. Shading reduction shows a significant negative association with the abundance of

both Anophelinae L1, and Anophelinae L2—L4 in both univariate and multivariate regres-

sions, but for the Ny. darlingi group, the univariate was not significant at the 0.05 level, how-

ever, it was near the limit [0.96 (IC95%:.93–1.00) with p = 0.052], whereas in the multivariate

analysis shading was significant [0.95 (IC95%:.92-.99), p = 0.02].

For ordinal physical-chemistry variables, increased pH values were associated with

decreased in larval counts in all three groups, for both univariate and multivariate regression.

Similarly, the highest nitrate level (40 mg/L) was associated with decreased larval counts for all

three larval groups, and this was maintained in multivariate analysis for the Ny. darlingi group.

Nitrites were not significantly associated with larval counts, and excluded from the multivari-

ate regression analyses. For carbonated hardness, whereas both Anophelinae L1 and L2, L3

and L4 groups show a highly significant negative association (except Anophelinae L1 at 15 KH

in univariate analysis, not kept in the multivariate regression), the Ny. darlingi group did not

show statistical significance for any range, except a decrease in larval numbers observed at a

range of 3 KH in the multivariate analysis [0.24 (IC95%:.09-.63)]. Dissolved chlorine showed a

significant positive association at a range of 1.5 mg/L for the Anophelinae L1 in multivariate
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analysis [4.23 (IC95%:1.58–11.36)], and the Ny. darlingi for both univariate [2.21

(IC95%:1.17–4.19)] and multivariate analysis [3.41 (IC95%:1.51–7.68)].

Adult collection

A total of 692 Anophelinae specimens was collected and identified as Ny. darlingi. Fig 4 shows

HBR for each site, adjusted for two night captures depending on site (Site 1 in February; Site 2

in May and September). There was a significant difference in the proportion of indoor vs. out-

door Ny. darlingi among the 3 sites (X2 = 19.833, p<0.001), with a higher abundance in the

peridomestic area. The proportion indoors was higher in Site 3 (~25%) than in Site 1 (~12%)

Table 3. Incidence Rate Ratio (IRR), 95% Confidence Interval and p values for Anophelinae species identity-group, for three-month survey univariate two level neg-

ative binomial regression.

Independent Variable Univariate Two-level Negative Binomial

Anophelinae species (L1) Anophelinae species (L2,

L3, L4)

Ny. darlingi (L2, L3, L4)

IRR (95% C.I.) p IRR (95% C.I.) p IRR (95% C.I.) p
Physical-Chemistry (continual values) pH 1.02 (.78–1.33) 0.901 .91 (.69–1.21) 0.521 1.05(.72–1.54) 0.779

Temperature .92 (.81–1.06) 0.259 .95 (.82–1.1) 0.505 .87 (.71–1.06) 0.165

Conductibility 1.00 (.99–1.01) 0.432 1.01 (.99–1.07) 0.297 1.02 (.99–1.009) 0.488

Turbidity (discrete value) :98ð:97 � :99Þ 0:050 .98 (.97–1.00) 0.120 1.01 (.99–1.02) 0.100

Shading (continual value) :95ð:91 � :99Þ 0:008 :96ð:94 � :99Þ 0:035 .96 (.93–1.00) 0.052

Physical-Chemistry (categorical values) pH >6 1 1 1

6.4 :14ð:05 � :39Þ 0:000 :06ð:03 � :12Þ 0:000 .87 (.43–1.76) 0.695

6.6 .26 (.03–2.36) 0.231 .19 (.01–3.02) 0.237 1.97 (.61–6.5) 0.261

6.8 .79 (.20–3.15) 0.747 .14 (.01–3.06) 0.210 .87 (.13–5.79) 0.884

7 .31 (.04–2.20) 0.245 :10ð:02 � :46Þ 0:003 � 0:000

7.2 � 0:000 � 0:000 � 0:000
7.6 � 0:000 � 0:000 � 0:00000

nitrates (mg/L) 0 1 1 1

10 1.53 (.51–4.64) 0.449 1.39 (.51–3.83) 0.519 .91 (.38–2.19) 0.839

25 1.39 (.22–7.84) 0.705 1.36 (.23–7.95) 0.734 .72 (.15–3.59) 0.688

40 :22ð:16 � :32Þ 0:000 :06ð:04 � :09Þ 0:000 � 0:000

nitrites (mg/L) 0 1 1 1

0.25 1.05 (.44–2.49) 0.917 .84 (.40–1.77) 0.651 .96 (.42–2.21) 0.934

0.5 1.54 (.16–14.64) 0.707 1.27 (.09–16.31) 0.854 .47 (.04–5.57) 0.547

carbonated hardness (KH) 0 1 1 1

1.5 1.90 (.98–3.68) 0.056 2:05ð1:01 � 4:19Þ 0:049 .89 (.60–1.34) 0.604

3 .71 (.25–1.99) 0.515 93 (.22–3.96) 0.921 .24 (.04–1.28) 0.094

4.5 :17ð:06 � :47Þ 0:001 � 0:000 .30 (.08–1.2) 0.089

6 :10ð:04 � :27Þ 0:000 � 0:000 .56 (.14–2.26) 0.415

8 :13ð:06 � :26Þ 0:000 :33ð:14 � :79Þ 0:013 .82 (.19–3.49) 0.791

15 3:49ð1:69 � 7:17Þ 0:001 :23ð:12 � :43Þ 0:000 2.08(.93–4.62) 0.073

dissolved chlorine (mg/L) 0 1 1 1

0.8 .94 (.26–3.39) 0.922 .66 (.15–2.99) 0.588 .82 (.27–2.51) 0.730

1.5 2.04 (.94–4.42) 0.070 .72 (.28–1.88) 0.506 2:21ð1:17 � 4:19Þ 0:015

Statistically significant values at the 0.05 level are highlighted.

�IRR value omitted due low decimal number (10−10).

https://doi.org/10.1371/journal.pone.0246215.t003
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or Site 2 (~11%). In Site 1, May showed a higher number of Ny. darlingi in all night captures

(21/173 indoor/outdoor) than February (3/13 indoor/outdoor) or September (5/29 indoor/

outdoor). Site 2 showed the lowest adult collections: February (3/10 indoor/outdoor), May (0/

8 indoor/outdoor), September (0/7 indoor/outdoor). In Site 3, mosquito numbers were consis-

tently high for outdoor collections, and increased for indoor captures in the last two months:

February (11/104, indoor/outdoor), May (51/101 indoor/outdoor), September (42/97, indoor/

outdoor).

Regarding HBR per hour, Site 1 shows more activity in May between 19:00–20:00

(HBR = 46), while February presents low numbers between 19:00–20:00 (HBR = 4), as does

September (18:00–19:00 = 13). Site 2 also presents low numbers (with peaks reaching at maxi-

mum of four mosquitoes/hr). In contrast, Ny. darlingi from Site 3 showed higher outdoors

peaks during the first part of the night (February, 19:00–20:00 = 22; May, 18:00–19:00 = 24;

September, 20:00–21:00 = 21), also demonstrating, besides low values, some indoor peaks that

exceeded outdoors ones, in May (00:00–01:00, indoor = 12, outdoor = 7; 02:00–03:00,

indoor = 7, outdoor = 0) and September (for 00:00–01:00, indoor = 10, outdoor = 7).

Table 4. Incidence Rate Ratio (IRR), 95% Confidence Interval and p values for Anophelinae species identify-group, for three-month survey multivariate two level

negative binomial regression.

Independent Variable Multivariate Two-level Negative Binomial

Anophelinae species (L1) Anophelinae species (L2,

L3, L4)

Ny. darlingi (L2, L3, L4)

IRR (95% C.I.) p IRR (95% C.I.) p IRR (95% C.I.) p
Turbidity (discrete value) .99 (.98–1.00) 0.087 .99 (.98–1.01) 0.216 1:01ð1:00 � 1:01Þ 0:045

Shading (continual value) :95ð:92 � :98Þ 0:003 :97ð:94 � :99Þ 0:041 :95ð:92 � :99Þ 0:020

Physical-Chemistry (categorical values) pH >6 1 1 1

6.4 .18 (.03–1.06) 0.059 :08ð:025 � :24Þ 0:000 .28 (.06–1.37) 0.118

6.6 .71 (.06–8.19) 0.782 .68 (.04–10.58) 0.781 .84 (.12–5.62) 0.856

6.8 6.95 (.35–136.97) 0.202 4.73 (.49–45.68) 0.179 .53 (.04–7.78) 0.645

7 .34 (.02–6.38) 0.473 .27 (.03–2.73) 0.268 � 0:000
7.2 � 0:000 � 0:000 � 0:000
7.6 � 0:000 � 0:000 � 0:000

nitrates (mg/L) 0 1 1 1

10 1.13 (.43–2.93) 0.804 1.12 (.46–2.72) 0.796 .74 (.27–2.07) 0.574

25 .79 (.06–9.86) 0.861 .91 (.15–5.43) 0.915 .74 (.08–7.16) 0.794

40 .68 (.18–2.62) 0.577 .30 (.09–1.04) 0.057 � 0:000
carbonated hardness (KH) 0 1 1 1

1.5 1.39 (.75–2.58) 0.287 1.38 (.78–2.44) 0.272 .85 (.57–1.26) 0.423

3 :33ð:14 � :75Þ 0:008 .39 (.18–1.21) 0.103 .24 (.09-.63) 0:003

4.5 :01ð:01 � :52Þ 0:020 � 0:000 .13 (.01–1.88) 0.135

6 :03ð:02 � :38Þ 0:006 � 0:000 .37 (.08–1.71) 0.203

8 :15ð:05 � :46Þ 0:001 :25ð:07 � :86Þ 0:027 3.87 (.99–15.17) 0.052

15 :04ð:02 � :51Þ 0:013 � 0:000 .34 (.03–4.23) 0.401

dissolved chlorine (mg/L) 0 1 1

0.8 1.67 (.63–4.37) 0.299 1.34 (.64–2.78) 0.435

1.5 4:23ð1:58 � 11:36Þ 0:004 3:41ð1:51 � 7:68Þ 0:003

Statistically significant values at the 0.05 level are highlighted.

�IRR value omitted due low decimal number (10−10).

https://doi.org/10.1371/journal.pone.0246215.t004

PLOS ONE Ecology of Nyssorhynchus darlingi in setting dominated by fish farming in Amazonian Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0246215 April 8, 2021 14 / 22

https://doi.org/10.1371/journal.pone.0246215.t004
https://doi.org/10.1371/journal.pone.0246215


Discussion

For effective control of Amazon malaria transmission it is essential to recognize the diverse

eco-epidemiologic profiles of the disease in local areas: municipalities, cities, districts, subdis-

tricts, along with “off the grid” areas: mining, rubber extraction (seringal), rural settlements

and indigenous populations. For such heterogeneity, the design and the application of specific

control methodologies according to each eco-epidemiologic profile is needed [36]. The Brazil-

ian Amazonian Basin has a total area of five million km2 (corresponding to an estimated 60%

of the federal territory), but only 15% of the human population, most in big cities and state

capitals [25]. This heterogeneous distribution is reflected in local characteristics of vector biol-

ogy, thus malaria epidemiology, following human dynamics that drive Amazonian occupation

[37]. Interdisciplinary methods for disease intervention are common but rarely tailored to spe-

cific local conditions [38,39]. For effective eradication at a global scale, many aspects of public

health need to be included, such epidemiological and syndromic surveillance, early diagnosis,

clinical treatment, environmental sanitation, and improved methods for economical land use

to reduce inequity and poverty [40].

Ours is the first study to conduct a detailed microgeographic spatiotemporal analysis of lar-

vae and adult Anophelinae, with a focus on the major vector, Ny. darlingi, in Vale do Jurua,

western Acre, characterized by high malaria transmission associated with urban and periurban

fishponds. In this area, we determined that Ny. darlingi larval dynamics was not affected by

seasonality in urban landscapes, similar to findings in previous studies in the area [15,16]. This

feature may help to maintain the population density of Ny. darlingi during the transition of

rainy to dry seasons. We detected other fishpond characteristics associated with Ny. darlingi
abundance: active fishponds, emergent vegetation (normally secondary growth that has

emerged from deforested areas), and shade. A particular fishpond characteristic verified by the

present study was the presence of Ny. darlingi larvae in water with dissolved chlorine, suggest-

ing possible resilience for chemical pollution [41], although the increase of pH and nitrates

Fig 4. Blood-feeding pattern by human biting rate (HBR: Ny. darlingi per human captures per hour), by night-capture, site and period.

https://doi.org/10.1371/journal.pone.0246215.g004
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was observed as a limiting factor. Adult collections were conducted for a single night per study

site per month and therefore our conclusions are preliminary. Most Ny. darlingi were collected

outdoors, during the first part of the night (18:00–00:00), a pattern reported for this species in

other Amazonian occupied areas [42–46], although we observed a greater abundance (not sig-

nificant) and peaks of indoor activity in the rural landscape.

In Amazonian malaria transmission, the most common type of breeding site, whether natu-

ral or artificial (or both), contributes substantially to the dynamics and seasonality of malaria

[26,47,48]. Two main variables of natural aquatic habitats that affect larval survival are water

flow intensity during the rainy season (larval mortality rate); and low water capacity during

the dry season (loss of available aquatic niche) [24,48]. These conditions are generally neutral-

ized in artificial aquatic habitats such as dams, micro dams, cisterns, fishponds, and other

types of flow-limited water bodies [23], increasing the vectorial capacity of primary vectors,

such as Ny. darlingi [49]. A successful breeding site in a malaria-endemic region should pro-

vide geographic and temporal coexistence for the epidemiologic triad: vector, etiological agent,

and human reservoir, according to ecological strategies of Anopheline species [50,51] as well

Plasmodium sp. [52], facilitating adaptation to host behavior [53]. The presence of the primary

malaria vector in human residences and adjacent fishponds in Mancio Lima suggests that

transmission may occur both in and around houses, although our HBR data demonstrate that

most biting occurs outdoors.

A lower proportion of Ny. darlingi larval specimens was identified in the present study

(8.5%) compared to that found in the same municipality in earlier studies (16.1% [15]; 22.5%

[54]), and in other distinctive local Amazonian environments [24,48]. However, Ny. darlingi L1

larvae were not morphologically identified herein and this stage represented more than 50% of

the total numbers of larvae surveyed. Furthermore, similar to other entomological studies in

malaria-endemic areas, our adult survey detected only Ny. darling [43–46], although we recog-

nize that HLC can generate a bias due to the mainly anthropophilic behavior of this species, as

well for Nyssorhynchus sp. in general. Biodiversity of Anophelinae can be an indicator of envi-

ronmental disruption, a putative signal of future outbreaks [55]. There is both a notably

increased abundance and/or the emergence of Nyssorhynchus species in human-colonized

Amazonian areas [44,56], and low natural abundance of this genus in primary Amazon forest

[57,58]. Nyssorhynchus darlingi is not always the dominant species in the Nyssorhynchus larval

community that emerges with anthropogenic change: for example, in Mâncio Lima, Acre state,

it is Ny. albitarsis s.l. [15]; in Labrea, Amazon state, Ny. triannulatus [24]; and in Pôrto Velho,

Rondônia state, Ny. braziliensis [59]. However, Ny. darlingi may be the species that best adapts

to human behavior in the Amazon region relative to vectorial capacity [49,60–62].

Our study was noteworthy for the micro-geographical analysis of larvae sampled, measur-

ing different characteristics of vector ecology at sampling-point and fishpond levels. Anopheli-

nae species L1 showed different behavior among the three sites: urban Site 1 had a decrease in

August and September; however there was an increase in August in urban Site 2; whereas for

rural Site 3, there was a decrease in larval counts in April and May. These results did not

change in the multivariate analysis, in contrast with Anophelinae L2—L4, which present an

inverse association in urban Site 1 after adjustment, indicating some influential cofactor that

was not measured by this study.

Nevertheless, the primary vector Ny. darlingi L2—L4 group—identified to species level-

shows a singular pattern: no difference of larval numbers in fishponds detected in urban Sites

1 and 2 during the rainy to dry season transition, in both univariate and multivariate analysis.

There was also no seasonal difference for Ny. darlingi in early study [15], however, they incor-

porated a larger time frame (2 years) with larger intervals between larval sampling efforts (5–6

months). Interestingly, in our Site 3 (rural), there was a significant increase in larval numbers
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between the February baseline and both August and September, months that correspond to

the dry season. Possibly, fishponds play a more important role in the maintenance of Ny. dar-
lingi during the transition from rainy to dry season in rural landscapes than our study demon-

strates. Similar results were found in rural settlements with the presence of artificial breeding-

sites [10,47].

Seasonal malaria is common in the Amazon region, associated with Ny. darlingi population

density and rainfall patterns. In urban and suburban areas in Rondônia state [45], malaria

increased at the end of the dry season and the beginning of the next rainy season in landscapes

with mainly natural breeding-sites (riverside malaria); in contrast, in landscape dominated by

artificial breeding-sites (so-called dryland malaria), both malaria and Ny. darlingi remain high

throughout the year. Here, a simple linear correlation between monthly precipitation and P.

vivax notifications showed a positive association for rainfall seasonality and malaria cases,

mainly in 2016 (2016 r = 0.75; 2017 = 0.43), indicating some seasonal effect on malaria num-

bers (S1 Fig). However, these monthly notifications could have been more informative had

they been adjusted for the appropriate landscape profile (urban/rural). For Ny. darlingi larvae,

a major sampling effort with more sites in each landscape type in a multi-year survey is needed

to confirm this seasonal pattern.

In urban Site 1, the increase of Ny. darlingi larvae in active fishponds, not detected for Ano-

phelinae L1 and L2—L4 groups, supports the earlier study [15], demonstrating that economi-

cally active fishponds are important larval habitats for primary vectors. Emerging aquatic

vegetation was strongly associated with all three Anophelinae groups in the overall regression,

reinforcing the recommendation by WHO [63], that cleaning the margins can be an effective

environmental control for Amazon Nyssorhynchus sp. The presence of Culex sp. species and

egg rafts was constant in the survey, suggesting they share the same ecological niche as the

Anophelinae L2—L4 group. Most Culex sp. were identified as subgenus Melanoconion, a

group that contains species that are regional arbovirus vectors [64]. Thus, fish farming may

open larval habitats for other Culicidae species of epidemiological importance. The presence

of fish was common in the fishponds surveyed (even abandoned ones), showing that Anophe-

linae larval species readily coexist with the local fish community, or amphibians according to a

microecological food web of aquatic habitat [65]. Prospects for putative biological control

seem unclear in this case unless exotic larvivorous fish species were to be utilized, but they rep-

resent other risks for the local environment and are not a feasible option [66].

Water turbidity was slightly associated with Anophelinae numbers, with Ny. darlingi being

found previously in turbid water [24]. We report a significant association with shaded or low

light environments for the three Anophelinae groups, a feature associated previously with Ny.

darlingi ecology [48]. High values of pH (>7) and nitrates (40 mg/L) appear to be limiting fac-

tors for the Anophelinae aquatic habitat. Although carbonated hardness (an alkalinity indica-

tor), shows a similar pattern in the decrease of Anophelinae L1 and L2—L4 groups, for Ny.

darlingi there was no significant association. More surprisingly, the increase in Ny. darlingi lar-

vae in waters with dissolved chlorine suggested possible tolerance of immatures to polluted

aquatic habitats. This was also detected for the Anophelinae L1, representing an important fea-

ture of opportunistic species that invade new aquatic niches in human occupation without

environmental sanitation, and may be linked to phenotypic plasticity of ion regulation of

Amazon mosquito Culicidae larvae under different physical-chemical conditions [67].

Aside from the non-identification of L1 larvae, mentioned above, a second limitation of

this study was that we planned to measure the perimeter of each fishpond to test for an associa-

tion with larval abundance [10]. We initially measured each fishpond but, due the high num-

ber of ponds (n = 63), it was not realistic to accurately measure change in water level in each

one for each of the six months. Thirdly, there were some technical problems with measuring
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instruments, resulting in gaps in some of the independent variables of the survey, reducing

sampling effort. Fourthly, we intensively sampled two urban sites but only one rural one,

mainly due to complex logistical issues. Finally, there is an important relationship between

households with malaria incidence and distance to breeding sites for Ny. darlingi [48] and P.

vivax infection [68] measurement of which was beyond the scope of our study.

Nevertheless, our study does provide important information about temporal variation and

environment features of larvae of the primary vector Ny. darlingi at micro-spatial levels (sam-

pling points of fishponds), as well as Ny. darlingi adult profiles in nearby households. Tailored

LSM strategies accounting for this heterogeneity, such the use of biological larvicides [69],

need to be routinely incorporated in malaria integrated control to reduce transmission in

Mâncio Lima, and in other cities of Vale do Jurua region.
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