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Purpose: We propose a deep learning–based image reconstruction algorithm to
produce high-resolution optical coherence tomographic angiograms (OCTA) of the
intermediate capillary plexus (ICP) and deep capillary plexus (DCP).

Methods: In this study, 6-mm× 6-mmmacular scans with a 400× 400 A-line sampling
density and 3-mm × 3-mm scans with a 304 × 304 A-line sampling density were
acquired on one or both eyes of 180 participants (including 230 eyes with diabetic
retinopathy and 44 healthy controls) using a 70-kHz commercial OCT system (RTVue-XR;
Optovue, Inc., Fremont, California, USA). Projection-resolved OCTA algorithm removed
projection artifacts in voxel. ICP and DCP angiograms were generated by maximum
projection of the OCTA signal within the respective plexus. We proposed a deep
learning–based method, which receives inputs from registered 3-mm × 3-mm ICP and
DCP angiograms with proper sampling density as the ground truth reference to recon-
struct 6-mm × 6-mm high-resolution ICP and DCP en face OCTA. We applied the same
network on 3-mm× 3-mm angiograms to enhance these images further. We evaluated
the reconstructed 3-mm × 3-mm and 6-mm × 6-mm angiograms based on vascular
connectivity, Weber contrast, false flow signal (flow signal erroneously generated from
background), and the noise intensity in the foveal avascular zone.

Results: Compared to the originals, the Deep Capillary Angiogram Reconstruction
Network (DCARnet)–enhanced 6-mm × 6-mm angiograms had significantly reduced
noise intensity (ICP, 7.38 ± 25.22, P < 0.001; DCP, 11.20 ± 22.52, P < 0.001), improved
vascular connectivity (ICP, 0.95 ± 0.01, P < 0.001; DCP, 0.96 ± 0.01, P < 0.001), and
enhanced Weber contrast (ICP, 4.25 ± 0.10, P < 0.001; DCP, 3.84 ± 0.84, P < 0.001),
without generating false flow signal when noise intensity lower than 650. The DCARnet-
enhanced 3-mm × 3-mm angiograms also reduced noise, improved connectivity, and
enhanced Weber contrast in 3-mm × 3-mm ICP and DCP angiograms from 101 eyes. In
addition, DCARnet preserved the appearance of the dilated vessels in the reconstructed
angiograms in diabetic eyes.

Conclusions: DCARnet can enhance 3-mm × 3-mm and 6-mm × 6-mm ICP and DCP
angiogram image quality without introducing artifacts.

Translational Relevance: The enhanced 6-mm × 6-mm angiograms may be easier for
clinicians to interpret qualitatively.

Introduction

Optical coherence tomographic angiography
(OCTA) is a noninvasive imaging technique that can

provide angiograms at specific depths within the retina
and visualize microvasculature in vivo.1,2 Numerous
studies have demonstrated its utility in the diagno-
sis of retinal pathology.3–5 However, current OCTA
technology has some significant limitations. One of
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these limitations is the presence of artifacts. While
many artifacts, such as projection artifacts and bulk
motion artifacts, can be removed by postprocessing
algorithms,6–8 imagesmay still have strong background
noise, and vessels may become fragmented due to
image processing and display strategies. Another
important limitation in current OCTA technology
is a relatively small field of view. Contemporary
research is moving toward wider fields of view.9,10 At
a fixed device speed, capturing a larger field of view
without increasing the duration of the imaging proce-
dure requires reducing sampling density, which both
lowers image resolution and exacerbates the effects of
artifacts.11 We previously reported on a deep learning–
based method that effectively enhances en face images
of the superficial vascular complex (SVC).12 Plexus-
specific pathology of the intermediate capillary plexus
(ICP) and deep capillary plexus (DCP), however, can
provide novel diagnostic and prognostic indicators.5
For example, dilated capillaries in the ICP and DCP
are associated with the more severe diabetic retinopa-
thy (DR)13 and may be associated with increased
treatment requirements in branch retinal vein occlu-
sion.14 However, optimal imaging of the ICP and DCP
is more difficult due to their posterior location and the
increased prevalence of artifacts.

Several groups have proposed algorithms to improve
OCTA image quality. However, most previous work
has focused on traditional image-processing algorithms
that must be handcrafted for specific contexts. This
is in contrast to cutting-edge deep learning–based
approaches, which usually generalize well.15–20 State-
of-the-art deep learning–based methods are currently
applied to several different kinds of clinical image-
processing tasks,21 such as image classification,22,23
semantic segmentation,24–31 and enhancement.32,33 In
this study, we propose and evaluate a Deep Capil-
lary AngiogramReconstruction Network (DCARnet),
a deep learning–based method to enhance 6-mm × 6-
mm and 3-mm × 3-mm ICP and DCP en face OCTA
images. We have released the Python source code at
https://github.com/octangio/DCARnet.

Methods

Data Acquisition

The study was approved by the Institutional Review
Board/Ethics Committee of Oregon Health & Science
University, and informed consent was collected from
all participants, in compliance with the Declaration
of Helsinki. In total, 274 eyes from 180 participants
were scanned. We acquired 3-mm × 3-mm and 6-

mm × 6-mm OCTA macular scans from the same eye
using a 70-kHz commercial OCTA system (RTVue-XR
version 2017.1.0.151; Optovue, Inc., Fremont, Califor-
nia, USA). Each raster position takes two repeated B-
scans to produce motion contrast and construct an
OCTA data volume using the efficient split-spectrum
amplitude-decorrelation algorithm.1 Each 3-mm × 3-
mm B-scan consists of 304 A-lines, or 101 A-lines/mm.
There were 400 A-lines in each 6-mm × 6-mm B-
scan, which yields a lower sampling density of 67 A-
lines/mm. Thirty-eight 6-mm × 6-mm OCTA macular
scans from a commercial 120-kHz spectral domain
OCT system (Solix; Optovue, Inc.) with 15-μm lateral
resolution and 5-μm axial resolution were acquired.

All en face OCTA images require retinal layer
segmentation in order to determine the regions over
which flow signal should be projected and to isolate
separate plexuses.We used a guided bidirectional graph
search to perform this segmentation34 (Figs. 1A, 1D).
A projection-resolved (PR) OCTA algorithm was used
to suppress the projection artifacts in retinal capil-
lary plexuses.7 The 3-mm × 3-mm and 6-mm × 6-mm
angiograms of the ICP (Figs. 1B, 1E) were generated
by maximum projection of the OCTA signal in a slab
including the inner plexiform layer (IPL) and inner
nuclear layer (INL).35 The 3-mm × 3-mm and 6-mm
× 6-mm angiograms of the DCP (Figs. 1C, 1F) were
projected in a slab including the INL and outer plexi-
form layer.

Convolutional Neural Network Architecture

DCARnet takes individual en face angiograms as
input (Fig. 2A). DCARnet comprises shallow feature
extraction layers, deep feature extraction layers, and
a reconstruction layer. The image features at different
scales are extracted by three bypasses. The first bypass
includes 21 convolutional layers. The first convolu-
tional layer with 128 channels operates on the input
image without changing the resolution of the image to
extract shallow features, and the remaining 20 convo-
lutional layers with 64 feature maps are used to extract
deeper features. The second bypass includes 16 convo-
lutional layers and a deconvolutional layer. The stride
of the first convolutional layer with 128 channels is 2 in
order to down-sample the image and extract low-level
features. The remaining 15 convolutional layers with
64 channels generate deeper features, and a deconvo-
lutional layer with 128 channels is used to up-sample
the image to achieve the same scale as the input image.
The strides of the deconvolutional layer and remain-
ing convolutional layers are 2 and 1, respectively. The
third bypass includes 12 convolutional layers and 2
deconvolutional layers. The strides of the first and
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Figure 1. Examples of data acquisition in a healthy eye. (A) ICP (outer 20% of the ganglion cell complex and inner 50% of the INL) slab
and DCP (outer 50% of the INL and outer plexiform layer) segmentation boundaries on a 3-mm × 3-mm scan. (B, C) The 3-mm × 3-mm
angiograms of the ICP andDCP generated bymaximumprojection of theOCTA signal in the slabs delineated in (A). (D–F) Equivalent images
for 6-mm × 6-mm angiograms from the same eye are of lower quality than 3-mm × 3-mm angiograms.

Figure 2. DCARnet structure. Input to the network consists of a single OCTA en face image (A). The network is composed of a shallow
feature extractionmodule and a deep feature extractionmodule, as well as a reconstructionmodule. The different-colored cubes represent
convolutional layers or deconvolutional layers with different parameters. The kernel size in all layers is 3 × 3. The width and height of the
input image are represented by w and h, respectively. The stride is represented by s. C represents concatenation operation. The output
reconstructed angiogram shows higher contrast between vessels and background (B).

second convolutional layer with 128 channels are set
to 2 to reduce image resolution and extract shallow
features. The remaining 10 convolutional layers with
64 feature maps are applied to generate high-level
features. The stride of both deconvolutional layers is
set to 2 to achieve the same scale as the input image.

Then, all of the deep features extracted by the three
bypasses are fused by concatenation. The fused hierar-
chical features are sent to a reconstruction layer that
has one feature map to produce the final reconstructed
image (Fig. 2B). In all layers, the kernel size is 3-mm
× 3-mm pixels. The feature extraction bypasses used
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Figure 3. Data preprocessing flowchart. (A) The original 3-mm × 3-mm SVC angiogram. (B) Up-sampled 6-mm × 6-mm SVC angiogram.
(C) The original 3-mm× 3-mmDCP angiogram. (D) Up-sampled 6-mm× 6-mmDCP angiogram. (E) Registered DCP angiograms. The yellow
box is the largest inscribed rectangle. (F) Cropped original 3-mm× 3-mmDCP angiogram. (G) Cropped central 3-mm× 3-mm section from
the 6-mm × 6-mm DCP angiogram. Preprocessing for ICP angiograms follows the same pattern.

in DCARnet can extract features at different scales.
In the first bypass, all feature maps were kept at the
same resolution as the original input. The other two
bypasses have down-sampling layers that reduced the
size of feature map by factors of 2 and 4, respectively.
These two bypasses reduced the number of parame-
ters to accelerate the training process and enhanced the
tolerance of DCARnet to disturbances like noise and
flow signal strength changes. The number of convolu-
tional layers in the three passes decreases successively,
making the network pay more attention to the feature
extraction from the original input image.

Training

Data Preprocessing
To acquire the input and the ground truth for train-

ing DCARnet, we up-sampled the 6-mm × 6-mm SVC
(Fig. 3B), ICP, and DCP angiograms (Fig. 3(D)) to
achieve the same scale as a 3-mm × 3-mm scan (Figs.
3A, 3C). We then registered the original 3-mm × 3-
mm scan to the up-sampled 6-mm× 6-mm angiograms
using the relatively noise-free and vasculature-rich SVC
slabs12; the same transformations were applied to the
deeper ICP and DCP slabs. Next, we cropped the
maximum-area inscribed rectangle from registered 3-
mm × 3-mm and 6-mm × 6-mm angiograms (Fig. 3E).
The cropped 3-mm × 3-mm angiograms serve as the
ground truth (Fig. 3F), and the cropped central 6-mm
× 6-mm angiograms [Fig. 3(G)] are the inputs used for
training DCARnet.

Loss Function
The loss function in this work consisted of the mean

square error36 (MSE):

MSE = 1
w × h

∑w

i=1

∑h

j=1
(DT (i, j) − DP (i, j))2,

(1)
the structural similarity index (SSIM),37
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and root mean square (RMS) contrast loss index38
(Closs)
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where w, h refer to the width and height of the image,
respectively; DT (i, j) and DP(i, j) are the pixel value at
position (i, j); μDT and μDP are the mean pixel values;
σDT and σDP are the standard deviations; and σDTDP

is the covariance of the ground truth image DT and
predicted image DP, respectively. The values of the
constants C1 = 0.01 and C2 = 0.03 were taken from
the literature.37 The full loss function is then a linear
combination of these components:

Loss = MSE + (1 − SSIM) + Closs. (4)
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Together, each loss term provides helpful informa-
tion during training. The MSE is used to measure the
pixel-wise difference between ground truth and output
image; SSIM is based on three comparison measure-
ments: reflectance amplitude, contrast, and structure,
while Closs is used to further enhance the contrast of
the image. Although MSE can suppress large errors
during training, it does not consider the relationship
between adjacent pixels and often produces excessively
smooth textures. Just using MSE, it is almost impossi-
ble to capture high-frequency texture details to gener-
ate satisfactory perceptual results.39 SSIM considers
the similarity in three prominent perceptual categories
in human vision: brightness, contrast, and shape. Even
though SSIM considers the contrast of the overall
structure, Closs is used to further enhance the contrast
so that the produced image will not be overly smooth—
results using a contrast loss calculation preserve more
details. The combination of these loss functions makes
up for the shortcomings of a single loss.

Participants
In this study, the whole data set consists of 274 eyes

scanned from 180 participants. Each eye was scanned
once using a 3-mm × 3-mm and once using a 6-mm ×
6-mm scan pattern. The training data set includes 140
paired 3-mm× 3-mmand 6-mm× 6-mm ICPandDCP
angiograms. The validation data set includes 33 paired
3-mm× 3-mm and 6-mm× 6-mm ICP andDCP scans.
The remaining 101 paired 3-mm × 3-mm and 6-mm ×
6-mm ICP and DCP scans were reserved for testing.
The training data includes eyes with DR (n = 125) and
healthy eyes (n= 15). The validation data set consists of
30 eyes with DR and 3 healthy eyes. The performance
of this network on test data was separately evaluated
on eyes with DR (n = 75) and healthy controls (n =
26). Fifteen healthy eyes from the test set were used
to verify whether our algorithm generates false flow
signal. In addition, to compare the performance of
eight repeated en face averaging with our algorithm, we
used four healthy eyes from the test set.

Training Parameters
The training data set was expanded by several data

augmentation methods, including horizontal flipping,
vertical flipping, transposition, and 90-degree rotation.
To reduce computation cost, 76 × 76-pixel patches
were used for training. Thus, after data augmenta-
tion, the training data set included 1400 images that
were further divided into 34,955 patches extracted by
cropping the ICP and DCP angiograms with a stride
of 38. The validation data set of 330 images was also
decomposed into 9900 patches by randomly cropping
an image into 30 patches. AsDCARnet is a fully convo-

lutional neural network, images with arbitrary sizes
can be input into the DCARnet during testing. Thus,
we input the entire image into the model for testing.
We used an Adam optimizer with a learning rate 0.01
to train DCARnet. The training batch size was 128.
We performed 10 epochs of training to get an optimal
model. DCARnet was implemented in Python 3.6 with
Keras (Tensorflow-backend) on a PCwith a 32GRAM
and Intel i9 CPU, as well as twoNVIDIA, Santa Clara,
California, USA. GeForce GTX1080Ti graphics cards.

Evaluation of Noise Intensity, Vascular Connectivity,
and Contrast

We evaluated DCARnet’s performance by measur-
ing noise intensity:

INoise = 1
R

×
∑
(i,j)∈R

D(i, j)2, (5)

where D(i, j) is the pixel value at position (i, j)
of the angiograms and R is a manually delineated
circle inscribing the foveal avascular zone (FAZ). We
also examined vascular connectivity.12 The angiograms
were binarized using a global adaptive threshold
method, then skeletonized. Connected flow pixels were
defined as any contiguous flow region with a length
of at least 5 (including diagonal connections), and the
vascular connectivity was defined as the ratio of the
number of connected flow pixels to the total number
of pixels on a vascular skeleton map. We also evalu-
ated reconstructed angiograms using Weber contrast,
a metric used to evaluate a small fraction of features
(capillaries) within a uniform background (speckled
background). The foreground and background pixel
positions were obtained by binarized angiograms.
Symbolically, Weber contrast is

IC = Df − Db

Db
, (6)

where Df is the averaged luminance of foreground
image andDb is the averaged luminance of background
image.

Results

Assessment of False Flow Signal

Due to their depth within the retina, ICP and DCP
angiograms include relatively strong noise that may
mislead image enhancement algorithms into generat-
ing a false flow signal. To determine whether this is
an issue with DCARnet, we examined 3-mm × 3-
mm high-quality ICP and DCP angiograms from 15
healthy eyes. These angiograms were denoised using
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Figure4. False flowsignal characterizedwith simulatednoise. (A1–D1) DCP angiogramswithdifferent simulatednoise intensities. (A2–D2)
DCARnet output for angiograms (A1–D1). Only at the highest simulated noise intensity is false flow generated.

simple Gabor and median filters (Fig. 4A1). We then
added simulated Gaussian noise with different param-
eters (μ, σ ) to these denoised angiograms, where μ

and σ are the mean value and the standard devia-
tion of the Gassian distribution, respectively. In all, we
obtained 6000 ICP and DCP angiograms that were 3
× 3 mm (Figs. 4B1–D1) with different simulated noise
intensities (0–2100; equation (5)) by changing μ and σ

separately in increments of 0.005 from 0.001 to 1 and
from 0.001 to 0.05. Finally, the denoised angiograms
and angiograms with simulated noise were input to
DCARnet (Figs. 4A2–D2). To determine if the recon-
structed angiograms produced false flow, we calculated

IFalse = 1
R

×
∑

(i,j)∈R D(i, j)2. (7)

Because the FAZ is avascular, anatomically the value
of IFalse should vanish. The results show thatDCARnet
did not produce false flow signal when noise inten-
sity was under 650, which is above the noise intensity
measured in the original angiograms (3× 3mm, 427.35
± 246.62; 6 × 6 mm, 401.63 ± 304.49; Fig. 5).

Performance on DR Angiograms

Studies have shown the OCTA can detect pathol-
ogy related to DR in the deep capillary plexus.40

Microaneurysms and dilated capillaries are closely
associated with DR progression.13,41,42 Thus, a basic
requirement for image reconstruction is that patholo-
gies such as these can be preserved. Visual inspec-
tion of DCARnet’s output from eyes with severe DR
reveals these pathologic vascular abnormalities in both
ICP (Fig. 6) and DCP (Fig. 7) angiograms. We also
compared the noise intensity, connectivity, and Weber
contrast of angiograms from eyes with DR and healthy
eyes. As with healthy eyes, DCARnet was able to
significantly reduce noise intensity in eyes with DR
(Fig. 8A), the connectivity of the reconstructed
angiograms of eyes with DR was similarly greatly
improved (Fig. 8B), and the contrast of the recon-
structed angiograms of eyes with DR also was signifi-
cantly enhanced (Fig. 8C).

Comparison to Other Methods

The quality of OCT angiograms can be improved
by many image-filtering methods, including Frangi19
and Gabor20 filters. We applied these methods to the
original 3-mm × 3-mm (Fig. 9) and 6-mm × 6-mm
(Fig. 10) ICP and DCP angiograms. All these methods
are based on different filters and require parame-
ter tuning. We selected these parameters by search-
ing for the values that yielded the best results for the
performance metrics (noise intensity and connectivity)
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Figure 5. False flow signal and noise intensity. (A) The relationship between false flow signal and noise intensity. The blue points indicate
six thousand 3-mm × 3-mm ICP and DCP angiograms with different simulated noise intensities. The red line represents a cutoff value (INoise
= 650) under which no false flow signal was generated. (B) Boxplots of the noise intensity measured in original 3-mm× 3-mm and 6-mm×
6-mm ICP and DCP angiograms from all data sets. The average noise intensities of original 3-mm × 3-mm and 6-mm × 6-mm angiograms
are below 650.

Figure 6. Qualitative performance on representative ICP scans. Shown are (A) a healthy eye, (B) an eye diagnosed with mild nonprolifer-
ative diabetic retinopathy (NPDR), (C) an eye diagnosed with moderate NPDR, and (D) an eye diagnosed with severe proliferative diabetic
retinopathy (PDR). Compared to original, low-resolution 6-mm × 6-mm ICP angiograms (row 1), clearer capillary details and suppressed
background can be perceived in DCARnet output (row 2). Dilated capillaries (green arrows) are visible in the reconstructed and original
angiograms, demonstrating that DCARnet preserves this vascular pathology.

discussed above. Compared to the original angiograms,
the Gabor filter significantly reduced noise intensity
(Fig. 11(A) and improved connectivity (Fig. 11B) but
greatly reduced the contrast in both 3-mm× 3-mm and
6-mm × 6-mm ICP and DCP angiograms (Fig. 11C).
The Frangi filter greatly improved connectivity (Fig.
11B) and enhanced contrast (Fig. 11C) but did not

significantly decrease noise intensity in 6-mm × 6-mm
ICP andDCP angiograms (Fig. 11A). The Frangi filter
may also produce false flow signal. Compared to the
original angiograms, DCARnet significantly reduced
noise intensity, improved connectivity, and enhanced
contrast in both 3-mm× 3-mm and 6-mm× 6-mm ICP
and DCP angiograms. Compared to other methods,
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Figure 7. Qualitative performance on representative DCP scans. Shown are (A) a healthy eye, (B) an eye diagnosed with mild nonprolifer-
ative diabetic retinopathy (NPDR), (C) an eye diagnosed with moderate NPDR, and (D) an eye diagnosed with severe proliferative diabetic
retinopathy (PDR). Compared to original, low-resolution 6-mm × 6-mm ICP angiograms (row 1), clearer capillary details and suppressed
background can be perceived in DCARnet output (row 2). Dilated capillaries (green arrows) are visible in the reconstructed and original
angiograms, demonstrating that DCARnet preserves this vascular pathology.

Figure 8. Quantitative evaluation in healthy eyes and eyes with DR. (A) Noise intensity, (B) connectivity, and (C) contrast in the original
scans andDCARnet output. Significant improvement from the original images was achieved by all metrics, as evaluated by paired t-test with
Holm–Bonferroni correction.

the angiograms reconstructed by DCARnet showed
the lowest noise intensity and best connectivity in both
3-mm × 3-mm and 6-mm × 6-mm ICP and DCP
angiograms.

Comparison to Multiple En Face Image
Averaging

Multiple B-scan averaging is widely used to enhance
the image quality of OCT angiograms. This technique

also can reduce noise and improve the continuity of
blood vessel segments or fragments.17,43 In addition
to the filters discussed above, we also compared the
performance of the averaged en face images with that
of the original images reconstructed by DCARnet.

We evaluated the performance of 8-scan averaged
en face images and the images reconstructed by
DCARnet. SVCangiograms (Figs. 12A1–A8)were first
registered, and the registration information of SVCwas
transferred to ICP or DCP angiograms (Figs. 12B1–
B8). These registered angiogramswere then averaged to
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Figure 9. The 3-mm× 3-mmmm angiogram enhancement of the ICP (top row,A1–D1) and DCP (bottom row,A2–D2) from an eye with DR
using various methods. The original images (A), Gabor filtered images (B), Frangi filtered images (C), and DCARnet reconstructed images
(D) are demonstrated. Compared to the original and Gabor filtered images, DCARnet produces images with visibly lower background levels.
While the Frangi filtered images also achieve high contrast, note the artifactual signal generated in the FAZ, which is absent in DCARnet’s
output.

generate the 8-scan averaged en face images (Fig. 12B).
As a comparison, each of the original angiograms
was reconstructed by DCARnet (Figs. 12C1–C8). We
found 8-scan averaging was able to reduce noise inten-

sity and increase connectivity but reduced contrast,
whereas the results from our algorithm show low noise
intensity, good connectivity, and strong contrast. More
important, DCARnet just needs a single image to

Figure 10. The 6-mm × 6-mm angiogram enhancement of the ICP (top row, A1–D1) and DCP (bottom row, A2–D2) from an eye with DR
using various methods. The original images (A), Gabor filtered images (B), Frangi filtered images (C), and DCARnet reconstructed images
(D) are demonstrated. Vascular detail is visibly most clear in the DCARnet output.
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Figure 11. Quantitative evaluation of different methods. (A) Noise intensity, (B) connectivity, and (C) contrast compared between original
scans and scans processed by different methods. A significant difference between the original and reconstructed images was achieved
by all metrics, evaluated by paired t-test with Holm–Bonferroni correction. DCARnet achieves superior performance in noise intensity and
connectivity.

Figure 12. Comparison of 8-scan averaged en face image and angiograms reconstructed by DCARnet. (A1–A8) The 3-mm × 3-mm
angiogram of the SVC, (B1–B8) DCP, and (C1–C8) reconstructed DCP from a healthy eye. Scans were registered using the SVC to produce
8-scan averaged composite images. (A) The 8-scan averaged SVC en face images. (B) The 8-scan averaged DCP en face images. DCARnet’s
output does not include the blurring effect generated by the averaging approach.

reconstruct a high-definition image, which dramatically
reduces the time constraint on data collection.

Performance on Scans fromDifferent Devices

We also tested the robustness and generalization
of our algorithm on 38 independent scans from a

different device. We input 6-mm × 6-mm ICP and
DCP angiograms from a commercial 120-kHz spectral
domain OCT system (Solix; Optovue, Inc.) with a
15-μm lateral resolution and a 5-μm axial resolution to
DCARnet (Fig. 13). The reconstructed scans from the
Solix device by DCARnet also showed low noise inten-
sity, good connectivity, and strong Weber contrast.
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Figure 13. The output of DCARnet on 6-mm × 6-mm ICP and DCP angiograms from a Solix device. (A) Original 6-mm × 6-mm ICP
angiogram. (B) Reconstructed 6-mm× 6-mm ICP angiogram. (C,D) Equivalent image from a 6-mm× 6-mmDCP angiogram. Vascular detail
is more apparent in images reconstructed from data from the Solix instrument.

Discussion

Assessment of plexus-specific pathology in the ICP
and DCP using projection-resolved OCTA is helpful in
assessing DR44,45 and other retinal vascular diseases.4
However, OCTA data from the ICP and DCP are
especially susceptible to image artifacts due to the
attenuated flow signal.46–48 Strong background noise
and vessel fragments are common in ICP and DCP
angiograms, affecting the quantitative and qualitative
assessment of OCTA. Lower sampling densities used
in wider-field-of-view OCTA further exacerbate these
problems. Researchers have proposed many methods
to enhance image quality. Traditional approaches with
filters are less effective for wide-field-of-view OCTA
with lower sampling density,49 and averaging multiple
en face images requires long acquisition time, increas-
ing the probability of image artifacts caused by eye
movements. However, the lack of accessible algorithms
to enhance ICP and DCP OCTA en face images
renders any possible advantage to be gained from high-
resolution OCT angiograms inaccessible; therefore, we
provide an open-source platform (https://github.com/
octangio/DCARnet) that we hope will be of use to
other researchers that may find such enhancement.
This study shows that a deep learning–based image
enhancement approach, whether from eyes with DR
or healthy eyes, achieves lower noise intensity, better
connectivity, and stronger contrast than these alter-
native approaches without extending scan acquisition
time.

Researchers have used very deep and compli-
cated network structures to improve performance in
natural image super-resolution reconstruction.39,50,51
However, with increased depth, networks can
encounter more problems during training, such as
gradient explosion/vanishing and overfitting.52,53

Furthermore, as the number of network layers
increases, the features in the input image may be
lost. Our proposed solution, DCARnet, is a simple,
efficient, and easy-to-train network that aims to learn
an end-to-end mapping function between the under-
sampled 6-mm × 6-mm angiograms and 3-mm ×
3-mmmm angiograms with proper sampling density.
Feature maps at the original resolution extracted more
detailed information, such as vascular morphology.
Down-sampled feature maps extracted enhanced the
network’s denoising ability. DCARnet fused multi-
scale features to enhance representational ability,
preserve details, and improve tolerance to artifacts,
low signal quality, and other disturbances. We used
the validation data set to select the best model trained
by the training data set. Then a test data set, which is
completely independent of the training and validation
data sets, is used to evaluate our algorithm. Even
though DCARnet is not a very deep and complicated
network, DCARnet produced good performance.

A significant concern in image reconstruction is the
introduction of structure produced from noise that
may mimic a true vascular signal. This is called a false
signal and should be considered in image reconstruc-
tion projects. As noted, this is an issue for handcrafted
algorithms such as a Frangi filter.19 The angiograms
reconstructed by DCARnet did not produce false flow
signal in angiograms with normal noise intensities.
However, for those angiograms with noise intensity
higher than 650, which is above the average noise
intensity of this data set, DCARnet may produce
some artifacts. As the performance of OCT systems
improves, the signal-to-noise ratios in OCTA images
will grow. This issue will therefore be less of a concern
in future OCTA devices.

DCARnet was designed to remove background
noise and reconstruct high-resolution capillary details.
Our algorithm therefore does not suppress other

https://github.com/octangio/DCARnet
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artifacts due to projection or motion. For this reason,
DCARnet is best used in conjunction with other
artifact removal algorithms such as the reflectance-
based algorithm for projection-resolved OCTA7

and the regression-based algorithm for bulk motion
subtraction in OCTA.8 DCARnet also does not
compensate for shadow artifacts to recover capillaries
in the regions severely affected by shadows. If no
capillary signal is detected by OCTA, DCARnet has
no way to recover it. We also tested and demonstrated
the strong generalization of this network on indepen-
dent scans with similar sampling density acquired by
a different device than the one used to acquire our
training data.

We previously reported on High-resolution
Angiogram Reconstruction Network (HARNet),
which enhances SVC image resolution, and we
now propose DCARnet to enhance ICP and DCP
angiograms. Although a single, unified network
theoretically could provide denoising simultaneously
in the SVC, ICP, and DCP, anatomic differences
between the layers make this difficult. Compared to
SVC angiograms, ICP and DCP angiograms have
denser capillaries and stronger background noise. If
SVC, ICP, and DCP angiograms are trained together,
the features specific to ICP and DCP angiograms may
be introduced into SVC angiograms and vice versa. In
addition, smaller blood vessels in the SVC may be lost
due to excessive denoising. Conversely, noise will be
misjudged as capillaries in ICP and DCP angiograms,
because the noise intensity in the ICP and DCP is
much higher than that in the SVC.

Conclusion

In summary, we developed a high-resolution
reconstruction network to enhance ICP and DCP
angiograms. DCARnet significantly reduced noise
intensity and improved connectivity in 3-mm × 3-
mm and 6-mm × 6-mm ICP and DCP angiograms
without producing false flow signal. The enhanced
3-mm × 3-mm or 6-mm × 6-mm angiograms may
improve qualitative and quantitative analysis of these
angiograms.
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