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Background
Transposable elements (TEs or transposons) are genetic elements that can move around 
the genome, create new copies and integrate into a new place in the genome. In the 
genome sequences, TEs copies represent dispersant repeats and occupy most of the 
eukaryotic genomes. In plants they can occupy up to 90% of the total genome length. For 
many years these parts of the genome were considered as “junk DNA”; however, recently 
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repeats and the accuracy of determining their boundaries. A search for the copies of 
39 SINE families in the rice genome produced 14,030 hits; among them, 5704 were not 
detected by RepeatMasker.

Conclusions:  The HDRSM could find divergent SINE copies, correctly determine their 
boundaries, and offer a high level of statistical significance. We also found that Repeat-
Masker is able to find relatively short copies of the SINE families with a higher level of 
similarity, while HDRSM is able to find more diverged copies. To obtain a comprehen-
sive profile of SINE distribution in the genome, combined application of the HDRSM 
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TEs have been shown to possess functional activity [1, 2]. Based on the mechanism of 
transposition and chromosomal integration, TEs are classified into DNA transposons 
and retrotransposons which in turn are divided into those with and without long ter-
minal repeats (LTR and non-LTR) [3]. In plant genomes, LTR retrotransposons are the 
most represented. The number of copies of non-LTR retrotransposons—long and short 
interspersed nuclear elements (LINEs and SINEs)—are not as high as those of LTRs.

SINEs are non-autonomous TEs that do not encode their own proteins but uti-
lize those coded by LINEs [4]. In mammalian genomes, SINEs are wildly represented 
(mainly by the Alu and mammalian-wide interspersed repeat (MIR) families) and exten-
sively studied [5, 6]. However, even in mammals, it has been shown that only a part of all 
existing SINEs have been identified by standard repeat detection methods [7]. For plant 
genomes which contain fewer, SINEs, there is currently no unified set of SINE consen-
suses. Thus, from 4 to 20 SINE families have been reported in the rice genome depend-
ing on the classification method [8–10]. In the work we used a set of SINE consensus 
sequences collected in the work [10] (further referred here as EDTA set).

Typically, SINEs consist of a tRNA head, a body (whose origin is not completely clear), 
and an A-rich tail [11] and their lengths vary from 100 to 600 nucleotides. After inser-
tion, SINE copies quickly diverge (accumulate mutations) [9], which prevent further 
transposon activity and protect the cell from uncontrolled copying activity; incomplete 
(truncated) SINE copies are also common [11]. It is known that the probability of sub-
stitution differs among nucleotides and that full sequence replacement does not occur 
immediately; at first, a purine-pyrimidine copy, which has low similarity to the initial 
sequence, is generated. This observation has helped to identify new copies of MIR-like 
elements in many genomes [5]. It is also known that cells use different repression mecha-
nisms, including DNA methylation, to prevent further transposon movements across the 
genome, which in turn causes more frequent C → T substitutions [12, 13]. The detection 
of these TE copies by modern bioinformatics methods is complicated because of a large 
number of substitutions and other mutations that occur in the copy after the insertion.

Bioinformatics methods to search for SINEs as well as other transposons can be 
divided into de-novo and library-based [14]. The de-novo methods include structure-
based approaches that use sequence characteristics of the target TE (such as the tRNA 
part, A-rich tail, etc.) for search and classification; they can be applied to detect differ-
ent types of repeats in newly sequenced genomes. Typically, structure-based methods 
reveal full-length well-preserved transposon copies; the examples are SINE-Finder [15] 
and SINE-Scan [16]. Other de-novo methods such as RECON [17] and RepeatScout [18] 
(later combined into the RepeatModeler pipeline [19]) exploit homology and repetitive-
ness in the examined genome.

The search performed by the library-based methods requires an initial sequence 
library usually constructed by the de-novo methods. RepeatMasker is the most widely 
used library-based method suitable for the identification of all repeat types, including 
SINE [20]. RepeatMasker utilizes libraries of consensus sequences, such as Repbase [21] 
or Dfam [22] (applicable to a few model genomes) or a user-specified library. However, 
although currently RepeatMasker is the standard program for repeat detection and 
masking and is included in many genome annotations pipelines, it may not be univer-
sally applicable because highly divergent repeat elements are difficult to identify using 
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traditional alignment-based methods [7]. Thus, it has been shown that RepeatMasker 
does not detect all the copies present in a genome and that the resulting annotation 
may not be accurate [7, 23]. Other programs using the library comparison approach are 
Maskeraid [24], PLOTREP [25], and Greedier [26], as well as tools such as BLAST [27] 
and its analogues. It is worth noting that the ability of both types of methods (similarity-
based or de novo) decreases with the increase in the relative age of the repeat family, as 
substitutions and other types of mutations tend to accumulate with time [7].

Elements of the known SINE families can be searched using Hidden Markov Models 
(HMMs), which are built on multiple sequence alignment of full-size elements of the 
same family. HMMs of some SINE families (Alu and MIR) constructed for several model 
organisms and stored in the Dfam database [22] can also be used by RepeatMasker to 
search for divergent copies of these repeats. A limitation of this approach is that the 
initial sample for HMM construction is created using BLAST or similar methods that 
do not consider correlation between neighboring nucleotides; as a result, the correla-
tion properties of different copies can eliminate each other, which can greatly reduce the 
search potential of an HMM [28].

To overcome the described limitations, we used the Highly Divergent Repeat Search 
Method (HDRSM), which considers both sequence similarity and correlations of nucle-
otide pairs within the compared sequences. Previously, a similar method was used to 
search for frameshifts in protein-coding sequences [28]. In this work, we applied the 
HDRSM to identification of SINEs in the genome of rice (Oryza sativa subsp. japonica) 
and found highly divergent SINE copies that were missed by the RepeatMasker program. 
Our results indicate that the HDRSM makes it possible to detect statistically signifi-
cant similarities among DNA sequences containing both indels and multiple nucleotide 
substitutions.

Results
Parameter optimization

In the HDRSM, the position weight matrix (PWM) used to perform a genome-wide 
search is constructed taking into account the correlation between neighboring symbols. 
At the stage of matrix construction, the HDRSM utilizes an important parameter Kd, 
which is responsible for correct determination of boundaries in the local alignment (see 
PWM construction).

To find an optimal Kd value that most accurately determines the boundaries of SINE 
copies, we performed a set of tests with artificial chromosomes containing insertions 
of mutated full-length copies of the OsSN1 consensus sequence (FullLengthSet) as well 
as truncated (TrunkatedSet) copies of OsSN1 (see Genome scanning procedure for the 
details of simulated set creation) using Kd values of 0.0, − 0.5, − 1.0, − 1.5, and − 2.0. 
First, a PWM for the full-length OsSN1 consensus sequence was constructed; then, it 
was transformed by applying the corresponding Kd value and used to perform a search 
for copies in the sequences from FullLengthSet and TrunkatedSet. Then, we calculated 
the average length and variance of the identified similarities for all tests within the cor-
responding set (Figs. 1, 2).

Figure  1 shows the search results for full-length mutated copies (Full LengthSet), 
which indicated that the decrease in Kd was correlated with the decrease in the average 
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size of the identified sequences, which was smaller than the actual size of the inserted 
sequences (293 nt), Whereas Fig. 2 shows that for Kd > − 1.0, the length of found regions 
identified among truncated insertions (TrunkatedSet) was greater than the actual inser-
tion size (150 nt). Thus, the program expanded the constructed local alignment by join-
ing random fragments at the beginning and the end of the alignment, which means that 
for Kd > − 1.0, the detection of local alignment boundaries in sequences from Trunkat-
edSet is incorrect. As for Kd = − 1.0, the length of the fragments identified in both test 
sets (FullLengthSet and TrunkatedSet) was the closest to those of the originally inserted 
sequences, regardless of the number of substitutions; therefore, this Kd value was used in 
further analyses.

SINE consensus set

In this work, we used a set of SINE consensus sequences referred as the EDTA set, 
which in turn consisted of two sets: one was collected using RECON [10] and the 
other containing 13 consensuses was constructed using SINE-scan [16]. We excluded 
sequences longer that 600 nt, and our dataset consisted of 39 sequences. The length of 
SINE consensuses in dataset varied from 85 nt (Os1611) to 516 nt (Os1815) with the 
mean about 280 nt. The identity between two consensuses in the EDTA set varied from 
12.0 (between Os1611 and Os1815) to 97.3 (between Cluster_9 and Os0604) with the 
mean value of 38.96 (see Distance between EDTA set consensuses). The relative distance 
between consensuses in the EDTA set in two-dimensional space is presented in Fig. 3.

Search for artificial SINE insertions

Artificial chromosomes containing insertions of mutated OsSN1 copies from 
FullLengthSet and TrunkatedSet were scanned by the HDRSM (Kd = −  1.0) and 

Fig. 1  The dependence of the average local alignment length on Kd for the sequences from FullLengthSet 

Fig. 2  The dependence of the average local alignment length on Kd for the sequences from the TrunkatedSet 
set
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RepeatMasker programs (see Genome scanning procedure). The complete OsSN1 
consensus sequence was used as a library for all tests with both programs. After scan-
ning artificial chromosomes from FullLengthSet, HDRSM detected all inserted copies 
(the data is shown in Fig.  4). While RepeatMasker found 100% insertions with 0.25 
and 0.5 random substitutions per position and only 70% and 11% of insertions with 
0.75 and 1.0 substitutions per position, respectively. In TrunkatedSet, the HDRSM 
detected 100%, 100%, 96%, and 44% and RepeatMasker—100%, 89%, 29%, and 4% of 
the inserted copies with 0.25, 0.5, 0.75, and 1.0 random substitutions per position, 
respectively are shown in Fig. 5. The results indicated that the HDRSM method could 
identify more divergent copies of SINEs than RepeatMasker, including both full-
length and truncated copies.

Figure  6a, b shows the dependency of the average length of the detected copies 
on the rate of substitutions for both methods. The data indicated that the HDRSM 
could more correctly define the boundaries of inserted copies, whereas RepeatMasker 
tended to find sequences shorter than the actual insertion. Furthermore, the larger 

Fig. 3  Two-dimensional representation of the relative distance between the consensuses in the EDTA set. 
The figure obtained in the result of multidimensional scaling analysis of the set (based on pairwise sequence 
identity)

Fig. 4  The percentage of copies found by the HDRSM and RepeatMasker programs on the test sequences 
from the FullLengthSet set, depending on the number of substitutions
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was the number of substitutions inserted in the copy, the shorter was the correspond-
ing fragment identified by RepeatMasker.

We measured false positives in the performed tests. We considered copies found 
outside the insertion region as false positive. Both methods produced 2–5 false posi-
tive hits per artificial chromosome.

Classification test

To examine the ability of the programs to detect and correctly classify copies, we 
inserted divergent copies of pairs of consensuses into a shuffled chromosome. In the 
test, we used the most similar, and the most distant pairs of consensuses from the 
EDTA set and the pair with the middle value of identity; the tests were performed at 

Fig. 5  The percentage of copies found by HDRSM and RepeatMasker on the test sequences of the 
TrunkatedSet set depending on the number of substitutions made

Fig. 6  Change in the average length of the found copies when changing the number of mutations for 
full-length and truncated insertions of the SINE element
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0.25 and 0.5 substitutions per position. In RepeatMasker, the classification procedure 
is embedded in the main program, whereas the HDRSM was applied separately to 
test chromosomes with each consensus; between the overlapping copies, we chose 
the one with the highest score.

The results of the tests are presented in Table  1. Both methods could identify and 
correctly classify almost all copies in the tests with the 0.25 substitution level, even in 
case of very similar sequences (Os604 and Cluster9) differing only in 5 positions (the 
HDRSM misclassified two copies in the last test). In the tests with the 0.5 substitution 
level, RepeatMasker correctly classified most of the identified copies (4% of misclassified 
copies between Os604 and Cluster_9) but could not detect all the copies, missing about 
40% in some tests; at the same time, the HDRSM detected more copies, although in the 
test with the most similar consensuses up to 18% of the found copies were misclassified. 
The lower specificity is a consequence of the higher sensitivity of the HDRSM.

Results of the rice genome analysis

Using the HDRSM, we constructed PWMs for each of the 39 consensus sequences from 
the dataset [10]. Then each PWM was transformed, and the value Kd = − 1.0 was used 
(see the "Methods" section). The obtained PWMs were then used to scan 12 chromo-
somes of the rice genome. As a result, more than 40,415 copies of the 39 examined SINE 
families were found.

To determine the percentage of false positives for the HDRSM method, nucleotides 
within each of the sequences of the 12 rice chromosomes were randomly shuffled. The 
shuffled chromosomes were processed using the 39 obtained PWMs. In total, 1156 cop-
ies with the Z value exceeding the selected threshold were identified by the HDRSM on 
the shuffled chromosomes.

Some consensus sequences from the EDTA set were highly similar and, therefore, the 
results of genome scanning were overlapping between families. To remove the redun-
dancy associated with the similarity of consensuses, we performed the following selec-
tion procedure: if copies of different families overlapped by more than 20%, only the 
sequence with the largest Z value was included in the final sample. As a result, 18,117 
copies of SINE repeats remained in the rice genome. The high number of intersections 
is associated with the similarity of the consensus sequences; furthermore, the HDRSM 
considered the correlation of neighboring nucleotides, which allowed recognition of dis-
tant similarities between families.

Table 1  The results of the classification test

The table contains percent of correctly detected/misclassified copies for both method in the two consensus tests with 0.25 
and 0.5 level of substitutions in the inserted copies

Os1611 Os1815 Os1611 Os0604 Os0604 Cluster_9

Substitution level—0.25

HDRSM 100/0 100/0 100/0 100/0 100/0,003 100/0,006

RepeatMasker 98/0 100/0 98/0 100/0 100/0 100/0

Substitution level—0.5

HDRSM 85/0 100/0 91/0 100/0 97/18 82/13

RepeatMasker 58/0 100/0 61/0 85/0 85/4 77/4
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Low-complexity sequences can affect the results obtained by the program and corre-
lations of symbols inside them can lead to the detection of false similarities. To filter 
out such sequences, we used the DUST program [29]. The copies with low-complexity 
regions constituting more than 10% of the total length were excluded from further analy-
sis. This threshold was set based on the assumption that, although SINEs usually contain 
low-complexity sequences in their structure (the A-rich tail), their abundant presence 
(over 10% of the copy) most likely indicates an artifact. After excluding copies with low-
complexity regions, 14 030 sequences remained. The numbers of copies for each SINE 
examined in the final sample are presented in the second column of Table 2.

Comparison with RepeatMasker

The consensus sequences from the EDTA set were assembled into a single fasta file 
and transferred to the RepeatMasker program as a library. A threshold level lower than 
default settings (“-cutoff 160” option) was used for RepeatMasker, so that the results 
were comparable with those of the HDRSM based on the number of false positives. With 
the defined threshold level, RepeatMasker found 16,421 copies of 39 studied SINEs fam-
ilies in the rice genome and 1464 SINE copies in the randomly shuffled rice genome. 
In case of overlapping copies, RepeatMasker assigns an appropriate family inside the 
main procedure [30]; however, there could still be overlapping similarities in the results. 
Therefore, we also excluded cases with overlapping of more than 20% length; conse-
quently, 16,021 copies remained. Furthermore, we applied the DUST program to exclude 
copies containing more than 10% low-complexity sequences, which resulted in 13,302 
copies. The number of copies found for each SINE family by RepeatMasker is shown in 
Table 2 (column 3).

Next, we compared the coordinates of SINE family copies identified by the HDRSM 
and RepeatMasker. Since the procedure for assigning the copy to a family with a high 
level of similarity with another family may differ between the programs, we compared 
not only the coordinates of the copies assigned to the same family but also those of 
the copies assigned to other families. Of the total number of copies identified by the 
HDRSM, the coordinates of 5287coincided with the results of RepeatMasker for the 
corresponding families (Table  2, column 4); for RepeatMasker, the number of coinci-
dences with the HDRSM was 5404 (Table  2, column 7). The reason for the difference 
is that in some cases, RepeatMasker split one copy found by HDRSM into two. A total 
of 3039 copies of SINE repeats found by the HDRSM matched the results obtained by 
RepeatMasker, but the latter assigned them to other families (Table  2, column 5); for 
RepeatMasker, this number was 3023 (Table  2, column 8). These results suggest that 
the programs differently classified the same sequences with high similarity to several 
consensuses. There were 5704 copies found by the HDRSM but not by RepeatMasker 
(Table 2, column 6), and 4875 copies found by RepeatMasker but not by the HDRSM 
(Table 2, column 9). Table 2 presents the detailed statistics for each SINE family.

Most of the copies found by RepeatMasker were shorter compared to those found 
by the HDRSM, which confirmed the results of the performed simulations. For the 
unique copies found by the methods (5704 copies found by the HDRSM and missed 
by RepeatMasker and 4875 copies found by RepeatMasker but not by the HDRSM) we 
constructed the distribution of the length of the found copy divided by the length of 
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Table 2  The statistics of the SINE copies found in the rice genome by the programs HDRSM 
and RepeatMasker

(1) Family 
name

(2) HDRSM (3) RM HDRSM RM

(4) 
Overlap, 
same 
family

(5) 
Overlap, 
other 
family

(6) Not 
found

(7) 
Overlap, 
same 
family

(8) 
Overlap, 
other 
family

(9) Not 
found

Os0006 854 323 69 668 117 69 121 133

Os0106 716 945 648 10 58 649 241 55

Os0277 261 133 17 157 87 17 59 57

Os0358 76 220 18 0 58 18 0 202

Os0509 418 407 281 0 137 281 2 124

Os0580 155 104 19 75 61 20 13 71

Os0604 55 53 24 7 24 25 14 14

Os0642 201 136 22 17 162 22 26 88

Os0660 171 179 51 1 119 51 2 126

Os0751 942 1292 641 10 291 648 30 614

Os1022 160 135 80 4 76 81 4 50

Os1374 507 364 139 40 328 139 32 193

Os1424 188 141 32 31 125 32 20 89

Os1427 144 131 98 0 46 98 1 32

Os1605 54 37 10 0 44 10 0 27

Os1611 86 91 63 2 21 63 1 27

Os1635 372 511 216 2 154 217 0 294

Os1661 55 75 15 7 33 15 16 44

Os1716 613 401 222 4 387 245 4 152

Os1815 1441 458 225 1 1215 230 2 226

Os1867 152 70 14 79 59 14 5 51

Os1922 391 289 92 2 297 92 0 197

Os2220 493 524 193 17 283 195 57 272

Os2338 325 351 46 52 227 48 15 288

Os2393 272 297 42 42 188 42 43 212

Os3050 329 284 115 3 211 127 0 157

RST-
Osativa-
Cluster_0

380 78 14 297 69 14 51 13

RST-
Osativa-
Cluster_1

137 291 6 98 33 6 259 26

RST-Osa-
tiva-Clus-
ter_10

527 648 395 11 121 397 141 110

RST-Osa-
tiva-Clus-
ter_11

174 21 4 137 33 4 3 14

RST-Osa-
tiva-Clus-
ter_12

299 30 14 237 48 15 9 6

RST-
Osativa-
Cluster_2

1676 2991 1302 91 283 1359 1039 593

RST-
Osativa-
Cluster_3

305 117 9 249 47 9 87 21
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Column 1—family name; Column 2—the number of copies of the family found by HDRSM; Column 3—the number 
of copies of the family found by RepeatMasker; Column 4—the number of copies of the family found by HDRSM that 
intersected with the result of RepeatMasker, and family names match; Column 5—the number of copies of the family found 
by HDRSM that intersected with RepeatMasker, but the family names do not match; Column 6—the number of copies 
of the family found by HDRSM but missed by RepeatMasker; Column 7—the number of copies of the family found by 
RepeatMasker that intersected with the HDRSM, and family names match; Column 8—the number of copies of the family 
found by RepeatMasker that intersected with the HDRSM, but the family names do not match; Column 9—number of 
copies of the family found by RepeatMasker but missed by HDRSM

Table 2  (continued)

(1) Family 
name

(2) HDRSM (3) RM HDRSM RM

(4) 
Overlap, 
same 
family

(5) 
Overlap, 
other 
family

(6) Not 
found

(7) 
Overlap, 
same 
family

(8) 
Overlap, 
other 
family

(9) Not 
found

RST-
Osativa-
Cluster_4

209 189 7 162 40 7 136 46

RST-
Osativa-
Cluster_5

147 331 35 73 39 35 232 64

RST-
Osativa-
Cluster_6

235 201 51 129 55 52 99 50

RST-
Osativa-
Cluster_7

241 323 50 139 52 50 206 67

RST-
Osativa-
Cluster_8

238 102 8 175 55 8 45 49

RST-
Osativa-
Cluster_9

31 29 0 10 21 0 8 21

Total 14,030 13,302 5287 3039 5704 5404 3023 4875

Fig. 7  Distribution of percent of the lengths of unique copies relative to the length of the corresponding 
consensus found by RepeatMasker and missed by HDRSM and copies found by HDRSM and missed by 
RepeatMasker
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the corresponding family consensus (Fig. 7). It can be seen that unique copies found by 
RepeatMasker are mostly the shorter part of the corresponding consensus (less than 
25%), whereas unique copies found by the HDRSM have longer size and constitute about 
50% from the length of the corresponding consensus.

To investigate why some copies identified by RepeatMasker were missed by the 
HDRSM, we examined the ability of the programs to find consensus fragments of dif-
ferent lengths with a relatively low substitution level (0.25). In this test, we inserted 
fragments constituting 75%, 50%, 25%, and 17% of the OsSN1 length and carrying 0.25 
substitutions per position (300 copies per each size) into shuffled chromosomes. The 
results indicated that for shorter fragments (< 50% of the consensus length), RepeatMas-
ker outperformed the HDRSM (Table 3).

Discussion
It is important to analyze the difference between our approach and the methods used in 
RepeatMasker [30]. RepeatMasker uses the search for similar sequences when searching 
for dispersed repeats, but does not take into account the correlation existing between 
neighboring symbols. Considering the correlation component in the HDRSM allows us 
increase the statistical significance of the identified similarities, which is illustrated in 
the following example. Consider a DNA sequence “aattaaccaattaattccttccggggaaggaa-
ggttccgg” in which symbols at positions k = 2, 4, 6, …, 40 are completely dependent on 
those at positions k = 1, 3, 5, …, 39. Assuming that a genome has the identical 40-nt 
sequence, we will evaluate the statistical significance of identifying this region consid-
ering only the similarity of individual bases and pairs of symbols and using the normal 
approximation to the binomial distribution. For the similarity of individual symbols, 
there will be a total of 40 matches. We estimate the probabilities of individual bases as 
p(a) = 12/40, p(t) = 10/40, p(c) = 8/40, and p(g) = 10/40; in this case, the probability of a 
match is P1 = 0.255. The average number of matching bases for the shuffled sequences is 
10.2 with standard deviation of 

√
10.2 ∗ 0.745 ≈ 2.76 ; then, the argument of the normal 

distribution is x1 = (40–10.2)/2.76 ≈ 10.8.
Now let us calculate the argument of the normal distribution x2 when we compare the 

sequences using pairs of neighboring symbols. There are a total of 20 pairs without inter-
sections. The probability of matching two identical pairs is (0.255)2 ≈ 0.065, the expected 
number of matching pairs is 1.3, and the standard deviation is 

√
1.3 ∗ 0.935 ≈ 1, 1 ; there-

fore, x2 = (20–1.3)/1.1 = 17.0. From these calculations, it can be seen that x2 is more than 
15 times greater than x1, indicating that the statistical significance of the match between 
two sequences calculated based on the correlation of nucleotide pairs is significantly 

Table 3  The results of the test with short-part insertions

The table contains the percent of copies found by each method for different length of inserted copies

Length of inserted copies HDRSM (%) RepeatMasker (%)

220 nt (75% of consensus) 100 100

150 nt (50% of consensus) 100 100

75 nt (25% of consensus) 97.7 100

50 nt (17% of consensus) 83.3 90.3
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higher than that calculated ignoring such correlation. For real sequences, x1 may be less 
and x2 may be greater than some threshold level Z0 (see Distance between EDTA set 
consensuses). Thus, taking into account the correlation factor makes it possible to detect 
more statistically significant similarities. As can be seen in Local alignment of a DNA 
sequence with the PWM, the HDRSM performs sequence alignments considering the 
correlation of neighboring symbols, whereas RepeatMasker finds alignments without it. 
In our opinion, this factor allows the HDRSM identify more copies than RepeatMasker 
with a higher level of statistical significance.

We have also compared HDRSM with the HMM-based method. Since there are no 
models for SINE elements in rice, we used the one from the human genome. We chose 
HMM created for a MIR family from the Dfam database (DF0000001.4). We imple-
mented the nhmmer program [31] (HMMER-3.3. package, default mode, E-value = 10.0) 
to search for copies of DF0000001.4 in chromosome 22 of the human genome. In the 
result, nhmmer found 10,116 copies. Then we used the set of SINE sequences included 
in the model DF0000001.4 to create correlation based PWM for our method and ana-
lyzed human chromosome 22 as well as a randomly shuffled versions of the chromo-
some. HDRSM found 13,478 copies with the same rate of false positives (up to ten false 
positives per shuffled chromosome). The comparison of the coordinates of the copies 
found by nhmmer and HDRSM showed that 7963 copies were found by both meth-
ods. The results indicate that when we have a set of sequences instead of one consensus 
HDRSM may show even better results. We have studied the length of the copies that 
were found by nhmmer but missed by HDRSM. Most of these copies (75%) are shorter 
than 100 nt, the average length is about 65 nt (the length of the original repeat is 262 
nt), while the average length of the sequences that were found by HDRSM but misses 
by nhmmer is about 120 nt. We can assume that nhmmer like RepeatMasker, can miss 
relatively long but highly divergent sequences and HDRSM, can miss short, truncated 
copies.

Conclusions
In this study, we performed a search for highly divergent copies of SINE repeats in the 
rice genome using the HDRSM method, which considers symbol correlations within 
the sequence during PWM construction and further scanning and compared its per-
formance with that of RepeatMasker. The developed method was tested and applied to 
search for more divergent copies of SINE repeats in the rice genome. Among the 15,423 
detected copies of 39 SINE families 5704 were missed by RepeatMasker and 4875 cop-
ies missed by HDRSM. RepeatMasker could identify relatively short SINE copies with a 
high level of similarity, whereas the HDRSM was able to find longer and highly divergent 
copies; furthermore, RepeatMasker was prone to crop copies. The results indicate that 
to obtain a complete picture of SINE distribution in a genome, simultaneous use of the 
HDRSM and RepeatMasker is recommended.

The function of both the HDRSM and RepeatMasker depends on a set of consensus 
sequences. Therefore, it is important to develop an accurate open-source consensus 
database for different plant species. Currently, researchers can choose from several con-
sensus sets, or de-novo create their own library and apply the HDRSM, which would 
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help to identify highly divergent SINE copies. In the absence of a comprehensive consen-
sus database, the HDRSM could be used with only a few SINE copies as a library.

It is important to note that the HDRSM is universal and can be applied to search for 
highly divergent copies of repeat types other than SINEs. For this, appropriate consensus 
sequences should be available to construct an initial PWM, which then can be used to 
screen the genome for copies of various repeats.

Methods
In this work, we used the HDRSM which compares the PWM and a genome fragment 
using a modified dynamic programming procedure. The modification consists in con-
sidering the correlation of neighboring nucleotides within the sequence along with the 
similarity between the PWM and the target sequence; these correlations are also taken 
into account while building the PWM. The HDRSM includes three main steps—PWM 
construction, genome scanning based on the obtained PWM, and identification of sig-
nificant similarities. Each of these steps is described in detail below.

PWM construction

The PWM was created for a SINE family represented by a consensus sequence S of 
length N. The number of columns in such matrix was ​​N − 1 and the number of rows was 
16, since we considered pairs of adjacent symbols at positions k − 1 and k, which allowed 
for correlation of neighboring symbols in the matrix. The PWM denoted as M (l, k) (l 
ranging from 1 to 16 and k—from 2 to N) was calculated by elements as:

where l = i + 4(j  −  1), and i and j are nucleotides in positions k  −  1 and k of S, 
respectively.

Since we used only one consensus sequence for the family, the remaining 15 m(l,k) val-
ues were equal to zero. The first PWM column, m(l,1), was set as 1, and the values of the 
first column were used in Local alignment of a DNA sequence with the PWM.

Next, the obtained PWM M(l,k) was transformed to keep the following parameters 
constant:

where p2(k) = 1/N −  1, p1(l) = p(i)p(j), and p(i) and p(j) are probabilities of i and j 
nucleotides in S: i,j ∈{a,t,c,g}. The matrix transformation procedure was described previ-
ously [32].

(1)m(l, k) =
1.0− f (i, j)

√

f (i, j)(1− f (i, j))

(2)R2 =
16
∑

l=1

N
∑

k=2

m(l, k)2

(3)Kd =
16
∑

l=1

N
∑

k=2

m(l, k)p1(l)p2(k)



Page 14 of 18Suvorova et al. BMC Bioinformatics           (2021) 22:42 

The transformation was aimed to obtain the same Kd value for matrices with dif-
ferent numbers of columns constructed for sequences of different lengths. Kd is the 
equivalent of an expected E score value [33], which defines the accuracy of determin-
ing the start and end of the local alignment. If Kd ≤ −  1.5, then shorter alignments 
would take precedence over longer ones, and if Kd is about zero, then almost all local 
alignments would have a length equal to N. The optimal Kd value was chosen using 
simulations of SINE insertions in the genome.

Local alignment of a DNA sequence with the PWM

The local alignment procedure was modified to account for the correlation of neigh-
boring nucleotides. In the alignment, two sequences were considered: S1, which is 
a part of the analyzed genome of length N, and S2, which is a numerical sequence 
“1,2, …, N”; S1 and S2 are denoted as s1(i), and s2(i), respectively (where i is 1 to N). 
Then, sequence S1 was aligned with S2 using PWM m(i, j), where i and j range from 
1 to 16 and from 2 to N, respectively. The F score was calculated using the following 
equations:

where n = s1(k) + 4(s1(i)-1)); if I = 1 n = s1(1).

where d is gap open penalty and e is gap extension penalty; here, we used d = 32.0 
and e = 8.0 (based on model sequences, the choice of penalty for gap opening and 
extension was discussed in detail in [32]; we set F(0,0) = 0 and F(i,0) = F(0,i) = 0).

Where n = s1(k) + 4(s1(i)-1)), i, and j run from 2 to N. If i = 1 n = s1(1). We intro-
duced the n parameter to account for the correlation of the neighboring symbol in S1 
when performing the alignment; to determine n, a previous symbol of sequence S1, 
which was already included in the alignment, should be found. An element m(n,s2(i)) 
is selected based on index k calculated from the traceback matrix filled at position 
(i, j). If the previous S1 symbol included in the alignment is s(i −  t), then k = i −  t 
and n = s1(i −  t) + (s1(i) −  1)∙4 at t = 1, which corresponds to the movement along 
the main diagonal of matrix F and there is no deletion of the symbol in S1; if t > 1, it 
corresponds to a deletion of t − 1 symbols in sequence S1. Deletion can also occur in 
sequence S2, which corresponds to deletion of a column in matrix M. If the previous 
S2 symbol included in the alignment has the number (j −  1), then there is no dele-
tion in S2; if it is j − t (t > 1), then there is deletion of t − 1 symbols in sequence S2. In 

(4)F(i, j) = max



















0

F(i − 1, j − 1)+m(n, s2(j))

Fx(i − 1, j − 1)+m(n, s2(j))

Fy(i − 1, j − 1)+m(n, s2(j))



















(5)Fx(i, j) = max

{

F(i − 1, j)− d

Fx(i − 1, j)− e

}

(6)Fy(i, j) = max

{

F(i, j − 1)− d

Fy(i, j − 1)− e

}
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case of such transitions, there are no correlations between adjacent symbols. If the 
number of deletions is not large, it does not affect the result. In this case, n = s1(i) and 
s2(j) = 1 in Eq. 6; the values ​​are taken from the first column of the matrix M.

The traceback matrix was filled along with the dynamic programming matrix F. In 
each cell (i, j) of the traceback matrix, we stored the number of the matrix F′ cell at 
which the maximum is reached, using Eqs. 2–6; then, from the position correspond-
ing to the maximum F value (Fmax), we deduced the local alignment of the sequences 
using the traceback matrix.

To estimate the statistical significance of the obtained alignment, we performed simu-
lations by generating a set of random sequences through random shuffling of sequence 
S1 200 times. Then, Fmax corresponding to each shuffled sequence was calculated and 
used to estimate mean Fmax  and variance D(Fmax). The statistical significance was calcu-
lated using the following equation:

Distance between EDTA set consensuses

To explore the relationship between consensuses in the EDTA set, we analyzed the 
identity between each consensus pair. Pairwise global alignment was performed with a 
simple scoring scheme using R Biostrings package [34] and the identity based on the 
alignment was measured using PID1 formula from the same package: 100 × (identi-
cal positions)/(aligned positions + internal gap positions). The distance between two 
sequences was calculated as (100 −  identity) and the 39 × 39 distance matrix was con-
structed. To visualize the distance between consensuses, we applied multidimensional 
scaling to the distance matrix using cmdscale function in R and then used wordcloud R 
library to obtain graphical presentation of the distance in a two-dimensional space.

Genome scanning procedure

To search for SINE copies in the rice genome, we used a sliding window of length N 
(equal to the length of the consensus sequence) and assumed that the starting position 
of the window in the chromosome sequence was k. The window was moved along the 
chromosome with a step of 10 nt, and Z(l) was calculated for each position according 
to Eq.  (7), where l = + int (k/10); Then, we moved the window by 10 nucleotides and 
again performed calculations of Z(l). The calculations were repeated until k = L − N + 1, 
where L is the length of the analyzed rice chromosome. Then, the local maximum in 
the numerical Z (l) series was selected as the value exceeding a threshold Z0, which was 
chosen based on the condition that the number of copies of a SINE family found in the 
randomly shuffled rice genome should be about 20 (false positive hits). Our simulations 
showed that this condition corresponded to Z0 = 10.0. For all local Zmax > 10.0, we calcu-
lated the coordinates and constructed the alignments designated as copies of the corre-
sponding SINE families.

Simulated datasets

To compare the ability of the HDRSM and RepeatMasker to detect copies with low simi-
larity to the consensus as well as to correctly determine copy boundaries, we performed 

(7)Z = {Fmax − Fmax}/
√

D(Fmax)
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a set of tests simulating the presence of divergent SINE copies in a chromosome. The 
OsSN1 SINE from the SineBase database [9] was used as the original SINE sequence. 
The length of the sequence is 293 nucleotides.

To scan all test sequences and the rice genome RepeatMasker was run with the follow-
ing parameters: -no_is -nolow -cutoff 160.

FullLengthSet tests

In this series, the full-length OsSN1 sequence (293 nt) was used. In the first test, the 
sequence was modified by introducing 0.25 substitutions per position and in the sec-
ond, 0.5, 0.75, and 1.0 substitutions per position were made; in addition, each copy 
had 2–5 random indels. In total, 300 OsSN1 copies for each substitution level were 
created and inserted into a rice chromosome whose sequence was shuffled prior to 
insertions to remove traces of SINEs and other transposons that could be present. 
All modifications, insertions, and chromosome shuffling were performed in a random 
manner. Since the random number generator was used to choose the positions for 
substitutions, multiple substitutions at the same position are possible.

TrunkatedSet tests

In this series of tests, only the first 150 nt of OsSN1 were used as the initial sequence. 
Then, similarly to the first series, 0.25, 0.5, 0.75, and 1.0 substitutions per position and 
2–5 indels were randomly introduced into the initial sequence, yielding 300 copies 
per substitution, which were randomly inserted into a shuffled rice chromosome.

Small part tests

Additional tests to examine the ability of the method to detect truncated SINE copies 
of different length was performed using OsSN1 fragments of 220, 150, 75, and 50 nt 
constituting 75%, 50%, 25%, and 17%, respectively, of the original OsSN1 length (293 
nt); all fragments contained 0.25 substitutions per position. As in the other experi-
ments, 300 mutated copies of each length were generated and inserted into a ran-
domly shuffled chromosome.

Two consensus tests

The last set of tests was developed to explore the ability of the methods to distin-
guish between copies of different consensuses. In each of these tests we used cop-
ies of two consensuses. In the first test, two most similar consensuses (Cluster_9 and 
Os0604) were used. For each of them, we generated 300 copies with 0.25 substitutions 
per position and 2–3 indels per copy and inserted the resulted copies into a randomly 
shuffled chromosome, which was analyzed with RepeatMasker and HDRSM using 
Cluster_9 and Os0604 as the initial library. As a result, we analyzed the number of 
correctly discovered copies as well as that of misclassified copies. The same test was 
performed with the most distant consensus pairs Os1611/Os1815 (identity = 12.0) 
and the consensuses Os0604 and/Os1611 with Identity = 36.54. And another set of 
tests was performed with the same three pairs of consensuses (Cluster_9/Os0604, 
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Os0604/Os1611, and Os0604/Os1611) but in this case the substitution level between 
the consensus and the inserted copies was 0.5 per position.
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