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Background. Damage to the endothelium has been established as a key pathological process in lung transplantation and ex vivo
lung perfusion (EVLP), a new technology that provides a platform for the assessment of injured donor lungs. Damage to the lung
endothelial glycocalyx, a structure that lines the endothelium and is integral to vascular barrier function, has been associated with
lung dysfunction. We hypothesised that endothelial glycocalyx shedding occurs during EVLP and aimed to establish a porcine
model to investigate the mechanism underlying glycocalyx breakdown during EVLP. Methods. Concentrations of endothelial
glycocalyx breakdown products, syndecan-1, hyaluronan, heparan sulphate, and CD44, were measured using the ELISA and
matrix metalloproteinase (MMP) activity by zymography in the perfusate of both human (n� 9) and porcine (n� 4) lungs
undergoing EVLP. Porcine lungs underwent prolonged EVLP (up to 12 hours) with perfusion and ventilation parameters
recorded hourly. Results. During human EVLP, endothelial glycocalyx breakdown products in the perfusate increased over time.
Increasing MMP-2 activity over time was positively correlated with levels of syndecan-1 (r� 0.886; p � 0.03) and hyaluronan
(r� 0.943; p � 0.02). In the porcine EVLP model, hyaluronan was the only glycocalyx product detectable during EVLP (1 hr: 19
(13–84) vs 12 hr: 143 (109–264) ng/ml; p � 0.13). Porcine hyaluronan was associated with MMP-9 activity (r� 0.83; p � 0.02) and
also with dynamic compliance (r� 0.57; p � 0.03). Conclusion. Endothelial glycocalyx products accumulate during both porcine
and human EVLP, and this accumulation parallels an accumulation of matrix-degrading enzyme activity. Preliminary evidence in
our porcine EVLP model suggests that shedding may be related to organ function, thus warranting additional study.

1. Introduction

Ex vivo lung perfusion (EVLP) is a new technology designed
to improve lung function in retrieved organs with the ob-
jective to increase utilisation and decrease acute posttrans-
plant dysfunction [1, 2]. EVLP is a process whereby lungs are
perfused with a hyperoncotic solution at normothermia, with
concurrent ventilation, providing a platform for lung as-
sessment and reconditioning. Whilst undergoing EVLP,

failing lungs show impaired ventilation [3] and perfusion [4]
because of dysfunction of the endothelial [5, 6] and alveolar
epithelial [7–10] barriers, although the mechanism remains
incompletely understood.*e endothelium is the first barrier
to fluid extravasation with transplant studies associating
endothelial injury with deleterious outcomes such as alveolar
oedema, perivascular fluid accumulation, and endothelial
thrombosis [11, 12]. Increased perfusate levels of endothelial
activation biomarkers during EVLP are associated with the
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development of primary graft dysfunction after transplant
[10]. Furthermore, syndecan-1, a biomarker of endothelial
glycocalyx injury, has been shown to accumulate in the EVLP
perfusate with decreased concentrations associated with
suitability for transplantation [13].

*e endothelial glycocalyx (Figure 1) coats the luminal
surface of all blood vessels and is composed of glycosamino-
glycans (GAGs), namely, heparan sulphate, chondroitin sul-
phate, and hyaluronan, anchored to the underlying
endothelium via proteoglycans such as syndecan-1 and gly-
coproteins including CD44 [14, 15]. Damage to the glycocalyx
can be caused by several processes common in the trans-
plantation pathway including hypotension/shock [16, 17] and
ischaemic reperfusion injury [18, 19]. *e mechanism(s)
leading to endothelial glycocalyx breakdown and shedding are
still emerging; however, it is known that free radicals created
during ischaemic reperfusion injury [20, 21], along with the
subsequent activation of matrix metalloproteinases [20, 22] and
cell surface endoglycosidases [23–25], can all shed different
components of the endothelial glycocalyx [26]. In addition, lung
transplant studies have demonstrated MMP activity to be as-
sociated with graft dysfunction on ex vivo lung perfusion [27]
and with ischaemic reperfusion injury in recipients [28, 29].

Given the integral role the endothelial glycocalyx plays in
both mechanotransduction and vascular barrier function,
we hypothesised that endothelial glycocalyx integrity may be
important for organ performance during EVLP. No studies
have investigated the relationship between endothelial gly-
cocalyx breakdown and organ dysfunction on EVLP. *e
aims of this study were (1) to determine if multiple endo-
thelial glycocalyx breakdown products are shed into the
perfusate of human lungs on EVLP using previously vali-
dated biomarkers, (2) to investigate the mechanism(s) be-
hind this shedding in EVLP by the establishment of a
porcine ex vivo lung perfusion model, and (3) to correlate
increases in endothelial glycocalyx biomarker concentra-
tions with shedding of the glycocalyx visualised utilising
sidestream dark field imaging.

2. Methods

2.1. Ethical Approval. Human EVLP experiments were ap-
proved by*e Prince Charles Hospital Human Research and
Ethics Committee (HREC/13/QPCH/154). Samples were
accessed when the donor family had consented to research as
part of the consent process for organ donation. *e porcine
EVLP studies were approved by the Animal Ethics Com-
mittee,*eUniversity of Queensland, Australia. Pigs used in
this study were treated in accordance with the Animal Care
and Protection Act 2001, Queensland, and the Australian
code for the care and use of animals for scientific purposes
published by the National Health and Medical Research
Council, Australia. All pigs were sourced from *e Uni-
versity of Queensland Gatton campus’ commercial piggery.

2.2. Human Ex Vivo Lung Perfusate Samples. Human EVLP
perfusate samples were derived from 9 human lung per-
fusion cases (5 clinical and 4 experimental; Table 1). Organ

retrieval and human lung ex vivo lung perfusion were
performed under standard protocols at *e Prince Charles
Hospital (Supplementary Method 1). Of the 9 lungs, only 3
were deemed suitable for transplant using clinical criteria
(detailed in Supplementary Method 1).

*e perfusate samples were centrifuged (5000g for
10mins), and the supernatant was stored at − 80°C. *e
samples were collected at the start and then every 15minutes,
with a minimum of 3 samples available.

In the experimental group of 4 lungs, the initial samples
were not available from the start of perfusion (time on rig
before samples were collected is noted in Table 1) because of
ethical constraints that limited the gathering of samples
whilst the organs were still undergoing clinical EVLP. After
being deemed not suitable for transplant, the experimental
EVLP lungs underwent prolonged perfusion (60–90min) as
part of another study. In the experimental group lactate,
glucose and PaO2 were measured from blood leaving the left
atrial remnant. No lung perfusion and ventilation data
(dynamic compliance, pulmonary vascular resistance, pul-
monary artery pressure, and flow rate) was available.

2.3. Establishment of Porcine Protocol. To define the role of
endothelial glycocalyx breakdown and lung function, we
established a porcine model of prolonged EVLP and aimed
to measure endothelial glycocalyx breakdown products in
the perfusate. *e porcine EVLP protocol is included in
Supplementary Method 2 detailing the retrieval technique,
setup of the ex vivo lung perfusion system, and reperfusion
and ventilation strategy. Four healthy (40–48 kg) pigs were
anaesthetized and surgically prepared for lung retrieval
before death was induced by intracardiac injection of
pentobarbital (Virbac, Australia), resulting in ventricular
fibrillation with organs immediately retrieved as per human
lung retrieval. After 4 hrs in static cold storage, the lungs
were connected to the open atrium Vivoline LS1 EVLP rig
(Vivoline Medical, Sweden). In a similar method to that
described by Cypel et al. [30], the lungs were perfused with a
Steen solution with autologous blood and gradually warmed
(see Supplementary Method 3). Once perfusate temperature
reached 32°C, ventilation was commenced. Perfusion and
ventilation were continued for 12 hours or until lungs were
too oedematous to continue EVLP, as indicated by the
perfusate clearly accumulating in the tracheal tube.

2.4. Porcine Ex Vivo Lung Perfusion Evaluation. Sampling
and recording of perfusion and ventilation parameters were
undertaken hourly on EVLP. Gas exchange function was
measured using arterial blood gases (i-STAT, Abbott Point of
Care, USA). Perfusate samples were collected for glucose and
endothelial glycocalyx breakdown product analysis (10ml was
centrifuged, and the supernatant was stored at − 80°C for later
batch analysis). Biopsies of lung tissue were collected at 3 hrs
and at completion for wet : dry weight ratio analysis.

2.5. Measurement of Endothelial Glycocalyx Breakdown
Products. Human endothelial glycocalyx breakdown
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products were measured in the perfusate using enzyme-
linked immunosorbent assay (ELISA) kits for hyaluronan,
syndecan-1, CD44 (R&D Systems Inc., Minneapolis, MN,
USA), and heparan sulphate (Cusabio Biotech, Wuhan,
China) following the manufacturer’s instructions.

Endothelial glycocalyx breakdown products in the
porcine EVLP perfusate were measured using ELISA kits for
hyaluronan (R&D Systems Inc., Minneapolis, MN, USA)
and heparan sulphate (Cusabio Biotech, Wuhan, China). In
addition, porcine heparan sulphate proteoglycan (Elabs-
cience Biotechnology, Wuhan, Hebei, China), heparan
sulphate (MyBioSource Inc., CA, USA), and porcine syn-
decan-1 (Cusabio Biotech, Wuhan, China) ELISA kits were
utilised in an attempt to measure endothelial glycocalyx
breakdown products in the porcine EVLP perfusate.

2.6. Matrix Metalloproteinase Activity. To investigate the
pathophysiology underlying endothelial glycocalyx dys-
function during EVLP, levels of matrix metalloproteinase 2
and 9 activity were determined. Perfusate samples of both
human and porcine lungs were subjected to electrophoresis
(130 volts for 120minutes with molecular weight standards)
followed by gel zymography (Novex 10% zymogram gel

(0.1% gelatin), Invitrogen) according to the manufacturer’s
instructions. Stained gels, which showed zones of lysis as
clear areas against a blue background, were then photo-
graphed, and images were analyzed using ImageJ (US Na-
tional Institutes of Health, USA) to calculate relative area.

2.7. Porcine Lung Imaging Using Sidestream Dark Field
Microscopy. To visually correlate endothelial glycocalyx
shedding, pulmonary pleural capillaries were visualized by
sidestream dark field (SDF) microscopy, a technique vali-
dated in human sublingual [31] and renal [32] capillary
glycocalyx studies. Similar to the technique outlined by den
Uil et al. [33] for pulmonary pleural and alveolar capillaries,
an SDFMicroscan videomicroscope (INOVANZ, Australia)
was used to obtain two-dimensional video images (at 25Hz)
of pulmonary structures. *e detailed methods for this
technique are described in Supplementary Method 4 with
video images captured in situ before lungs were retrieved
and once lungs were stable on the EVLP circuit and fully
ventilated at the 1, 6, and 12 hr (or completion) time points.

2.8. Statistical Analysis. Results are expressed as median
(interquartile range) unless otherwise stated. All analysis was

Endothelial basement membrane

Erythrocyte

CD44 with
hyaluronan

Syndecan-1 with 
heparan sulphate

ICAM-1
EC-SODvWF

eNOS

Antithrombin

Figure 1: Endothelial glycocalyx: longitudinal cross section of blood vessels with endothelial cells adherent to the endothelial basement
membrane. *e endothelial glycocalyx is secreted by the underlying endothelial cells and projects 0.5–1.2 μm into the blood vessel lumen
forming a negatively charged meshwork of glycosaminoglycan branches that interact and form a barrier to the overlying albumin,
macromolecules, and red blood cells alike. *e most numerous components of the glycocalyx are the anchoring proteoglycan syndecan-1
with its attached glycosaminoglycans, namely, heparan sulphate (represented by the blue rectangles and lines) and chondroitin sulphate (not
drawn). Another structural component is hyaluronan, which occurs in chains, of several million dalton in size, attached to the underlying
endothelium by the glycoprotein CD44 (represented by the green triangles and lines). *e glycocalyx interacts with other endothelial
structures such as intracellular adhesion molecule-1 (ICAM-1; represented by the green T’s) by acting as a physical barrier and preventing
leucocytes from reaching these much shorter glycoprotein adhesion molecules. Shown also are the adherent plasma proteins that interact
with the glycocalyx, providing vital endothelial functions such as haemostasis by binding von Willebrand factor (vWF; represented by the
magenta objects) and antithrombin (represented by the grey circles). In addition, binding extracellular superoxide dismutase (EC-SOD;
represented by the gold triangles) and endothelial nitric oxide synthase (eNOS; represented by the yellowish green cylinders), the glycocalyx
contributes to protection from free radical injury and mechanotransduction, respectively.
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performed using Prism v7 (GraphPad Software Inc., CA,
USA). Correlations were assessed using the Spearman rank-
order correlation test. *e Wilcoxon signed-rank test was
used to assess the change in biomarker levels from start to
completion of perfusion for both human and porcine lungs.
*e Mann–Whitney test was used to assess differences
between transplanted and nontransplanted lungs.

3. Results

3.1. Endothelial Glycocalyx Breakdown Products Accumulate
in Human Ex Vivo Lung Perfusate. Endothelial glycocalyx
breakdown products accumulate in the perfusate from start
to completion with significant increases in syndecan-1 (2259
(1740–9107) to 7368 (2693–16786) pg/ml; p � 0.004), hya-
luronan (257 (233–741) to 1033 (333–1301) ng/ml;
p � 0.004), heparan sulphate (399 (334–608) to 612 (426–
723) ng/ml; p � 0.012), and MMP-2 (10145 (2333–26005) to
19430 (3991–42447) arbitrary units (AU); p � 0.031) (Fig-
ure 2). Although limited by small numbers, there was a
nonsignificant trend for increased levels of hyaluronan and
syndecan-1 in organs that were not transplanted compared
to transplanted lungs (Figure 3).

3.2. Endothelial Glycocalyx Breakdown Is Associated with
MMP Activity. *e relationships between endothelial gly-
cocalyx breakdown products and one of their key degra-
dation enzymes, matrix metalloproteinase, were assessed at
completion of EVLP. Notably, there was a strong positive

relationship between MMP-2 activity, but not MMP-9, and
increased syndecan-1 (r� 0.886; p � 0.03) and hyaluronan
(r� 0.943; p � 0.02) levels. No significant relationship
existed between the accumulation of hyaluronan and its
main endothelial binding receptor CD44 (r� − 0.214;
p � 0.62), suggesting increased hyaluronan was likely re-
lated to fragmentation of high-molecular-weight hyaluronan
rather than en bloc endothelial shedding. No association was
seen between heparan sulphate and its main binding pro-
teoglycan syndecan-1 (r� 0.517; p � 0.161) although syn-
decan-1 and hyaluronan levels were closely related
(r� 0.783; p � 0.017).

3.3. Hyaluronan Accumulates in Porcine EVLP Perfusate and
Is Associated with MMP Activity and Lung Function.
*ere was a trend for increased hyaluronan accumulation
in the EVLP perfusate over time (19 (13–84) vs 143
(109–264) ng/ml; p � 0.13), whilst heparan sulphate levels
remained stable (83 (75–97) vs 89 (84–126) ng/ml;
p � 0.38) (Figure 4). *e lack of increase of heparan
sulphate in the perfusate over time may have been related
to sensitivity of the assay as levels were at the lower limit
of detectability. *e endothelial glycocalyx markers
heparan sulphate proteoglycan and syndecan-1 were
below the level of detection (data not shown). A non-
significant increase was seen for MMP-9 and MMP-2
activity over perfusion, as shown in Figure 4 (p � 0.13 and
p � 0.13, respectively). *ere was a negative association
between hyaluronan and dynamic compliance (r � − 0.74;

Table 1: Human donor EVLP data.

No. Type Age Sex Weight
(kg) Mode of death Donation

process

PaO2 at
retrieval
(mmHg)

Time of the
first sample

(mins)
Transplanted Reason for declined

transplant

1 Experimental 60 Female 127 Cardiac arrest DCD 469 300 No Worsening
pulmonary oedema

2 Experimental 40 Male 90 Subarachnoid
haemorrhage

Brain
death 304 240 No Bilateral

consolidation

3 Experimental 63 Male 75 Asphyxia Brain
death 400 150 No

Age, heavy smoking
history, and

emphysematous
bullae at retrieval

4 Experimental 40 Female 50 Cerebral
haemorrhage

Brain
death

250
(PEEP 10) 0 No

Blood group B, poor
gas exchange, and
heavy smoker

5 Clinical N/A Male N/A Brain injury
from fall

Brain
death 228 0 No

Poor gas exchange
and long cold
ischaemic time

6 Clinical 56 Female 90 Subarachnoid
haemorrhage

Brain
death 181 0 Yes

7 Clinical 30 Female N/A Anoxic brain
injury

Brain
death 266 0 Yes

8 Clinical 53 Male 90
Cerebral

hypoxia after
cardiac arrest

DCD N/A 0 No Poor gas exchange

9 Clinical 26 Female N/A
Traumatic
brain injury
from fall

Brain
death 366 0 Yes

DCD: donation after circulatory death; brain death: donation after brain death; PaO2: arterial oxygen concentration.
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p � 0.05), at the start and completion of EVLP perfusion.
*ere was also a significant strong positive association
between hyaluronan and MMP-9 (r � 0.83; p � 0.02), but
the association with MMP-2 (r � 0.67; p � 0.08) did not
reach significance.

We also assessed ventilation and perfusion parameters
whilst porcine lungs underwent EVLP. Initially, pulmonary
vascular resistance was extremely high in all 4 porcine lungs
before rapidly decreasing over the first hour as lungs were

warmed to 37°C and increased to full flow (Figure 5).
Subsequently, pulmonary vascular resistance slowly in-
creased over perfusion after the first 1 to 2 hrs. In all lungs,
there was a trend towards decreased pulmonary function
with decreased PaO2 and lung compliance over perfusion
(Figure 5). Positive end-expiratory pressure was gradually
increased over the time course as the level of interstitial
oedema increased. *e wet : dry weight ratio increased from
4.6 (3.8–6.2) at the 3 h to 7.1 (5.9–8.9) at completion.
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Figure 2: Perfusate levels of endothelial glycocalyx breakdown products andmatrix metalloproteinases (MMPs) over time during human ex
vivo lung perfusion (EVLP). *e start time point varied for lungs and is detailed in Table 1. Lungs 1–4 were experimental lungs that
underwent prolonged perfusion. Tx: lungs transplanted after EVLP; No Tx: lungs not transplanted after EVLP; pg/ml: pictograms per ml;
ng/ml: nanograms per ml.
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3.4. Porcine EVLP Is Comparable to Human EVLP. In both
human and porcine EVLP, glucose was metabolised over time
with a subsequent increase in lactate levels detectable in the
EVLP perfusate (Figures 6(a) and 6(b)). Glucose utilisation rates
were similar between human and porcine lungs (0.029
(0.015–0.053) vs 0.025 (0.020–0.027)mmol/L/min; p � 0.68);

however, rates of lactate accumulation were significantly higher
in the human perfusate (0.047 (0.037–0.086) vs 0.024 (0.017–
0.025)mmol/L/min; p � 0.03). Rates of hyaluronan accumu-
lation were significantly higher in human lungs than in porcine
lungs (8.61 (3.3–10.27) vs 0.173 (0.13–0.392) ng/ml/min;
p � 0.002). MMP-2 was significantly higher in the human lung
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Figure 4: Porcine EVLP perfusate endothelial glycocalyx breakdown products and MMP levels over time.
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perfusate (130.7 (44.28–173.9) vs 12.95 (9.37–16.75)AU/ml/
min; p � 0.019), with a similar pattern for MMP-9 (80.23
(37.3–199) vs 13.47 (3.46–42.36)AU/ml/min; p � 0.11) that
did not reach significance.

3.5. Sidestream Dark Field Microscopy Was Unable to
Measure Endothelial Glycocalyx Shedding. Utilising the
currently available technology, the SDF microscope was
unable to capture images of pulmonary pleural capillaries of
sufficient quality to visualise the glycocalyx because of
movement artifacts from the heart.*e glycocalyx of visceral
pleural capillaries was able to be visualised as shown in
representative images taken from the captured video of lungs
in situ (Figure 7(a)). On EVLP, the visceral pleural vessels
were absent, suggesting that there was no perfusion to the
pleura. Because of these limitations, we were unable to
correlate accumulation of the endothelial glycocalyx
breakdown products in the perfusate with direct visual-
isation of shedding of the glycocalyx. *e SDF imaging
allowed us to clearly visualize the alveoli while on extended
EVLP (Figure 7(b)); however, there was no difference in the
lung images recorded at 1, 6, and 12 hrs (or completion)
(data not shown). *ere was a marked difference in the
appearance of oedematous areas, hemorrhagic lung tissue
(Figure 7(d)), and normal ventilated lung tissue (Figure 7(c))
on SDF imaging, taken at peak of inspiration, which cor-
related with visual inspection.

4. Discussion

*is study demonstrated that endothelial glycocalyx break-
down products accumulate in the human EVLP perfusate.
Furthermore, in our porcine EVLP model, hyaluronan in the
perfusate was negatively related to lung function, with in-
creasedMMP activity being demonstrated in both human and
porcine EVLP perfusate. Our findings provide preliminary
evidence that shedding of the endothelial glycocalyx is oc-
curring in EVLP and suggest it may have a role in lung
function on EVLP. *e importance of the endothelial gly-
cocalyx in pulmonary vascular integrity has been demon-
strated in mouse studies with shedding of the endothelial
glycocalyx resulting in neutrophil adhesion [34], perfusion
failure of microvessels, increased alveolar septal width, and
pulmonary artery pressures [35]. Further evidence arises from
mouse studies associating ischaemic reperfusion with injury to
the glycocalyx and shedding of pulmonary endothelial syn-
decan-1 leading to increased vessel permeability and stress
fiber formation [36]. *e accumulation of endothelial glyco-
calyx breakdown products during trauma in the systemic
circulation of humans [37, 38] suggests that similar glycocalyx
dysfunction may occur in EVLP.

Evidence supporting a possible role of endothelial gly-
cocalyx dysfunction in poor organ performance during
EVLP comes from the observed association between en-
dothelial glycocalyx breakdown products and their known
degradation enzymes [26]. We studied gelatinases (MMP-2
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Figure 5: Porcine EVLP and ventilation parameters first recorded at 1 hr after the initiation of perfusion. Pulmonary vein sampling of PaO2
was collected from blood leaving the left atrial remnant with FiO2 100%.
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and MMP-9), as these have previously been associated with
graft dysfunction on ex vivo lung perfusion [27], ischaemic
reperfusion injury [28, 29], and rejection in lung trans-
plantation [39]. Furthermore, MMP-2 is constitutively
expressed by pulmonary endothelial cells and fibroblasts,
whilst MMP-9 is associated with inflammatory cells [40].
Using the porcine lung EVLP model, Soccal et al. [27]
correlated bronchoalveolar lavage MMP-2 and MMP-9
activity with altered alveolar-capillary permeability and at-
tributed this to injury of the extracellular matrix and neu-
trophil influx. Whilst Andreasson et al. confirmed this
accumulation of MMPs in human EVLP perfusate [13].
Recent studies into endothelial glycocalyx pathophysiology
have demonstrated a clear association between MMP ac-
tivity and shedding of syndecans from the glycocalyx [41–
43]. Our study results support a pathological role of MMPs
in EVLP and suggest a relationship between MMP enzyme
activity and endothelial glycocalyx shedding.

Shedding of endothelial glycocalyx is a complex process
with multiple pathways [44]. Enzymes such as heparanase
and hyaluronidase derived from endothelial cells and
platelets are activated in ischaemia reperfusion injury and
cause shedding of heparan sulphate and hyaluronan, re-
spectively [26]. We were not able to measure heparinase as
heparin, a potent antiheparanase molecule, was included in
our perfusate. In addition to enzymatic degradation, frag-
mentation of the glycocalyx can be caused directly by

reactive oxygen species [45, 46]. Hyaluronan fragments have
been demonstrated to precipitate MMP secretion and ac-
tivation [47] along with stimulation of a sterile inflammatory
response through toll-like receptor activation [48, 49].
Hyaluronan accumulation in human EVLP was associated
with MMP-2 activity, whilst in porcine EVLP, it was as-
sociated with MMP-9. *e difference may be related to
different blood products utilised in the ex vivo lung per-
fusate. For human EVLP, leukocyte-depleted packed red
blood cells that had been washed and irradiated were uti-
lised, whilst in porcine EVLP, packed red blood cells were
used, which contain more leucocytes that are known to
produce MMP-9. Further research is needed to delineate the
role of individual enzymes and how these relate to lung
ischaemia reperfusion, glycocalyx injury, and organ function
during EVLP.

*e findings of this study suggest an association between
endothelial glycocalyx shedding and lung dysfunction during
EVLP. Other investigators have demonstrated that degrada-
tion of hyaluronan in experimental vascular studies leads to
decreased shear-induced release of endothelial nitric oxide
[50] and increased capillary permeability [51]. Our porcine
model demonstrated hyaluronan accumulation was associated
with decreased lung compliance and a corresponding increase
in wet : dry weight ratio. *erapeutic high-molecular-weight
hyaluronan has been shown to mitigate pulmonary hyper-
permeability in lipopolysaccharide and ischaemic reperfusion
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Figure 6: (a) Human and (b) porcine EVLP perfusate glucose and lactate levels.
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injury mouse models, suggesting a critical role of hyaluronan
in the lung endothelial glycocalyx [21, 52]. More work is
needed to clarify the association between decreased lung
compliance and hyaluronan seen in our study.

*e porcine EVLP model in this study was performed
similarly to existing models of prolonged open atrium
porcine EVLP, with a gradual decrease in dynamic com-
pliance, corresponding to increase pulmonary oedema
[4, 53, 54]. Additionally, the changes in lactate and glucose
are consistent with human EVLP studies [55, 56]. Although
our porcine model appeared to mirror metabolism in
human lungs maintained on EVLP, the only measurable
glycocalyx breakdown product was hyaluronan with a
concentration 20 times less than that observed in human
lungs. Plausible explanations for this include the use of
lungs from juvenile pigs, which may not have yet developed
sufficient connective tissue composition [57]. Alternatively,
the lack of endothelial glycocalyx breakdown products
during porcine EVLP could have been related to the
comparatively low pulmonary artery flow rate, as flow rate
was only 40% of cardiac output (compared to 100% in
human EVLP), resulting in lower shear stress on the en-
dothelial wall [58]. Given the endothelial glycocalyx
composition and its relatively fragile nature, processing
techniques utilised in traditional histological evaluation of
tissues result in destruction of the glycocalyx. *e gold
standard for functional glycocalyx imaging is intravital

microscopy, utilising fluorescent labelled dextran mole-
cules of varying size to give real-time images; however, this
is limited to small animal models [59]. Although we were
unable to utilise SDF imaging, the loss of pleural perfusion
is a novel finding and is likely associated with the loss of
bronchial blood vessels at retrieval [60]. *e use of porcine
lungs as a model for human EVLP is accepted, with this
model performing similarly to those in the published lit-
erature; however, further work is needed to optimise in-
vestigative techniques for studying the endothelial
glycocalyx.

We recognise several limitations to this study: Firstly, the
low number of clinical EVLP runs performed at our center
prevents us from drawing any firm conclusions regarding the
utility of measuring glycocalyx products as biomarkers of
organ function. We postulate that, with a large sample size,
endothelial glycocalyx biomarkers could prove to be accurate
markers of pulmonary endothelial health and valuable tools
for organ selection. Secondly, similar to all studies utilising
biomarkers to estimate glycocalyx injury, we were unable to
quantify the contribution of the extracellular matrix constit-
uents hyaluronan and heparan sulphate to levels in the per-
fusate [61]. However, unlike other studies which have
examined endothelial glycocalyx breakdown products in the
peripheral blood [37, 62, 63], we can exclude glycocalyx
breakdown contributions from the systemic vasculature. In
addition, the potentially confounding effects of metabolism of

(a) (b)

(c) (d)

Figure 7: Porcine sidestream dark field imaging. Representative images are captured frames from a video recorded using the ImageJ
software. (a) In situ normal pleural blood vessels before organ retrieval (black arrows). (b) In situ normal alveoli before organ retrieval.
(c) Alveoli on EVLP in healthy, well-ventilated nonoedematous portions of the lung with the grey arrows inside an alveolus indicating the
margin. (d) Alveoli on EVLP in haemorrhagic oedematous portions of the lung with the white arrows highlighting the interalveolar septum
that contains haemoglobin giving it the black discolouration. Scale bar is 250micrometers.
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endothelial glycocalyx components can be excluded as they
occur primarily in the liver and kidney [64]. Additional
studies, combining direct imaging, biomarkers, and functional
parameters, are needed to delineate the relationship between
endothelial glycocalyx dysfunction and EVLP.

5. Conclusion

*is study demonstrated that endothelial glycocalyx prod-
ucts can be measured in the human EVLP perfusate, raising
the possibility of these being used as biomarkers for lung
function and organ selection on EVLP. Although the
findings of this pilot study require further investigation, the
observed association between glycocalyx shedding and
MMP activity may provide insight into the mechanisms
underlying glycocalyx shedding during EVLP. *is research
highlights EVLP as a modality for evaluating the pulmonary
endothelial glycocalyx and provides a platform for future
investigations into the glycocalyx structure and function
during the lung transplant process.
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