
����������
�������

Citation: Chen, Q.-Y.; Zhao, B.-R.;

Zhao, Y.-F.; Yang, H.; Xiong, K.; He, Y.

Tuning the Electronic and Optical

Properties of the Novel Monolayer

Noble-Transition-Metal

Dichalcogenides Semiconductor

β-AuSe via Strain: A Computational

Investigation. Nanomaterials 2022, 12,

1272. https://doi.org/10.3390/

nano12081272

Academic Editor: Frederik Tielens

Received: 22 February 2022

Accepted: 6 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Tuning the Electronic and Optical Properties of the Novel
Monolayer Noble-Transition-Metal Dichalcogenides
Semiconductor β-AuSe via Strain:
A Computational Investigation
Qing-Yuan Chen 1,* , Bo-Run Zhao 1, Yi-Fen Zhao 1, Hai Yang 1, Kai Xiong 2 and Yao He 3,*

1 School of Physical Science and Technology, Kunming University, Kunming 650214, China;
borunzhao@163.com (B.-R.Z.); zyfen0402315@163.com (Y.-F.Z.); kmyangh@263.net (H.Y.)

2 Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091, China;
xiongkai@ynu.edu.cn

3 Department of Physics, Yunnan University, No. 2 Green Lake North Road, Wu Hua Qu,
Kunming 650091, China

* Correspondence: qingyuanchen212@163.com (Q.-Y.C.); yhe@ynu.edu.cn (Y.H.)

Abstract: The strain-controlled structural, electronic, and optical characteristics of monolayer β-
AuSe are systematically studied using first-principles calculations in this paper. For the strain-
free monolayer β-AuSe, the structure is dynamically stable and maintains good stability at room
temperature. It belongs to the indirect band gap semiconductor, and its valence band maximum
(VBM) and conduction band minimum (CBM) consist of hybrid Au-d and Se-p electrons. Au–Se
is a partial ionic bond and a partial polarized covalent bond. Meanwhile, lone-pair electrons exist
around Se and are located between different layers. Moreover, its optical properties are anisotropic.
As for the strained monolayer β-AuSe, it is susceptible to deformation by uniaxial tensile strain. It
remains the semiconductor when applying different strains within an extensive range; however, only
the biaxial compressive strain is beyond −12%, leading to a semiconductor–semimetal transition.
Furthermore, it can maintain relatively stable optical properties under a high strain rate, whereas the
change in optical properties is unpredictable when applying different strains. Finally, we suggest that
the excellent carrier transport properties of the strain-free monolayer β-AuSe and the stable electronic
properties of the strained monolayer β-AuSe originate from the p–d hybridization effect. Therefore,
we predict that monolayer β-AuSe is a promising flexible semiconductive photoelectric material in
the high-efficiency nano-electronic and nano-optoelectronic fields.

Keywords: two-dimensional materials; β-AuSe; structural property; electronic property; optical
property; strain effect; p–d hybridization effect

1. Introduction

With the development of investigations into new energy and photoelectric fields,
researchers’ demand for the high performance of materials is increasing [1–6]. The research
into and application of two-dimensional materials, a promising new field, have seen sig-
nificant progress in recent years. More and more two-dimensional (2D) materials have
been designed and prepared. According to the individual characteristics of different 2D
materials, they can be divided into different types. Because of their distinct functional char-
acteristics, 2D materials have attracted much attention in the new energy and photoelectric
fields [7–21]. Among them, 2D transition-metal dichalcogenides (TMDs) are essential.
Due to the diversity of its constituent elements, the family members of TMDs are numer-
ous [9–12]. There are some outstanding characteristics of TMDs in common, such as band
gaps that cover the visible and near-infrared light (1.1–2.5 eV) regions, strong Coulomb
interactions, and strong light-matter coupling, which leads to its wide application in new
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energy and photoelectric fields, such as solar cells, photocatalysis, luminescent materials,
and photodetectors [9–14]. However, low carrier mobility (about 200–500 cm2 V−1 s−1) is
one of the factors limiting the development of TMDs. Therefore, finding and designing
novel TMDs with excellent photoelectric properties and high carrier mobility has become
an important research direction. To achieve this purpose, researchers mainly adopt two
methods. One is searching for and designing new 2D materials with excellent photoelectric
properties and high carrier mobility in other types of 2D materials besides TMDs. The
other is continuously exploring novel TMD materials or modifying existing materials to
meet expectations.

In recent years, a new 2D material, named noble-transition-metal chalcogenides (NT-
MDs), composed of noble-transition-metal elements and chalcogenides, has been discov-
ered. Up to now, scientists have theoretically predicted or experimentally prepared NTMDs
such as PtTe2, PdTe2, PtSe2, PtS2, PdS2, and PdSe2 [22–28]. These new 2D NTMDs are
rich in d-electrons and exhibit some special properties such as strong interlayer interac-
tion, unique pentagonal structure, diverse phases, high mobility and stability, and largely
tunable electronic structures, which offset the deficiencies of traditional TMDs and black
phosphene. Therefore, NTMDs have good application prospects in the field of new energy
and optoelectronics [22–29]. However, because they are a new type of 2D material, there is
scarce research on NTMDs. Hence, systematic research on NTMDs is important.

Recently, a novel 2D material consisting of noble-transition-metal Au and chalcogenide
Se has been reported. In 2019, Gong et al., using first-principles calculations, predicted that
the structure of 2D β-AuSe is stable, and its suitable band gap leads to its good response
to the light in the visible region. In addition, compared with traditional TMD materials,
2D β-AuSe has an exceptionally high carrier mobility (about 103–105 cm2 (V s)−1). More
importantly, the 2D β-AuSe exhibits in-plane anisotropy in light absorption coefficient, pho-
toconductivity, and carrier mobility. All of the above attractive properties make few-layer
β-AuSe a promising candidate for polarization-sensitive photodetectors, synaptic devices,
microdigital inverters, channel materials in field-effect transistors, and solar cells [26].
In the same year, Machogo et al. adopted Gold(III) chloride hydrate as a precursor for
prepared 2D β-AuSe using the colloidal synthesis method. They employed X-ray electron
spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and
ultraviolet-visible (UV-VIS) spectroscopy to observe its structural properties. Furthermore,
they found that the broad absorbance bands in the UV-VIS spectra of both α-AuSe and β-
AuSe showed localized surface plasmon resonance [30]. In the same year, Bai et al. used the
DFT method to study the structural properties and band structure of β-AuSe. The β-AuSe
showed excellent dynamic and thermodynamic stability, and its formation energy reached
−7.87 eV/atom [31]. In 2020, Tang et al. calculated the in-plane anisotropy of ultra-high
carrier mobility for β-AuSe using ab initio calculation. They found that the electrons prefer
to conduct along the square-planar (a) direction with mobility up to 3.98 × 104 cm2 (V s)−1

and the hole mobility along the linear (b) direction reaches 8.03 × 103 cm2 (V s)−1, which
is about 40 times higher than that along the a-direction, which reveals the contributions
of the two nonequivalent Au channels on its electronic properties [32]. Its application in
the field of high-efficiency optoelectronic devices was confirmed. In 2021, Yin et al. used
the first-principles method to design the photocatalytic hydrogen evolution reaction’s Z-
scheme heterostructures of AuSe/SnS. This kind of heterostructure can respond to the most
visible and ultraviolet light, and its solar-to-hydrogen (STH) efficiency reaches 23.96% [33].
Therefore, as a new kind of 2D NTMD material, 2D β-AuSe has a bright future in the new
energy and photoelectric field.

This paper investigates the strain-controlled structural and photoelectric properties of
the monolayer β-AuSe using first-principles calculations. We find that monolayer β-AuSe
is dynamically stable and keeps good stability at room temperature. As for electronic prop-
erties, strain-free monolayer β-AuSe belongs to the indirect band gap semiconductor. Its
valence band maximum (VBM) and conduction band minimum (CBM) are hybrid Au-d and
Se-p electrons. The band gap of monolayer β-AuSe is 1.21 eV and 1.8 eV using the Perdew-
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Burke-Ernzerhof (PBE) and Heyd-Scuseria-Ernzerhof (HSE06) methods, respectively. The
Au–Se bond consists of a partial ionic bond and a partial polarized covalent bond. Mean-
while, lone-pair electrons exist around Se and lie between different layers. Moreover, the
strained monolayer β-AuSe remains the semiconductor when applying different strains
within an extensive range; however, only the biaxial compressive strain beyond −12%
leads to a semiconductor–semimetal transition. As for the optical properties, strain-free
monolayer β-AuSe are anisotropic. Furthermore, its optical absorption properties in the
ultraviolet (UV) region are better than in the visible (VIS) region. However, the reflection
properties differ in the UV and VIS regions and in different directions. In addition, changes
in optical properties vary under different strains. Finally, we suggest that the strain-free
monolayer β-AuSe’s excellent carrier transport properties and the strained monolayer
β-AuSe’s stable electronic properties originate from the p–d hybridization effect. Hence, it
is a promising flexible semiconductive photoelectric material in the field of polarization-
sensitive optoelectronics, solar-blind photoelectric detection, environmental monitoring,
high-efficiency directional optoelectronics, and even ultraviolet communication.

2. Materials and Methods

In this paper, we used the version 5.4.1 of Vienna ab initio simulation package
(VASP) [34,35], which is based on the density functional theory (DFT), to accomplish
all of the first-principles calculations. VASP is a software package created, distributed,
and maintained by the Hafner Research Group at the University of Vienna in Vienna,
Austria. The projector-augmented wave approximation method was adopted to manage
the interaction between electrons [35,36]. The plane wave energy cutoff was chosen to be
600 eV. The generalized gradient approximation according to Perdew, Burke, and Ernzer-
hof (GGA-PBE) approximation method was chosen to deal with the exchange correlation
energy [34,37]. In order to verify the accuracy of the calculated results, the HSE06 hybrid
functional method [38,39] with high precision was employed to calculate the electronic
and optical properties. Based on previous studies, we know that the spin-orbit coupling
(SOC) effect only shrinks the calculated band gap slightly [26,31–33]. Therefore, in our
study, the electronic and optical properties of monolayer β-AuSe were calculated without
the SOC effect.

The 2D monolayer β-AuSe structure in our calculation was stripped from the bulk
β-AuSe (Figure 1a,b). In order to eliminate the interaction between different layers of 2D
β-AuSe in the z direction and better simulate the monolayer material, a vacuum layer of
30Å was added to our model in the z direction (Figure 1c–e). The structure in the black
framework in Figure 1 corresponds to the primitive cell of monolayer β-AuSe. There were
two types of Au atoms in the structure: Au atoms connected with four Se atoms were
named Au(4), and Au atoms connected with two Se atoms were called Au(2).

We adopted Gamma-central K-points with a grid size of 16 × 27 × 1 in the Brillouin
region. The energy convergence criterion adopted in our structural optimization calculation
was 10−7 eV.

The bulk and monolayer β-AuSe in the calculation are shown in Figure 1a–e. The
structural parameters are in accordance with earlier research [24,32,33].

We used both the PBE method and the HSE06 hybrid functional method to calculate the
related optical properties. First, the imaginary part of the frequency-dependent dielectric
function of the monolayer β-AuSe was calculated from Equation (1) [40]. In this equation,
ε2 refers to the imaginary part of the frequency-dependent dielectric function; c and v refer
to conduction and valence band states, respectively; and uck is the cell periodic part of the
wavefunctions at the k-point k.

ε2(ω) =
4π2e2

Ω
limq→0

1
q2 ∑

c,v,k
2wkδ(εck − εvk −ω)×

〈
uck+eαq

∣∣∣uvk

〉〈
uck+eβq

∣∣∣uvk

〉∗
. (1)
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Next, the real part of the dielectric function (ε1) was calculated according to the
Kramers–Kronig relation, as shown in Equation (2). Index P denotes the principal value [40].

ε1(ω) = 1 +
2
π

P
∞∫

0

ε
(2)
αβ (ω′)ω′

ω′2 −ω2 + iη
dω′ (2)

Then, we calculated its most important optical characteristics, such as the reflection
coefficient and absorption coefficient, according to Equations (3)–(5) [41]. Here, R(ω)
indicates the reflection coefficient, I(ω) indicates the absorption coefficient, c indicates the
velocity of light, and ε(ω) indicates the frequency-dependent dielectric function.

ε(ω) = ε1(ω) + iε2(ω), (3)

R(ω) =

∣∣∣∣∣
√

ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣2 =
(n− 1)2 + k2

(n + 1)2 + k2
, (4)

I(ω) =
(
√

2)ω
c

[

√
ε1(ω)2 + ε2(ω)2 − ε1(ω)]

1
2 , (5)
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Figure 1. (a,b) The crystal structure of the bulk β-AuSe. (c–e) The crystal structure of the monolayer
β-AuSe. The unit cell is in the black framework. (f) The phonon dispersion spectrums for the
monolayer β-AuSe. (g) The Brillouin zone of the monolayer β-AuSe.

3. Results
3.1. Properties of Monolayer Strain-Free β-AuSe
3.1.1. Structural Properties

First, we calculated the phonon spectrum of the bulk β-AuSe to verify the stability
of the bulk β-AuSe (Figure S1). We found that the bulk β-AuSe is dynamically stable
owing to the nonexistence of imaginary frequency in the entire BZ, which indicates that the
monolayer β-AuSe can be obtained by stripping from the bulk materials.

Secondly, we found that there is no imaginary frequency in the whole Brillouin zone
in the calculated phonon spectrum for monolayer β-AuSe (Figure 1f,g), which agrees well
with previous results (Tang [32] and Gong [26]). Additionally, the ab initio molecular
dynamics simulation (AIMD) is shown in Figure S2. The results confirm that the structure
of monolayer β-AuSe established in our study is correct. Meanwhile, the results indicate
that monolayer β-AuSe has good dynamic stability and stability at room temperature.
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3.1.2. Electronic Properties

Electronic properties such as the band structure, density of states, and charge density
are the main characteristics studied in 2D materials. In this study, we investigated the
electronic properties of monolayer β-AuSe in depth. This study could help us explore the
excellent electronic properties of 2D β-AuSe and explain the mechanisms of its outstanding
optical properties.

To start with, we studied the band structure and electron density of states (DOS) of
strain-free monolayer β-AuSe (Figure 2). The BZ and high-symmetry k-points are shown
in Figure 1g. Based on the calculated band structure and 3D band structure, we found that
monolayer β-AuSe is an indirect band gap semiconductor (Figure 2e,f). The band gap was
1.21 eV and 1.8 eV using the PBE method and HSE06 method, respectively, which agrees
with previous calculations [26,31–33]. Moreover, there was a significant band gap between
CBM and the other conduction bands. Furthermore, the projected band structure and the
partial density of states (Figures 3 and S3) reveal that the CBM of monolayer β-AuSe is
mainly composed of Au-d and Se-p electrons, and the VBM is composed of hybrid Au-d,
Se-p, and bits of Au-s electrons.

1 

 

 

Figure 2. (a,c) The band structure of the monolayer β-AuSe using the PBE method and HSE06 method,
respectively. (b,d) The density of states of the monolayer β-AuSe using the PBE method and HSE06
method, respectively. (e–g) The 3D band structure for the monolayer β-AuSe in different views.
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Figure 3. (a1,b1) The monolayer β-AuSe’s projected band structure of Au and Se using the HSE06
method. (a2–a4) The projected band structure of Au-s, Au-p, and Au-d electrons, respectively. (b2–b4)
The projected band structure of Se-s, Se-p, and Se-d electrons, respectively. (a5,b5) The partial density
of states of monolayer β-AuSe using the HSE06 method.

Next, to further study the interaction and bond nature between each atoms in mono-
layer β-AuSe, we calculated the charge density (CD) of CBM (Figure 4(a1–a3)) and VBM
(Figure 4(b1–b3)) (the isosurface value is 0.01). We can see that the hole states of VBM were
mainly provided by Au(2), and a small part was provided by Au(4). In comparison, the
electronic states of CBM were mainly provided by Au(4) and somewhat by Au(2). In other
words, the charge density of VBM was concentrated near Au(2), while the charge density of
CBM was located around Au(4).

Figure 4(c1–c3) shows the charge density difference of monolayer β-AuSe, where the
isosurface value was set to 0.006, which can be defined by Equation (6). ρAuSe, ρAu, and ρSe
denote the charge density of monolayer β-AuSe, Au, and Se, respectively.

∆ρ = ρAuSe − ρAu − ρSe (6)

As shown in Figure 4(c1–c3), in monolayer β-AuSe, both Au and Se atoms lost and
gained charge. The position where charge was gained was closer to Se atoms. Thus, we
assumed that the bonds of Au(4)–Se and Au(2)–Se were composed of partial ionic bonds
and partial polarized covalent bonds, and there were lone-pair electrons (LPEs) around Se.
According to the p–d hybridization model proposed by Tang et al., the —d hybridization
between the metal-d and chalcogens-p bands will delocalize the wavefunction of the band
edge states. The p–d hybridization could reduce the effective mass and improve the carrier
mobility [42]. Combining our results and our predecessors’ [26,42], we suggest that the
excellent carrier transport properties of the strain-free monolayer β-AuSe were due to the
extremely small deformation potential mentioned by Gong et al., the unique bond nature,
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the existence of LPEs, and the influence of the p–d coupling between metal Au-d and Se-p
bands around the VBM and CBM.
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3.1.3. Optical Properties

Exploring the application of 2D β-AuSe in the new energy field and photoelectric field
requires the study of its optical properties.

For strain-free monolayer β-AuSe, the complex dielectric function (ε), absorption
coefficient (I), and reflection coefficient (R) were calculated (Figure 5). The shaded area in
Figure 5 corresponds to the visible light region. In the a-direction, when the PBE method
is applied, the absorption edge was 1.49 eV. The first and second absorption peaks were
located at 2.25 eV and 2.58 eV, and there was a shoulder peak at 1.74 eV. These peaks were
all in the visible light region, and the absorption coefficient in the visible light region was up
to 2.32 × 104 cm−1. The maximum absorption peak was located in the UV region of 5.85 eV,
and its absorption coefficient was 1 × 105 cm−1. Its absorption coefficient decreased to zero
when the energy exceeded 17 eV. Moreover, its static reflectance was 6%, and its reflection
coefficient was less than 12% in the whole visible light region. Its maximum reflection
peak appeared in the UV region of 5.9 eV, and the coefficient was 23%. In the b-direction,
the absorption edge was 1.27 eV. The first and second absorption peaks were at 1.97 eV
and 2.58 eV. In the visible light region, the absorption coefficient reached 4.03 × 104 cm−1.
Its maximum absorption peak was in the UV region of 6.75 eV, and its coefficient was
7.83 × 104 cm−1. The absorption coefficient dropped to zero when the energy was above
17 eV. Its static reflectance was 10%. Its maximum reflection peak was at 1.71 eV in the
visible light region, and its maximum reflection coefficient reached 27%. In the visible light
region, its reflection coefficient decreased gradually with the increase in photon energy,
while in the UV region, its reflection coefficient was less than 13%. Furthermore, in the
a-direction, monolayer β-AuSe exhibited better transparency in the VIS region than in the
UV region. Nevertheless, in the b-direction, its transparency in the visible light was worse
than that in the UV region. Therefore, monolayer β-AuSe has intense optical anisotropy.
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When the HSE06 method was applied, the calculated optical properties were as shown
by the dotted line in Figure 5. Along the a-direction, its absorption edge was 2.05 eV. The
first light absorption peak was at 2.93 eV, which was in the visible light region. Moreover,
the peak value was 2.66 × 104 cm−1, which was slightly higher than the results obtained by
the PBE method. Its maximum absorption peak appeared in the deep UV region of 6.42 eV.
Its static reflectance was 2.8%, and its reflection coefficient was less than 9% in the whole
visible light region. Its maximum reflection peak was located in the UV region of 6.5 eV,
and the maximum reflection coefficient was 24%. The absorption coefficient and reflection
coefficient decreased to zero when the energy exceeded 12 eV. Along the b-direction, its
absorption edge was 1.71 eV. In the visible light region, its first absorption peak was at
2.68 eV with a peak value of 5.17 × 104 cm−1, which was slightly higher than the results
obtained by the PBE method. Its maximum absorption peak appeared at 5.9eV in the deep
ultraviolet region. Its static reflectance was 5.6%. The maximum reflection peak was in the
visible light region of 2.36 eV, and the reflection coefficient was less than 23%. However,
the reflection coefficient was less than 15% in the UV region. When the energy exceeded
12 eV, the absorption coefficient and light reflection coefficient decreased to zero.

The results displayed a high similarity to the optical properties obtained by the PBE
method and HSE06 method. The main differences between the results obtained by the
two methods were the optical absorption edge, static dielectric constant, static reflectance
coefficient, and the energy range of the principal peak values. These differences are mainly
due to modifying the exchange and correlation energy by using the HSE06 hybrid functional
method, which changes the band gap value.

We found that two factors cause the different optical characteristics in different direc-
tions: the low symmetry of the structure and the electrons in the a-direction and b-direction
exhibiting different localization and charge densities. Thus, the anisotropic carrier con-
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centration and charge density determined its difference in optical properties along the
a-direction and b-direction.

Based on the above results, we conclude that monolayer β-AuSe is a promising candi-
date in the field of flexible polarization-sensitive optoelectronics, solar-blind photoelectric
detection, environmental monitoring, high-efficiency directional optoelectronics, and even
ultraviolet communication.

3.2. Strain-Controllable Properties of Monolayer β-AuSe

2D materials are favored by researchers in the optoelectronics, and new energy fields
because of their distinct characteristics. Adjusting the photoelectric properties of 2D
materials by strain is feasible and effective. Therefore, the study of the change of monolayer
β-AuSe’s photoelectric properties tuned by strain is of great significance for its application
in the future.

3.2.1. Strain-Controllable Electronic Properties of Monolayer β-AuSe

First, we calculated the strain energy when different strains were applied (Figure 6).
The strain energy is the difference between the strained and strain-free monolayer β-AuSe.
Under a certain strain value, the calculated strain energy was lowest when the a-directional
uniaxial strain was applied, and highest when biaxial strain was exerted. For the same
type of strain, the strain energy’s variation of tensile strain was smaller than that of the
compressive strain. In other words, monolayer β-AuSe is most susceptible to deformation
when it is subjected to a-directional uniaxial tensile strain.
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For the strain-tunable electronic properties, the uniaxial and biaxial strain range from
−12% compressive strain to 12% tensile strain was considered. The band gap variations of
monolayer β-AuSe under different strains were calculated (Figure 7). The PBE and HSE06
methods were both adopted for our calculations. We found the same variation trend of the
band structure and the band gap using these two methods.
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Figure 7. The changes in band gap when different strains were applied: (a) under the biaxial strain,
(b) under the uniaxial strain along the a-direction, and (c) under uniaxial strain along the b-direction
using the PBE and HSE06 methods.

We next discuss the change in monolayer β-AuSe’s electronic properties when ap-
plying the uniaxial strain in the a-direction. First, the band gap of monolayer β-AuSe
decreased when increased compressive uniaxial strain was applied along the a-direction.
The band gap increased when the uniaxial strain changed from εa = 0 to εa = 9%. Moreover,
the band gap decreased when the strain increased from εa = 9% to εa = 12%. Secondly, the
band gap decreased when uniaxial strain was applied along the b-direction, regardless
of the compressive or tensile strain. Moreover, the decreasing degree under compressive
strain was more significant than that under tensile strain. According to the results obtained
by the HSE06 method, the band gap of monolayer β-AuSe did not reach zero in the range
from εb = −12% to εb = 12%. Thus, the monolayer β-AuSe could remain semiconducting
under the uniaxial strain from εb = −12% to εb = 12%. Thirdly, the band gap of monolayer
β-AuSe decreased when biaxial strain was applied. The band gap revealed a more notice-
able decrease when compressive strain was applied. When the biaxial strain ε = −12% was
applied, the band gap of monolayer β-AuSe became zero. Combined with the calculated
band structure (Figure 8 and Figure S4), monolayer β-AuSe exhibited semimetallic proper-
ties under ε = −12%. Namely, a semiconductor–semimetal transition occurred when biaxial
strain ε = −12% was applied.

More electronic properties of monolayer β-AuSe can be obtained from the calculated
band structure (Figures 8–10 and Figures S4–S6). First, when uniaxial strain in the a-
direction ranging from εa = −12% to εa = 9% was applied, the positions of VBM and CBM
remained the same, and the value of the band gap changed. Moreover, the calculated
strain-dependent change of band gap value was less than 0.16 eV using either the PBE
or HSE06 method. When εa = 12%, the CBM changed from the point between Y–Г to
the point between X–Г. Thus, monolayer β-AuSe exhibited stable electronic properties
under uniaxial strain along the a-direction. In the conduction band, the most apparent
variation appeared at the S point in the band, with energy higher than the band containing
the CBM. According to the previous analysis, this position is mainly occupied by Au-p
electrons. The energy of this position gradually increased, and this band was away from
the band containing the CBM when applying the a-direction uniaxial strain from εa =−12%
to εa = 12% (Figure 8 and Figure S4). Second, when uniaxial strain along the b-direction
ranging from εb = −12% to εb = 12% was applied, the positions of VBM and CBM remained
unchanged; only the value of the band gap changed (Figure 9 and Figure S5). As the
strain changed from εb = −12% to εb = 12%, the bandwidths of CBM decreased. In the
conduction band, the most apparent variation appeared in the band with energy slightly
higher than the band containing the CBM. From εb = –12% to εb = 12%, this band gradually
moved further away from the band of CBM. Thirdly, when biaxial strain, which ranged
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from ε = −12% to ε = 12%, was applied, the VBM and CBM were located at the same
position. Only the value of the bandgap changed. In particular, when ε = −12%, the CBM
overlapped with the VBM, indicating that a semiconductor–semimetal transition occurred
(Figures 10 and S6).
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Figure 8. The band structure when different uniaxial strains along the a-direction were applied using
the HSE06 method.
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In general, monolayer β-AuSe’s electronic properties showed different variations
when various strains were applied. The effect of uniaxial strain along the a-direction had
less impact on the electronic properties of monolayer β-AuSe compared with the uniaxial
strain along the b-direction and biaxial strain. A semiconductor–semimetal transition
occurred when biaxial compression strain larger than ε = −12% was applied. However, all
strains in the range of −12% to 12% had little effect on VBM and CBM. The main change in
the VBM and CBM bands was the bandwidth. In addition, different strains all had a strong
influence on the band, with slightly higher energy than the band of CBM in the conduction
band. That is to say, all of the strains mainly impacted the Au-p, Au-d, and Se-p electrons,
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which were farther away from the forbidden region, but had little influence on the Au-d
and Se-p electrons near the VBM and CBM. We assume that the partial ionic bonds, partial
polarized covalent bonds, LPEs around Se of monolayer β-AuSe, and the p–d hybridization
effect led to the changes in electronic properties due to strain but allowed for relatively
stable electronic properties under different strains.
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3.2.2. Strain-Controllable Optical Properties of Monolayer β-AuSe

Next, we discuss the changes in the optical properties of monolayer β-AuSe when
different strains are applied. In later sections, we discuss the calculated optical properties
obtained by the PBE method since we focus on the variation trend of monolayer β-AuSe’s
optical properties, and there is a high similarity between the optical properties of strain-
free monolayer β-AuSe obtained by the PBE method and HSE06 method. Moreover, the
calculation of the optical properties requires a large amount of computation time and
resources, while the PBE method could save on computing time and resources.

Figure 11 shows the changes in optical properties when imposing the uniaxial strain
along the a-direction. Here, we focus on the absorption and reflection properties. In terms
of absorption properties, in the a-direction and b-direction, the absorption edge revealed
an inapparent redshift when exerting compressive strain. The absorption edge showed a
more inconspicuous blueshift when applying tensile strain. The change in the absorption
edge was negligible due to the inconspicuous change in the band gap when we applied
the uniaxial strain along the a-direction. When shifting the strain from εa = −12% to
εa = 12%, in the a-direction, the absorption coefficient in the visible light region increased,
and the absorption range expanded. In the ultraviolet region, the maximum absorption
peak revealed a blueshift, and its value remained unchanged. In the b-direction, the
absorption coefficient in the visible light region decreased, while in the ultraviolet region,
the maximum absorption peak revealed a blueshift, and its value decreased. Furthermore,
the absorption range in the ultraviolet region narrowed. In terms of the reflection properties,
when changing the strain from εa = −12% to εa = 12% in the a-direction, the static reflection
coefficient and the reflection coefficient in the visible region increased, and the first reflection
peak gradually shifted to the blue region. When the applied strain was compressive (from
εa = 0% to εa = −12%), a new reflection peak arose in the 3–4 eV area, corresponding to
the violet and near-ultraviolet region. With the increased compressive strain, this peak
increased and shifted to red. In the deep ultraviolet region, the maximum reflection peak
increased and shifted to red when the uniaxial strain changed from εa = 0% to εa = −12%,
whereas it revealed a blueshift when the tensile strain changed from εa = 0% to εa = 12%.
In the b-direction, when applying strain from εa = −12% to εa = 12%, the static reflection
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coefficient and reflection coefficient decreased where the photon energy was located in the
VIS region; meanwhile, the first reflection peak gradually shifted to red. The absorption
edge showed a more inapparent blueshift when tensile strain was applied. In addition,
when the subjected compressive strain increased from εa = 0% to εa =−12%, a new reflection
peak appeared in the UV region in the range of 5–6 eV and 7–8 eV. This peak increased and
shifted to red with the enhancement of the compressive strain.
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Figure 11. The variations in the imaginary part of the dielectric function (ε2), real part of the dielectric
function (ε1), absorption coefficient (I), and reflection coefficient (R) when imposing the uniaxial
strain along the a-direction using the PBE method. Panels (a1–d1) and (a2–d2) show the results along
the a- and b-directions, respectively.

Figure 12 reveals the changes in monolayer β-AuSe’s optical properties under the
effect of b-directional uniaxial strain. In the a-direction, when uniaxial compression strain
from εb = 0% to εb = −12% was acting on it, the absorption edge and first absorption peak
exhibited an obvious redshift. Meanwhile, the value of the first absorption peak decreased
weakly. The absorption coefficient decreased in the visible region, where the energy was
greater than the energy of the first absorption peak. Moreover, the width of the absorption
in the visible region expanded. In the near-UV region, the maximum absorption peak’s
value decreased with an increase in the compressive strain. The absorption coefficient
increased with the enhancement of the compressive strain in the deep UV area of energy
greater than 7 eV. In terms of the reflection properties, with the increase in compressive
strain, the static reflection coefficient increased, and the first reflection peak increased and
shifted to red. In the meantime, the reflection coefficient in the visible light region decreased,
while the reflection’s energy range in the UV region expanded and the maximum reflection
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peak decreased. When uniaxial tensile strain from εb = 0% to εb = −12% was applied, its
absorption edge exhibited an obvious redshift. Compared with the strain-free condition,
with the increase in the tensile strain, the shoulder peak at 1.75 eV gradually changed to
the first absorption peak and shifted to red. The value of the maximum absorption peak
increased with a blueshift in the visible light region, while the peak value of the maximum
absorption increased in the UV region. In terms of the reflection properties, with the
increase in tensile strain, the static reflection coefficient decreased slightly, the first reflection
peak decreased with a redshift, the second reflection peak increased with a blueshift, and
the maximum reflection peak in the UV region increased. In the b-direction, when a
uniaxial compression strain of εb = 0% to εb = −12% was applied, the light absorption
edge remained unchanged, the first absorption peak decreased, the second absorption
peak increased, and the maximum absorption peak in the UV region decreased with a
redshift. Moreover, the static reflection coefficient decreased slightly, the first reflection
peak decreased and shifted to red, and the second reflection peak increased. The reflection
coefficient increased in the near-UV region with energy less than 6.5 eV, whereas the
reflection coefficient decreased in the deep UV region. The absorption edge shifted to
red, and the first absorption peak increased when a uniaxial tensile strain of εb = 0% to
εb = 12% was applied. In the same process, the second absorption peak decreased, and the
maximum value of the absorption coefficient in the UV region increased. In addition, the
static reflection coefficient increased, the first reflection peak increased and shifted to red,
and the second reflection peak decreased.
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Figure 12. The changes in the imaginary part of the dielectric function (ε2), real part of the dielectric
function (ε1), absorption coefficient (I), and reflection coefficient (R) when applying uniaxial strain
along b-direction using the PBE method. Panels (a1–d1) and (a2–d2) show the results along the a-
and b-directions, respectively.
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Finally, Figure 13 shows the change in optical properties under biaxial strain. In the
a-direction, when biaxial compression strain from ε = 0% to ε = −12% was applied, the
absorption edge shifted to red, and the first absorption peak diminished and revealed
a redshift. In the range of ε = 0% to ε = −6%, the second absorption peak decreased,
whereas, within the range of ε = −6% to ε = −12%, the second absorption peak changed
to a shoulder peak and the peak value increased. In the near-UV region, the absorption
coefficient increased with the enhancement of the compression strain. The maximum
absorption peak shifted to red in the deep UV region as the compression strain increased.
The peak value increased with a biaxial strain change from ε = 0 to ε = −3%, decreased
from ε = −3% to ε = −9%, and finally reached the maximum value when ε = −12%. In
addition, the static reflection coefficient increased, and the first reflection peak increased
and shifted to red with the increase in the compression strain. In the visible light region, the
reflection coefficient increased in the red and blue–violet range and decreased in the green
light region as the compressive strain increased. In the UV region, the maximum reflection
peak exhibited a reducing, redshift trend when the biaxial strain changed from ε = 0% to
ε = −9%. The maximum reflection peak increased and shifted to red when the strain was
above ε = −9%. In the b-direction, when the compression strain changed from 0% to −9%,
the absorption edge was nearly unchanged, whereas, when ε = −12%, there was a redshift
of the absorption edge. The first absorption peak revealed a decreasing trend, accompanied
by a blueshift in the strain range of ε = 0% to ε = −6%. Moreover, the first absorption peak
changed to a shoulder peak and exhibited a redshift trend in the strain range of ε = −6% to
ε = −12%. Moreover, the second absorption peak increased with the increased compression
biaxial strain. In the UV region, the value of the maximum absorption peak decreased
and shifted to red when ε changed from 0% to −9%. Furthermore, when ε = −12%, the
maximum absorption peak’s value reached the maximum. In addition, the static reflection
coefficient increased when the biaxial compression strain changed from ε = 0% to ε = −12%.
The first reflection peak decreased when the ε changed from 0% to −9%. When ε = −12%,
the first reflection peak became a shoulder peak. The second reflection peak increased with
the increase in compressive strain. When ε was greater than −6%, the second reflection
peak replaced the first reflection peak. The reflection coefficient, located near the UV region
with photon energy less than 5.56 eV, increased when the compression strain increased.
However, in the deep UV region, where the photon energy was greater than 5.56 eV, the
reflection coefficient decreased with the increase in compression strain. However, generally,
in the b-direction, the value of the maximum reflection coefficient under different biaxial
strains is located in the visible light region and does not exceed 31%, and the reflection
coefficient in the UV region does not exceed 22%.

Next, we discuss the influence of the biaxial tensile strain on monolayer β-AuSe’s
optical properties. In the a-direction, when the tensile strain changed from 0% to 12%, the
absorption edge shifted to red, the first absorption peak increased, and the shoulder peak
before the first absorption peak increased and gradually became the new first absorption
peak. In the visible region where the energy was greater than 2 eV, the absorption coefficient
increased, and the absorption peak’s width narrowed. In the UV region, the maximum
absorption peak exhibited a redshift with increased tensile strain, and the peak value
increased when changing ε from 0% to 6% and decreased from 6% to ε = 9%. In the deep
UV region with energy greater than 5.83 eV, the absorption coefficient decreased with
an increase in tensile strain. In addition, the static reflection coefficient increased with
increasing tensile strain. The first reflection peak diminished along with a redshift when ε
changed from 0% to 6%. The first reflection peak rose when change ε from 6% to 9%. The
second reflection peak increased with the increase in tensile strain. Moreover, the reflection
coefficient in the visible region was less than 17%. The maximum reflection coefficient
increased with ε changes from 0% to 6% in the UV region. Furthermore, it decreased when
ε changed from 6% to 9%. The reflection coefficient in the UV region is not exceeding 26%.
In the b-direction, with an increase in the biaxial tensile strain, the absorption edge revealed
a redshift, and the first absorption peak decreased. In the photon region with energy from
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2 eV to 4 eV, a reduction in the absorption coefficient occurred with increased tensile strain,
while the maximum absorption peak decreased in the deep UV region with increasing the
tensile strain. In addition, when the tensile strain increased, the static reflection coefficient
increased, the width of the maximum reflection peak in the visible region expanded, the
maximum reflection peak showed a redshift, and the peak value increased. The reflection
coefficient was less than 29% in the visible light area. Furthermore, the reflection coefficient
in the UV region did not exceed 14%.
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Figure 13. The changes in the imaginary part of the dielectric function (ε2), real part of the dielectric
function (ε1), absorption coefficient (I), and reflection coefficient (R) when applying biaxial strain using the
PBE method. Panels (a1–d1) and (a2–d2) show the results along the a- and b-directions, respectively.

Overall, the optical properties of monolayer β-AuSe exhibited anisotropy in differ-
ent directions. Moreover, applying different strains led to various changes in the optical
properties. These changes were closely related to the variations in the electronic properties
under different strains. Experimentally, the following techniques can be used to fabricate
and induce strain in two-dimensional materials: bending a flexible substrate, elongating
the substrate, piezoelectric stretching, exploiting the thermal expansion mismatch, con-
trolled wrinkling, and a comparison between different techniques to induce biaxial strain
or uniaxial strain. Strain engineering can be used to modify the electronic and optical
properties of 2D materials in a controlled manner [43]. In the future, 2D β-AuSe may be a
promising candidate for polarization-sensitive optoelectronics, solar-blind photoelectric
detection, environmental monitoring, high-efficiency directional optoelectronics, and even
ultraviolet communication.
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4. Conclusions

In summary, we explored the strain-tuned structural, electronic, and optical properties
of monolayer β-AuSe using first-principles calculations. Monolayer β-AuSe is a novel 2D
semiconductor with dynamic stability, and can maintain good stability at room temperature.
In terms of the electronic properties, its VBM and CBM are composed of hybridized Au-d
and Se-p states. Moreover, it remains semiconducting under different strains over a wide
range. The optical properties of strain-free monolayer β-AuSe are anisotropic, making
it a promising candidate for polarization-sensitive optoelectronics and high-efficiency
directional optoelectronics. Furthermore, the maximum absorption coefficient peak is in
the UV region, which means β-AuSe can be used in the field of solar-blind ultraviolet
photoelectric detection and even ultraviolet communication. Additionally, it can maintain
relatively stable optical properties under a high strain rate, indicating that monolayer β-
AuSe is a promising flexible 2D photoelectric material. Finally, we suggest that the excellent
carrier transport properties of the strain-free monolayer β-AuSe and the stable electronic
properties of the strained monolayer β-AuSe originate from the p–d hybridization effect.
Hence, our study provides computational and theoretical support for the application of 2D
β-AuSe in the field of high-performance flexible nano-optoelectronics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12081272/s1, Figure S1: The phonon dispersion spectrums
for the bulk β-AuSe. The coordinates of high-symmetry k-points in the Brillouin zone of the bulk
β-AuSe are as follows: Г(0, 0, 0); L(−0.5, −0.5, 0.5); I(−0.717, −0.283, 0.5); I’(−0.283, 0.283, 0.5); Z(0, 0,
0.5); F’(−0.442, −0.442, 0.68); F(−0.559, −0.559, 0.33); Y(−0.5, −0.5, 0); X’(−0.695, −0.301, 0); N(−0.5,
0, 0); Figure S2: AIMD simulation at 300K of snapshots of monolayer β-AuSe at 0 and 5 ps; Figure S3:
Panels (a1) and (b1) are the monolayer β-AuSe’s projected band structure of Au and Se by using the
PBE method. Panels (a2–a4) represent the projected band structure of Au-s, Au-p, and Au-d electrons,
respectively. Panels (b2–b4) represent the projected band structure of Se-s, Se-p, and Se-d electrons,
respectively. Panels (a5) and (b5) are the partial density of states of monolayer β-AuSe using the
PBE method; Figure S4: The band structure when different uniaxial strains along the a-direction are
applied using the PBE method; Figure S5: The band structure when different uniaxial strains along
the b-direction are applied using the PBE method; Figure S6: The band structure when different
biaxial strains are applied using the PBE method.
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