
Vinnat and Chevret BMCMedical ResearchMethodology           (2022) 22:54 
https://doi.org/10.1186/s12874-022-01513-z

RESEARCH Open Access

Enrichment Bayesian design for
randomized clinical trials using categorical
biomarkers and a binary outcome
Valentin Vinnat* and Sylvie Chevret

Abstract

Background: Adaptive clinical trials have been increasingly commonly employed to select a potential target
population for one trial without conducting trials separately. Such enrichment designs typically consist of two or three
stages, where the first stage serves as a screening process for selecting a specific subpopulation.

Methods: We propose a Bayesian design for randomized clinical trials with a binary outcome that focuses on
restricting the inclusion to a subset of patients who are likely to benefit the most from the treatment during trial
accrual. Several Bayesian measures of efficacy and treatment-by-subset interactions were used to dictate the
enrichment, either based on Gail and Simon’s or Millen’s criteria. A simulation study was used to assess the
performance of our design. The method is exemplified in a real randomized clinical trial conducted in patients with
respiratory failure that failed to show any benefit of high flow oxygen supply compared with standard oxygen.

Results: The use of the enrichment rules allowed the detection of the existence of a treatment-by-subset interaction
more rapidly compared with Gail and Simon’s criteria, with decreasing proportions of enrollment in the whole sample,
and the proportions of enrichment lower, in the presence of interaction based on Millen’s criteria. In the real dataset,
this may have allowed the detection of the potential interest of high flow oxygen in patients with a SOFA neurological
score ≥ 1.

Conclusion: Enrichment designs that handle the uncertainty in treatment efficacy by focusing on the target
population offer a promising balance for trial efficiency and ease of interpretation.

Keywords: Bayesian study design; adaptive enrichment design; sensitive subpopulation

Background
Phase III trials often require large sample sizes, lead-
ing to high costs and delays in clinical decision-making.
Moreover, these trials often include heterogeneous popu-
lations. On one hand, these populations offer the potential
for larger sample sizes in a shorten accrual time. On the
other hand, the risk for negative findings due to poten-
tial treatment-by-subset interactions exist. This notion
was recently exemplified in the COVID-19 pandemic,
where an overwhelming number of clinical trials have
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been registered to test a variety of preventive and thera-
peutic strategies [1] with negative meta-analysis findings
[2]. If negative findings could be explained by variation
in health-care resource availability [3], they could also be
due to the large inter-individual variations in patient pro-
files [4]. Rather than enrolling all diseased patients into
the trial, one instead may enroll only those whose profile
indicates that they could benefit from the treatment, thus
targeting a very selective population for whom the test
drug likely works.
Adaptive clinical trials have become more common

in recent years to allow inclusion of more than one
potential target population into one trial without con-
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ducting trials separately [5]. Such so-called “enrichment
designs” allow the eligibility criteria of the trial to be
iteratively updated during the trial, restricting entry to
patients likely to benefit from the new treatment. These
trials mostly use frequentist approaches [6], raising the
issues of repeated statistical tests and lack of power. More
recently, some enrichment designs have proposed the use
of Bayesian modelling, partitioning the population into
separate blocks [7, 8] or using predictive probabilities
of response according to the patient profile to allocate
patients [9]. This approach is consistent with the growing
literature that proposes Bayesian approaches to adaptive
clinical trials [10–12].
We placed ourselves in the setting of a randomized clin-

ical trial with 2 parallel arms and a categorical biomarker.
Potential treatment-by-subset interactions appear at the
core of precision medicine, which is evaluated properly
through stratified designs [13] whereby all patients are
randomized between the treatment and the control, and
the randomization is stratified on the subset status [14].
Bayesian measures of interaction have been previously
proposed by Millen [15] and Morita [7], although in a dif-
ferent setting. Morita [7] introduced a subset selection
criterion based on the posterior measure of influence of
the treatment. Millen [15] additionally introduced a crite-
rion based on the posterior treatment-by-subset interac-
tion. We believe that combining both of these criteria will
maximize the probability of identifying the subset, which
could benefit the most from the experimental treatment.
Therefore, we sequentially assessed treatment-by-subset
interactions in a Bayesian framework.
The main objective of this work was to use Bayesian

treatment-by-interaction measures to derive an adaptive
clinical trial design that evaluates the therapeutic inter-
vention of any targeted therapy and identifies subsets of
subjects who respond better (or worse) to the experimen-
tal therapy to enrich the enrolled population.

Motivating trial
In the HIGH multicenter randomized clinical trial, a
total of 776 immunocompromised patients admitted to
the intensive care unit with hypoxemic acute respira-
tory failure (ARF) were randomized 1:1 to either con-
tinuous high-flow oxygen therapy (n=388) or to stan-
dard oxygen (n=388) (The HIGH study registration NCT,
NCT02739451. Retrospectively registered on 15 April
2016). The sample size was computed to demonstrate a
decrease in the day-28mortality rate from 30% in the stan-
dard oxygen therapy group to 20% in the high-flow oxygen
therapy group, demonstrating a relative risk of 0.67.
No evidence of any impact of the initial oxygenation

strategy was observed on the 28-day mortality (high-
flow oxygen therapy 35.6% vs. standard oxygen 36.1%;

P=0.94)[16]. We wondered whether there could be dif-
ferential treatment effects on sub-populations of varying
ages or type of organ dysfunctions as measured by the
SOFA sub-scores, focusing on four partitions according
to: (i) patient age distinguishing (a) 2 subsets (< 65 versus≥
65 years) according to the mean value or (b) 3 subsets
(≤ 58 versus > 58 & ≤ 68 versus ≥ 68 years) according to
the terciles; (ii) neurological disorders (SOFA neurologi-
cal < 1 versus ≥ 1); and (iii) oxygenation ratio PaO2/FiO2
(<100 versus ≥ 100). Note that prevalence of the smallest
subset varied from 10% up to 44%.
Figure 1 displays the posterior distribution of treatment

effect within each subset of those 4 categories according to
the randomization group, suggesting possible treatment-
by-subset interactions, notably with the SOFA neurologi-
cal subset.
This finding prompted the following experimental

design.

Methods
Models for binary outcomes
We considered a two-arm randomized clinical trial with
a 1:1 allocation ratio. For patient i, let Yi ∈ {0, 1} denote
a binary response (where 1 denotes a non-favorable issue,
such as death) and Ti ∈ {0, 1} denotes the treatment arm
assignment, where 1 is the experimental arm and 0 the
control arm. Let θ denote the treatment effect in the whole
population that can be measured on different scales. We
will use the relative risk defined by θ = P(Y=1|T=1)

P(Y=1|T=0) with
θ < 1 being favorable to the experimental treatment over
the standard. This design would allow straightforward
extension to other relative measures of treatment effect,
such as odds ratios or hazard ratios.
Let us consider the population partitioned into K subsets
according to a biomarker X with prevalence πk of subset
k(= 1, . . . ,K), with

∑
πk = 1. Let pjk denote the probabil-

ity of undesirable response in the jth treatment arm within
the kth subset. In the subset k, let θk denote the treatment
effect: θk = P(Y=1|T=1,X=k)

P(Y=1|T=0,X=k) = p1k/p0k .
Following Millen [15], we considered two quantities of

interest: (i) a measure of influence, i.e., treatment efficacy
in the subset k, relying on the value of the estimation of θk ,
and (ii) a measure of treatment-by-subset interaction. In a
Bayesian setting, these two measures were considered as
random variables with decision criteria expressed as pos-
terior probabilities related to the comparison of outcomes
across the arms and/or the subsets.

Measures of influence
The influencing condition was defined as a measure of the
estimated treatment effect size in each subset k. The pos-
terior probability of the efficacy in subset k was computed
as follows:
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Fig. 1 HIGH Trial: Posterior probabilities of probability of death in both randomized groups, according to patient subsets. In each randomized group
in each subset, a Beta-binomial model was used to model the probability of death, where a non-informative Beta(1,1) prior was actualized in a
Beta(1 + r, 1 + n −r) posterior distribution based on the observed numbers of deaths r and patients n at the end of the trial

P1k = P(θk < λ|Data) (1)

where λ defines some effect size of interest, as described
byMorita [7] andmore recently by Harrell to highlight the
treatment effect in COVID-19 patients [17].

Measures of interaction
Several Bayesian measures of interaction that aim to iden-
tify the sensitive subset that should be selected for the
next enrollment after the interim analysis were computed.
In the particular case of K = 2 subsets, the ratio of the
influencemeasures in both subsets, θA/θB, was used as the
measure of interaction, as proposed by Millen [15]. The
Bayesian criterion for the interaction condition was thus
derived from the posterior probability of the measure and
defined as follows:

P2k = P(θt/θk > η|θt ≥ θk ,Data) (2)

where η define the minimal interaction effect and act as
a threshold. We also derived a Bayesian version of the
interaction statistics proposed by Gail and Simon [18].
This method facilitated the handling of greater than K =
2 subsets and the ability to distinguish quantitative and
qualitative interactions. The Gail and Simon qualitative
interaction statistic was computed from the estimated log-
relative risk of death in each subset βk with its standard
error σk . It involves checking theminimum andmaximum
observed ratio of treatment effect over subsets:

Q− =
∑

1(βk < 0) × (βk/σk)
2 (3)

Q+ =
∑

1(βk > 0) × (βk/σk)
2 (4)
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The posterior probability of this statistic above the
threshold C1 was derived with a qualitative interaction
detected if the following criteria were met:

Pquali = P
(
min

{
Q−,Q+}

> C1|Data
)

(5)

The Gail and Simon quantitative interaction statistic,
which is defined as the sum of differences between the
estimated treatment effect in each subset k, θk and the
global treatment effect in the trial θ , was also computed,
and the posterior probability of this statistic was above the
threshold C2 and used as a tool for decision-making as
follows:

Pquanti = P
(∑

(θk − θ) > C2|Data
)

(6)

Similarly to Gail and Simon [18], the parameters C1 and
C2 were optimized through a grid search to control the
false positive rate below a pre-specified level for the entire
trial (Tables 1 and 2 in the supplementary materials).

Decision rules
We propose to plan interim analyses to decide on early
termination or enrichment of the trial by excluding those
patients in the subsets who are not likely to satisfy the tar-
get of efficacy. Action triggers for decision-making were
derived from Harrell [17], Ohwada [19] and Morita[7].

• Go with the subset k and stop when the interaction
and the influence conditions are fulfilled in the subset
k. As stated above, two decision criteria were
assessed, based on Millen as well as Gail and Simon,
respectively:

– Interaction: according to the selected rule

1. : (Millen) P2k > τ

2. : (Gail and Simon) Pquali > ε or/and
Pquanti > ε

– Influence: P1k > γ

where τ , ε, γ define decision thresholds.
• Go with the entire population regardless of the

biomarker, otherwise

We applied these decision rules along the trial on the
whole sample or the selected subgroups, allowing a subset
with an ineffective treatment effect throughout the trial
to be dropped. Note that when K > 2, it is possible that
both conditions of enrichment are met in more than one
subset; thus, the trial is enriched by more than one subset
simultaneously.
In both cases, the trial ended when a total of n patients

were enrolled.

Bayesian estimation
In each subset, we assumed that pjk are Beta(α,β) dis-
tributed. Non-informative Beta(1,1) priors were first used.
Posterior distributions of pjk were actualized in Beta

(α + yjk ,β + njk − yjk) with njk the number of patients of
the subpopulation k taking the treatment j. Distribution
of the influence, and the interaction conditions are not
straightforward.
However, given that log θ has been reported as normally

distributed [20], we derived the measures of influence
and interaction from the posterior estimator of log θ .
Therefore, we used Markov chain Monte Carlo (MCMC)
method to derive these distributions.

Simulation study
We conducted a simulation study to examine the operat-
ing characteristics of our procedure on finite samples.
The simulation setting aimed at mimicking the moti-

vating real trial (HIGH) regarding randomization to trial
arms, treatment effects in various subsets, subset preva-
lence. The sample size was set at n =800 patients ran-
domly allocated 1:1 to one of two randomized arms. We
considered binary responses simulated across a range of
scenarios corresponding to different underlying truths
about the size of the treatment effect in each subset, the
treatment-by-subset interaction, the prevalence of each
subset and the balance of randomization in the subsets.

Scenarios with K = 2 subsets
We first considered K = 2 subsets of interest, A and B,
with π = Pr(k = A) denoting the prevalence of sub-
set A, and qk = Pr(T = 1|k), indicating the proportion
of patients in the subset k allocated to the experimental
treatment. The subsets were first considered to be well
balanced in the sample due to stratification of the random-
ization (qA = qB = 0.5), with a similar subset prevalence
(π = 0.5).
Different scenarios were simulated with varying treat-

ment effects in each subset (Table 1). Scenario 1 refers to
situations with no benefit in any subset but a pejorative
prognostic value of subset B, scenario 2 refers to situa-
tions where there is a mild benefit in subsetA but no effect

Table 1 Description of the simulated scenarios when K = 2

Scenarios Subset B Subset A Theoretical Values

Outcomes p1B p0B p1A p0A θAθAθA θB/θAθB/θAθB/θA RR

Scenario 1 0.40 0.40 0.30 0.30 1.000 1.000 1.000

Scenario 2 0.40 0.40 0.30 0.40 0.750 1.330 0.875

Scenario 3 0.40 0.40 0.20 0.37 0.540 1.850 0.779

Scenario 4 0.40 0.40 0.20 0.50 0.400 2.500 0.647

Here, pjk denotes the probability of death in the arm j in the subset k, and θk
denotes the relative risk of death in the experimental versus the control arm in
subset k. RR refers to the overall treatment effect.
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Table 2 Description of the simulated scenarios when K = 3 biomarker subsets (k = A, B, C)

Scenarios Subset A Subset B Subset C Theoretical Values

Outcomes p1A p0A p1B p0B p1C p0C θAθAθA θBθBθB θCθCθC RR

Scenario 1 0.40 0.40 0.40 0.40 0.40 0.40 1.000 1.000 1.000 1.000

Scenario 2 0.32 0.40 0.32 0.40 0.32 0.40 0.800 0.800 0.800 0.800

Scenario 3 0.40 0.40 0.40 0.40 0.20 0.50 1.000 1.000 0.400 0.769

Scenario 4 0.40 0.40 0.24 0.40 0.24 0.40 1.000 0.600 0.600 0.733

Scenario 5 0.40 0.40 0.24 0.40 0.20 0.50 1.000 0.600 0.400 0.646

Scenario 6 0.40 0.40 0.24 0.40 0.50 0.40 1.000 0.600 1.250 0.925

Scenario 7 0.40 0.40 0.20 0.50 0.50 0.40 1.000 0.400 1.250 0.846

Here, pjk denotes the probability of death in the arm j in the subset k, and θk denotes the relative risk of death in the experimental versus the control arm in subset k. RR refers
to the overall treatment effect.

in subset B, scenario 3 refers to situations where there is
a marked benefit in subset A but no effect in subset B,
and scenario 4 refers to situations with a large quantita-
tive interaction (large benefit in subset A, but no effect in
subset B).

Scenarios with K = 3 subsets
We then considered K= 3 subsets of interest, A, B and C,
with πk = Pr(k = k) denoting the prevalence of sub-
set k, and qk = Pr(T = 1|k) indicating the proportion
of patients in the subset k allocated to the experimen-
tal treatment. The subsets were first considered as well
balanced in the sample due to stratification of the random-
ization (qA = qB = qC = 0.5) with similar prevalence
of the subsets (πk = 1

3 ). Different scenarios with varying
treatment effects in each subset were considered (Table 2).
Threshold parameters- The minimal effect size, λ, was

set at 0.9. For each setting (either K = 2 or K = 3),
values of threshold parameters (γ , η and τ ) were opti-
mized through a grid search to maximize the power under
a pre-specified value (Scenarios 2 and 4) while control-
ling the false positive rate under the null (Scenario 1).
The false positive rate was computed as the proportion of
enrichment in the subsets where there were no treatment-
by-subset interaction and thus no enrichment to be made.
For instance, in Scenario 1 with either K = 2 or 3, given
the similar treatment effect across all subsets, the false
positive rate was defined as the proportion of observed
enrichment in either subset. Details are reported in Tables
and Figures in the Additional files 1.
Sensitivity analyses-Once the thresholds were defined,

N = 10, 000 simulated trials were run for each scenario.
We then assessed the influence of the prevalence of each

subset in the sample (Table 3).
Finally, we considered situations where the randomiza-

tion was imbalanced in the case of K=2 by either favoring
the subset where some benefit may exist or not. Thus,
varying values of qA that denote the proportion of partici-
pants in arm 1 in that subset, qA ∈ {0.1, 0.3, 0.6, 0.9}, were
used, whereas the value of qB was computed to ensure an

overall balance of the two randomized groups in the whole
sample.

Data analyses
Once the thresholds were defined simulated trials were
run, for each scenario, with 3 interim analyses and one ter-
minal analysis performed every after n/4 = 200 patients.
On each simulated dataset, we assumed that enrollment

of patients was uniform over the study period in each sub-
set. At each interim analysis, we applied the sets of rules
described above. We first estimated the posterior mean of
θk derived numerically from Markov chain Monte Carlo
(MCMC) methods, and computed the probabilities of the
previously mentioned influence and interaction measures
(Eqs. 2, (6) and (5)). For the MCMC sampling procedure,
we implemented three chains, with an initial burn-in of
20,000 samples followed by an additional 30,000 samples
that were retained for computing θk for each chain. The
first few simulation’s trace and auto-correlation plots
confirmed that the chain converged, with minimal auto-
correlation.

From N = 10, 000 independent replications of each
trial, we calculated the proportions, over the N replica-
tions, of each decision (continuing the enrollment in the

Table 3 Description of prevalence of each subset

Number of subsets Subset A Subset B Subset C

2 0.2 0.8

0.4 0.6

0.6 0.4

0.8 0.2

3 1/3 1/3 1/3

1/6 1/3 2/4

11/18 1/3 1/18

1/3 2/4 1/6

1/3 1/18 11/18
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whole population, enriching one subset while stopping
other(s)), as well as the mean number of enrolled patients
in each subset. Mean influence and interaction measures,
and mean biases in estimates of θk , were computed over
the N replications, with 95% credibility intervals defined
by the 2.5 and 97.5 quantiles of their posterior distribu-
tions.
Regarding sensitivity analyses, we finally assessed five

patterns of subset proportions π = {π1,π2,π3} as shown
in Table 3, to evaluate the sensitivity of simulation results
to the subgroup prevalence. All analyses were performed
using R version 4.0.1 [21] and the package “R2jags” [22].

Results
Detection of subset-by-treatment interaction
Results of the different simulations are summarized in the
Tables 4 and 5 that report the probabilities of selecting
each decision over the trial according to the set of decision
rules. Moreover the evolution of those decisions along
the trial are shown in Fig. 2. As expected, the false posi-
tive rates in scenario 1 where no treatment effect and no
treatment-by-subset interaction existed, were decreased
by the sample size at the time of interim analysis (Addi-
tional file 2, Supplementary Figure 1).
When K = 2, the Gail and Simon’s interaction measure

appeared more conservative than the Millen’s interaction
measure. Indeed, in cases with no treatment-by-subset
interaction similar to that noted in scenario 1, the design
reached a false positive rate of 5.46% with the Millen’s
measure and 3.78% with Gail and Simon’s measure. In sce-
narios 2 to 4, in which there is an increasing treatment
benefit in subset A but no treatment effect in subset B, the
proportion of enrichment of that subset increased from
27% in scenario 2 to 99.3% in scenario 4 using the Millen’s
measure as the benefit and the sample size increased.

Using the Gail and Simon measure, the proportion of
enrichment in subset A increased from 19.3% to 71%. In
fact, as the different scenarios progress, the greater the
probability of stopping for efficacy and interaction in sub-
set A increases, the more early the recruitment of patients
in subset B is stopped.
When K = 3, the Gail and Simon’s measure was used

for decisionmaking and we focus here on pattern 1 (where
the prevalence of each subset was the same). In the case
of no treatment effect in all the subsets like in scenario
1, the design reached a false positive rate of 6%. In sce-
nario 3, which corresponds to a quantitative interaction
and a very high efficacy only in subset C, the propor-
tion of enrichment in the latter was 44%. For scenarios
4 and 5, subsets B and C had moderate or high efficacy
whereas no effect was noted in subgroup A. Thus, the
proportion of enrichment in scenario 4 was identical in
subsets B and C. When effect was different across sub-
sets, the design tended to recruit mainly in the subgroup
with the highest efficacy as noted in scenario 5 where the
proportion of enrichment in subset C reached 21%. Note
that in scenarios 4 and 5, 4% and 9% of cases exhibited
simultaneous enrichment in subsets B and C, respectively.
Finally, in scenarios 6 and 7, which correspond to a quali-
tative interaction with a subgroup with no efficacy (subset
A), a deleterious subset (subset C) and an effective sub-
set (subset B), the proportion of enrichment in the subset
B was slightly higher compared to the scenarios with
only a quantitative interaction. Indeed, the proportion of
enrichment in scenario 7 was 59% compared to 44% in
scenario 3.

Influence of the subset prevalence
We then studied the robustness of our method for the
prevalence of subset A when K = 2. Figure 3 displays the

Table 4 Comparisons of decisions at the end of the trial according to the rules when K=2

Subset A Subset B

Scenarios Interaction
method

Go with EP∗ go with SP
(efficacy/interaction)∗

nA go with SP
(efficacy/interaction)∗

nB False positive

Scenario 1 Millen 0.9622 0.0177 399.1692 0.0201 400.8308 0.0378

Gail and Simon 0.9454 0.0282 400.2944 0.0264 399.7056 0.0546

Scenario 2 Millen 0.7259 0.2707 447.1501 0.0034 352.8499 0.0034

Gail and Simon 0.7928 0.1934 446.8688 0.0138 353.1312 0.0138

Scenario 3 Millen 0.2025 0.7970 558.2047 0.0000 241.7953 0.0000

Gail and Simon 0.5834 0.4080 507.3405 0.0086 292.6595 0.0086

Scenario 4 Millen 0.0067 0.9933 655.0378 0.0000 144.9622 0.0000

Gail and Simon 0.2894 0.7106 601.0114 0.0000 198.9886 0.0000

The total sample size is set at n= 800, with π = 0.5 and qB = qA = 0.5.
∗
EP: entire population;

∗
SP: subpopulation (efficacy/interaction) due to the detection of interaction with efficacy in subset k;
nA and nB are the mean sample size in each subset at the end of the study
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Table 5 Proportions of decisions at the end of the trial in seven scenarios when K=3

Subset A Subset B Subset C

Scenarios Pattern Go with
EP∗

Go with SP
(efficacy/
interaction)∗

nA Go with SP
(efficacy/
interaction)∗

nB Go with SP
(efficacy/
interaction)∗

nC Go with
A and B

Go with
A and C

Go with
B and C

Scenario 1 1 0.94 0.02 266.55 0.02 266.43 0.02 267.02 0.00 0.00 0.00

2 0.90 0.02 137.03 0.04 268.99 0.04 393.98 0.00 0.00 0.00

3 0.87 0.05 474.35 0.06 272.87 0.02 52.78 0.00 0.00 0.00

4 0.89 0.04 268.64 0.04 394.67 0.02 136.68 0.00 0.00 0.00

5 0.86 0.06 273.72 0.02 53.72 0.05 472.56 0.00 0.00 0.00

Scenario 2 1 0.87 0.04 265.96 0.04 265.86 0.04 268.18 0.00 0.00 0.00

2 0.71 0.02 121.46 0.10 269.10 0.16 409.45 0.00 0.00 0.01

3 0.44 0.31 480.78 0.21 279.86 0.02 39.36 0.02 0.00 0.00

4 0.71 0.09 268.44 0.16 408.75 0.03 122.81 0.01 0.00 0.00

5 0.46 0.21 282.57 0.01 39.47 0.30 477.95 0.00 0.01 0.00

Scenario 3 1 0.56 0.00 182.53 0.00 182.83 0.44 434.64 0.00 0.00 0.00

2 0.09 0.00 48.59 0.00 98.19 0.90 653.22 0.00 0.00 0.00

3 0.82 0.03 444.14 0.03 247.72 0.13 108.13 0.00 0.00 0.00

4 0.73 0.01 218.48 0.01 328.03 0.26 253.49 0.00 0.00 0.00

5 0.01 0.00 78.30 0.00 13.36 0.98 708.34 0.00 0.00 0.00

Scenario 4 1 0.76 0.00 222.18 0.10 289.78 0.09 288.05 0.00 0.00 0.04

2 0.33 0.00 75.06 0.17 276.00 0.32 448.94 0.00 0.00 0.16

3 0.46 0.02 342.21 0.50 417.39 0.02 40.39 0.00 0.00 0.00

4 0.57 0.01 192.46 0.34 485.06 0.04 122.48 0.00 0.00 0.03

5 0.21 0.02 145.08 0.02 34.79 0.73 620.14 0.00 0.00 0.01

Scenario 5 1 0.68 0.00 204.21 0.02 244.22 0.21 351.56 0.00 0.00 0.09

2 0.14 0.00 52.01 0.02 183.50 0.54 564.49 0.00 0.00 0.28

3 0.63 0.02 379.82 0.30 364.59 0.04 55.59 0.00 0.00 0.01

4 0.68 0.00 206.75 0.13 426.00 0.09 167.25 0.00 0.00 0.08

5 0.06 0.00 87.94 0.00 17.59 0.91 694.47 0.00 0.00 0.02

Scenario 6 1 0.67 0.01 216.19 0.31 377.23 0.00 206.58 0.00 0.00 0.00

2 0.59 0.02 106.91 0.39 402.04 0.00 291.05 0.00 0.00 0.00

3 0.22 0.03 296.85 0.75 476.13 0.00 27.02 0.00 0.00 0.00

4 0.23 0.02 156.39 0.74 572.35 0.00 71.26 0.00 0.00 0.00

5 0.84 0.05 263.31 0.11 98.39 0.00 438.31 0.00 0.00 0.00

Scenario 7 1 0.40 0.00 157.15 0.59 490.36 0.00 152.49 0.00 0.00 0.00

2 0.30 0.00 70.66 0.70 527.77 0.00 201.56 0.00 0.00 0.00

3 0.06 0.01 182.16 0.93 601.83 0.00 16.00 0.00 0.00 0.00

4 0.03 0.00 87.41 0.96 671.51 0.00 41.08 0.00 0.00 0.00

5 0.76 0.03 241.06 0.21 147.67 0.00 411.27 0.00 0.00 0.00

The total sample size is set at n= 800, with πk = 1/3 and qA = qB = qC = 0.5.
∗
EP: entire population;

∗
SP: subpopulation (efficacy/interaction) due to the detection of interaction with efficacy in subset k;
nA , nB and nC are the mean sample size in each subset at the end of the study
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Fig. 2 Proportions decisions and sample size along the interim and terminal analyses when K=2. n = 800,π = 0.5 and qB = qA = 0.5. IA= Interim
analysis, TA= Terminal analysis

posterior probabilities of each decision according to the
set of rules for varying proportions of the prevalence of
subset A in the whole sample (π ∈ {0.2, 0.4, 0.5, 0.6, 0.8}).
Using Millen’s method, in scenario 1 and 2, results were
poorly affected by the prevalence of subset A. In scenar-
ios 3 and 4, the enrichment proportion in subset A was
less important when the subsets were not balanced, that is,
with π = {0.2, 0.8}. In fact, in scenario 3, the enrichment
proportion in subset A was 63.3% with π = 0.2, whereas
it reached to 79.7% with π = 0.5.
Concerning the Gail and Simon method, only scenario

1 was not affected by the prevalence of subset A. In
scenarios 2 to 4, the enrichment proportion in subset
A increased markedly with the prevalence of subset A.
Indeed, with π = 0.2, the enrichment proportion in
scenario 4 was 26.3% and reached 100% with π = 0.8.

Similarly, depending on the prevalence of subset A, the
sample size in subset B decreased as the prevalence of sub-
set A increased. UsingMillen’s method with scenario 4, an
average of 299 patients were recruited in subset B when
π = 0.2, but this size decreased to 66 when π = 0.8 (Table
1 in Additional files 2).
Similarly, with K = 3, we considered four different

patterns by varying the prevalence of each subgroup in
a generally balanced manner. In scenario 1, the differ-
ent patterns did not affect the design decisions. However
in scenarios 3 to 7, depending on the pattern used, the
proportions of enrichment in the subsets varied greatly
depending on whether their prevalence was high or low.
Indeed, in scenario 3, the proportion of enrichment in
subgroup C decreased from 44% to 13% when the preva-
lence of the latter decreased. Moreover, the same was true
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Fig. 3 Influence of the prevalance of the subset A on the proportions decisions. n = 800, and qB = qA = 0.5 at the end of the trial
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for the sample size. For example, in scenario 6, the num-
ber of patients in subgroup B was 98 with πB = 1/18 and
increased to 572 with πB = 2/4.

Influence of the randomization balance
We similarly assessed the robustness of our findings to
the balance of randomized groups in subset A, with qA ∈
{0.1, 0.3, 0.5, 0.6, 0.9} (Fig. 4).
In Scenario 1, the false positive rate was slightly greater

when the randomization was imbalanced with both the
methods. In fact, when qA = {0.1, 0.9}, the false positive
rate was 8.5% whereas the rate was maintained under 5%
in all other cases using the Millen’s method. Similary, in
the case of any evidence for the treatment-by-subset inter-
action, results were affected by a lower detection rate in
cases with large imbalances for Millen’s method. On the

contrary, results were affected by and increased detection
rate using the Gail and Simon method.
Indeed,the proposed design detected the treatment-

by-subset interaction most often when the proportion
of experimental arm in subset A was roughly balanced
(between 0.3 and 0.6).

The HIGH data set revisited: search for
treatment-by-subset interactions
We retrospectively applied the proposed rules to the
HIGH dataset, using the subsets of interest described
above (Fig. 1). Patients were enrolled from May 19, 2016,
to December 31, 2017. We considered 3 interim analyses
and a terminal analysis at the following dates December
07, 2016; April 09, 2017; September 01, 2017; and Decem-
ber 31, 2017. These dates were retrospectively chosen

Fig. 4 Influence of the balance of randomized group in subset A on the proportions decisions. Balance is measured by the proportion of patients in
the experimental arm (qA) in that subset n = 800,π = 0.5 at the end of the trial
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according to the recruitment, to perform the interim anal-
ysis every time 194 new patients were enrolled if no
prior decision of enrichment was made. In the case of
detection of treatment-by-subset interaction, enrichment
towards the subset with detected efficacy and interaction
was performed thereafter with no further evaluation of
interaction in subsequent analyses, unless there were no
more available observations in the sample, while stopping
enrollment from other subsets. Similarly to the Simula-
tion study, threshold parameters of the rules were set to
minimize the false positive rate of detecting interaction.
Results are summarized in Tables 6 and 7. Some evi-

dence of a qualitative interaction with age and a quanti-
tative interaction with the SOFA Neurological partition
(Fig. 1) was noted. A treatment-by-subset interaction
was highlighted in the neurological SOFA partition, as
observed in Fig. 1. This was detected since the second
interim analysis, where the Millen’s efficacy and interac-
tion conditions, as well as the Gail and Simon’s criterion,
were verified in the subset where the SOFA neurologi-
cal score was greater than 1. Thus, following this analysis,
no more inclusions were considered in subset with neu-
rological SOFA < 1, while enrichment in those with
neurological SOFA ≥ 1 resulted in the only inclusion of
new patients from this later subset whichever the rule.
Concerning the age partition (with 2 subsets), none of

our decision rules were fulfilled. In fact, at the 3rd interim
analysis, the posterior probabilities of the influence and
interaction conditions were 0.86 and 0.89, respectively, for
the subset of patients aged 65 years or less with Millen
method.The same results have been obtained by Gail and
Simon’s criterion. These values are less than but close to
the threshold parameters established at 0.90 for efficacy
and interaction. For the age partition with 3 subsets, the
condition of interaction is only verified for the two first
interim analyses while the condition of efficacy was never
satisfied throughout the trial.

Discussion
An adaptive design is a clinical trial design that allows
adaptations or modifications to some aspects of the trial
after its initiation without undermining the validity of the
trial [23]. Many adaptations have been proposed, includ-
ing biomarkers-based trials that use information obtained
from classifier biomarkers (that is, markers defined at
baseline that do not change over the course of the study).
Thus, we aimed at providing some Bayesian enrichment
adaptive designs for randomized clinical trials, focusing
on restricting the inclusion to the subset of patients who
are likely to benefit the most from the treatment dur-
ing the trial accrual, as previously reported [6, 8]. This
method should offer the potential to reduce the risks and
the costs of drug development and bring much needed
new medicines to those patients with greater efficiency.

In addition, the patients enrolled in the trial also bene-
fit. Such adaptive enrichment designs may vastly increase
power, especially when only a small subset of patients
drive treatment response [8]. Nevertheless, this obviously
impacts the overall estimate of the treatment effect, which
is no longer relevant, and this is the reason why it was even
not reported at all.
We combined previously published Bayesian rules based

on efficacy [7] and interaction [15] measures to that end.
Furthermore, we proposed a Bayesian version of the Gail
and Simon interaction statistics [18] as a measure of inter-
action for our decision rules, allowing the extension of this
design to more than two subsets. Our design differs from
previously published Wang’s patient enrichment design
and Liu’s threshold enrichment design as the treatment
effect is estimated for each subset simultaneously from
the first stage. Moreover, it focuses solely on enrichment
in a perspective of personalized medicine [24, 25]. Like-
wise, our design appears close to the adaptive enrichment
design proposed by Xia et al [26] who also proposed a sig-
nature enrichment design with adaptive randomization;
nevertheless, their use of an enrichment strategy together
with a Bayesian adaptive randomization scheme, adds
complexities compared to our design. Such a complexity
could be also pointed out in the recent proposal from Bal-
larini et al. [27] who proposed a Bayesian optimization for
a two-stage design, using some utility function taking into
account the prevalence of the subsets. Our design appear
to be more easily understood by practitioners.
The Bayesian framework, allows the incorporation of

previous information, if any, into the analyses and using
probabilistic statements regarding efficacy as decision cri-
teria, as recently exemplified in emergency randomized
trials [28] and the COVID-19 pandemic [29–31]. The
Bayesian paradigm allows the incorporation of the inves-
tigator intuitions through prior distribution.
Enrichment designs typically consist of two or three

stages, where the first stage serves as a screening pro-
cess for selecting a certain subpopulation, and the suc-
ceeding stages serve to distinguish the treatment effect
from the placebo effect within the selected (enriched)
subpopulation [32, 33]. We placed ourselves in a more
integrative setting, where the two stages are indeed con-
sidered sequentially in the same trial. We indeed provided
a potential reallocation of scheduled patients to the single
subset more likely to benefit from the intervention from a
two-parallel arm RCT.
In the case of K = 2, Millen’s approach was more sen-

sitive than the Gail & Simon’s statistic to the difference
of treatment effect between the subsets, which means
that when the treatment effect was increasingly differ-
ent across the subsets, and thus the interaction increased,
Millen’s method tended to enrich more frequently and
quickly the sample from the subset of interest. Note also
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Table 6 HIGH clinical trial: Detection of treatmen-by-subset interaction when K=2

Interaction
method

̂θ global CI95% ̂θA CI95% ̂θB CI95% Decision nA nB Probability of
interaction
effect*

Age Partition Age ≥ 65 Age < 65

1er interim
analysis

Millen 1.228[0.721-1.988] 0.913[0.548-1.412] Go with entire
population

87 107 0.56

Gail and Simon 1.228[0.721-1.988] 0.913[0.548-1.412] Go with entire
population

87 107 0.02& 0.09

2nd interim
analysis

Millen 1.367[0.931-1.957] 0.868[0.586-1.241] Go with entire
population

178 210 0.80

Gail and Simon 1.367[0.931-1.957] 0.868[0.586-1.241] Go with entire
population

178 210 0.02& 0.08

3th interim
analysis

Millen 1.184[0.879-1.568] 0.745[0.529-1.011] Go with entire
population

265 320 0.85

Gail and Simon 1.184[0.879-1.568] 0.745[0.529-1.011] Go with entire
population

265 320 0.01& 0.00

Final analysis Millen 0.989[0.819-1.182] 1.245[0.956-1.597] 0.780[0.580-1.017] Go with entire
population

360 416 0.9

Gail and Simon 0.989[0.819-1.182] 1.245[0.956-1.597] 0.780[0.580-1.017] Go with entire
population

360 416 0.01& 0.00

SOFA neurological Partition SOFA neuro ≥ 1 SOFA neuro < 1

1er interim
analysis

Millen 0.799[0.391-1.349] 1.136[0.750-1.655] Go with entire
population

27 167 0.66

Gail and Simon 0.799[0.391-1.349] 1.136[0.750-1.655] Go with entire
population

27 167 0.02& 0.02

2nd interim
analysis

Millen 0.633[0.341-1.026] 1.252[0.916-1.677] Enrichment in
subset A

54 334 0.94

Gail and Simon 0.633[0.341-1.026] 1.252[0.916-1.677] Enrichment in
subset A

54 334 0.08& 0.00

3th interim
analysis

Millen 0.753[0.477-1.107] 1.252[0.916-1.679] Enrichment in
subset A

77 334 –

Gail and Simon 0.753[0.477-1.107] 1.252[0.916-1.679] Enrichment in
subset A

77 334 –

Final analysis Millen 1.156[0.890-1.477] 0.858[0.350-1.688] 1.252[0.916-1.677] Enrichment in
subset A

102 334 –

Gail and Simon 1.156[0.890-1.477] 0.858[0.350-1.688] 1.252[0.916-1.677] Enrichment in
subset A

102 334 –

PaO2/FiO2 Partition PaO2/FiO2 < 100 PaO2/FiO2 ≥ 100

1er interim
analysis

Millen 1.380[0.852-2.131] 0.848[0.498-1.342] Go with entire
population

80 114 0.78

Gail and Simon 1.380[0.852-2.131] 0.848[0.498-1.342] Go with entire
population

80 114 0.07& 0.28

2nd interim
analysis

Millen 1.164[0.790-1.659] 1.050[0.717-1.475] Go with entire
population

152 236 0.30

Gail and Simon 1.164[0.790-1.659] 1.050[0.717-1.475] Go with entire
population

152 236 0.00& 0.03

3th interim
analysis

Millen 0.973[0.694-1.319] 0.957[0.711-1.254] Go with entire
population

219 366 0.16

Gail and Simon 0.973[0.694-1.319] 0.957[0.711-1.254] Go with entire
population

219 366 0.00& 0.00

Final analysis Millen 0.998[0.824-1.196] 0.983[0.731-1.292] 1.017[0.809-1.263] Go with entire
population

278 498 0.09

Gail and Simon 0.998[0.824-1.196] 0.983[0.731-1.292] 1.017[0.809-1.263] Go with entire
population

278 498 0.00& 0.00

The reported intervals are 95% credibility intervals, defined as [quantile(2.5%), quantile(97.5%)] of the posterior distribution.
* In case of Millen’s criterion, this refers to the posterior probability that P2K (equation (2)). In case of Gail & Simon’s criterion, it refers to the posterior probabilities Pquali and
Pquanti , respectively, as described in equations (5) & (6).
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Table 7 HIGH clinical trial: Detection of treatmen-by-subset interaction when K=3
̂θ global CI95% ̂θA CI95% ̂θB CI95% ̂θC CI95% Decision nA nB nC Proportion

interaction
effect*

Age Partition Age ≤ 58 58 < Age ≤ 68 Age > 68

1er interim
analysis

1.062[0.484-1.972] 0.804[0.444-1.280] 1.558[0.806-2.969] Go with
entire
population

61 74 59 0.21& 0.46

2nd interim
analysis

0.913[0.518-1.493] 0.979[0.612-1.450] 1.437[0.920-2.217] Go with
entire
population

127 135 126 0.10& 0.12

3th interim
analysis

0.755[0.475-1.108] 0.975[0.670-1.381] 1.086[0.782-1.485] Go with
entire
population

197 202 186 0.01& 0.00

Final analysis 0.993[0.823-1.18] 0.850[0.570-1.209] 0.986[0.719-1.334] 1.141[0.838-1.499] Go with
entire
population

255 268 253 0.00& 0.00

The reported intervals are 95% credibility intervals, defined as [quantile(2.5%), quantile(97.5%)] of the posterior distribution.
*In case of Gail & Simon, it refers to the posterior probabilities Pquali and Pquanti , respectively, as described in equation (5) & (6).

that Millen’s rules were more sensitive to the sample size
at each interim analysis as observed in Fig. 2. Indeed,
the proportion of enrichment in the subset of interest at
the first interim analysis with two hundred patients was
similar with both methods although at further interim
analyses where the number of patients increased, the
enrichment proportion was much important with the
Millen’s approach. However, the Gail and Simon’s interac-
tion measure was also satisfying, and it’s the only option
when there are more than two subsets of interest. When
the randomization was stratified on the subsets, resulting
in balanced treatment arms among each subset (as illus-
trated by qA = qB = 0.5), the results showed the best
performances when selecting the right subset. Millen’s
measure of interaction appeared more robust than the
Gail and Simon’s method due to imbalances of random-
ization within the subset of interest and the prevalence of
the subsets. As observed in sequential trials [34], we think
that these rules should not be applied too early, unless the
sample size was sufficiently large for decision-making.

Limitations
Our study has some limitations. We only considered
categorization of the whole population into two non-
overlapping subsets. However, given that the biomarkers
of interest are often not clear binary variables, this raises
the issues of selecting the cutoff, and how to combine
several biomarkers to define such a partition. Besides,
we assumed a uniform enrollment of patient in our sim-
ulation study, an assumption which is likely violated in
many actual clinical trial settings. If the interim analy-
ses take place at fixed time periods, the violation of this
assumption may impact the operating characteristics of
the design. Indeed, if the number of patients enrolled

at the first analyses is lower or higher than expected, it
can cause the trial to be under-powered or over-powered,
respectively [35]. On the contrary, if the interim analyses
occur when prespecified fixed numbers of patients have
been enrolled, the findings will not be impacted by the
recruitment rate, as the information time of each anal-
ysis is the one expected [36]. Thus, we recommended
to schedule the interim analyses when fixed numbers
of patients have been reached to avoid any impact of
the recruitment process. We only used a binary out-
come though it could be extended to a survival outcome
using hazard ratios. A Bayesian group sequential enrich-
ment design has been recently proposed [37]. It uses a
joint probability model for both the response and the
survival outcomes. However, the method requires many
design parameters, requiring sample sizes of several hun-
dred patients. Moreover, it requires computations that not
straightforward compared to our proposal that appears
more easily interpreted by clinicians. In our illustration
based on the HIGH trial data, the choice of subsets
could appear somewhat poorly substantiated by clinical
hypotheses, and other subsets such those based on the
cause of the ARF or on the existence of an underlying
sepsis, may have had been chosen. The main point is
that in any case, this choice should be prespecified in the
protocol to avoid any “fishing expedition”. At last, not at
least, although results of the simulation study argued that
one may use the enrichment design with good properties
regarding the control of false positive detection, it is likely
that its use in practice could be delayed, as exemplified in
other settings by Robert Altman more than 25 years ago
[38]. Thus, we also schedule to use such methods in real
randomized clinical trials to exemplify their interests in
practice.
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Future directions
It could be useful to extend the design to other situations,
such as studies with a higher number of non-overlapping
subpopulations or those with overlapping and even nested
subpopulations.

Conclusion
In the next few years, the need for personalized medicine
is likely to continue to increase with a growing demand for
adaptive enrichment designs that handle the uncertainty
in treatment efficacy by focusing on the target popula-
tion. Given this need for designs that allow rapid answers
to therapeutic questions, such enrichment designs may
appear of interest to avoid the waste of research, notably in
the settings where the population is known to be heteroge-
neous with potential different responses to the treatment.
Our proposed strata-based design offers a promising bal-
ance for trial efficiency, and ease of interpretation.
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