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Abstract: This study was conducted to assess whether
Lactobacillus-containing probiotics could protect intest-
inal mucosa in rats during traumatic hemorrhagic shock
and to determine its underlying mechanisms. Healthy
male Sprague–Dawley rats (300 ± 20 g) were randomly
divided into four groups. During the study, reverse tran-
scription polymerase chain reaction, western blotting,
and hematoxylin and eosin methods were used. There was
a significant increase in the expression of toll-like receptor 4
(TLR4) in the rats that experienced traumatic hemorrhagic
shock, along with increased mRNA of tumor necrosis factor-
alpha (TNF-α) and interleukin (IL)-6. Pretreatment with
Lactobacillus-containing probiotics reduced TLR4 expres-
sion, decreased phosphorylation (Ser536) and acetylation
(Lys310) of p65, and decreased TNF-α and IL-6 mRNA. The

probiotics combined acetate Ringer’s group showed a less
severe pathological manifestation compared to the other
experimental groups. Lactobacillus-containing probiotics
inhibited nuclear factor-kappa B signaling via the downre-
gulation of TLR4, resulting in inflammatory homeostasis,
which might be the mechanism whereby Lactobacillus
protects the intestinal mucosa from damage caused by
the traumatic hemorrhagic shock.
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1 Introduction

According to the World Health Organization, 10% of
deaths can be attributed to trauma [1], and globally
trauma is the leading cause of death among people under
the age of 40 years. Importantly, hemorrhagic shock is
the leading cause of death in trauma patients [2]. Hemor-
rhagic shock leads to an uncontrolled inflammatory response
in which many interleukins (IL), tumor necrosis factor (TNF),
and other inflammatory mediators are released, eventually
causing multiple organ failure (MOF). Intestinal dysfunc-
tion plays a pivotal role in the development of MOF since
the integrity of the intestinal mucosal barrier prevents bac-
teria, antigenic agents, and toxins from entering the blood
[3]. A study by Mesejo et al. suggested that increased
intestinal permeability is one of the mechanisms impli-
cated in MOF [3]. In addition, bacterial translocation that
leads to systemic infection can promote the development
of hemorrhagic shock.

Lactobacillus-containing probiotics are commonly used
in current research due to their ability to optimize the intest-
inal microbiota composition, improve intestinal immune
regulation, and suppress oxidative stress [4]. In recent years,
the anti-inflammatory action mediated by Lactobacillus-
containing probiotics has attracted tremendous attention
[5]. These probiotics have been reported to have good
therapeutic potential in treating diarrhea, inflammatory
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bowel disease, and acute pancreatitis [6–8], and the pri-
mary mechanism might be through the modulation of the
nuclear factor-kappa B (NF-κB) signaling pathway mediated
by toll-like receptor 4 (TLR4) [9]. TLR4 can recognize a wide
variety of ligands to generate an inflammatory response
and modulate immune homeostasis. Previous studies have
demonstrated that the TLR4/myeloid differentiation
factor-2 (MD2)/NF-κB pathway is abnormally activated
when the intestinal barrier is damaged and that inhibiting
the TLR4/MD2/NF-κB pathway can improve the barrier
function [10]. In addition, the TLR4/NF-κB/mitogen-acti-
vated protein kinase signaling pathway was suggested to
participate in the induction of ulcerative colitis, and that
suppression of this pathway downregulated inflammatory
cytokines, including IL-1β, IL-6, and TNF-α in colonic tis-
sues [11]. However, the effect of Lactobacillus-containing
probiotics on trauma-induced hemorrhagic shock remains
unknown. Hemorrhagic shock due to trauma can directly
injure the bowels and cause ischemia reperfusion injury of
the intestine, leading to increased bacterial translocation
and subsequent hyperinflammation [12]. This study was
conducted to explore the protective effect of Lactobacillus-
containing probiotics on the intestinal mucosa in rats
experiencing traumatic hemorrhagic shock (THS) and to
study the underlying mechanism of protection to reveal
new avenues for the clinical treatment of THS.

2 Materials and methods

2.1 Equipment and reagents

Acetate Ringer’s (AR) solution was purchased from Hunan
Kangyuan Pharmaceutical Co. Ltd (Hunan, China). TRIzol,
UltraPure Agarose, Sybr qPCR mix, and the SuperScript
reverse transcription (RT) kit were purchased from Invitrogen
(California, United States). Primary antibody diluent and sec-
ondary antibody diluent, as well as p65 (Ser536) and p65
(Lys310) antibodies, were purchased from MDL Co. Ltd
(Beijing, China). Lactobacillus-containing probiotics (Juke,
Meitong Pharmaceutical Co. Ltd, Jiangsu, China) consisted
of Lactobacillus acidophilus, Streptococcus lactobacillus,
andmore, with a viable count of >109 colony-forming units
(CFU)/g, with 0.33 g per capsule obtained from Greencross
(Japan).

2.2 Animals

About 32 male specific pathogen-free Sprague–Dawley
rats (300 ± 20 g) were purchased from Shanghai Jiesijie
Laboratory Animal Co. Ltd (Shanghai, China). All the rats
were raised under a temperature-controlled (22 ± 1°C) 12 h
light–dark cycle with 55–45% humidity in a well-venti-
lated room.

The rats were randomly divided into four groups,
with eight rats in each group. Rats in the control group
were normal, untreated controls. Rats in the THS group
experienced THS but did not receive fluid resuscitation.
Rats in the THS + fluid replacement (FR) group experi-
enced THS and were given FR using AR. Rats in the
Lactobacillus group were pretreated with Lactobacillus-
containing probiotics in drinking water for seven days
prior to establishing THS and received a FR.

Ethical approval: The research related to animal use has
complied with all relevant national regulations and insti-
tutional policies of the Bengbu Medical College for the
care and use of animals.

2.3 Experimental procedures

2.3.1 Experiment set-up

The rats were anesthetized by an intraperitoneal injection
of 4% chloral hydrate (1 mL/100 g). The anesthetized rats
were anchored to the operating table in a supine position.
Skin from the bilateral inguinal region was prepared and
disinfected with iodophor three times prior to towel pla-
cement. The bilateral femoral arteries and femoral veins
were dissected and separated, respectively catheterized
and fixed, and a small amount of 2.5% sodium citrate–
glucose was injected to ensure the vessel was not blocked.
The Medlab-U/2CS biological signal acquisition system
(with zero setting and transducer calibration before use)
was connected to the right femoral artery catheter to
continuously monitor the mean arterial pressure (MAP).
During all the procedures, normal saline (5 mL/kg/h)
was injected via the femoral vein using a micropump
to compensate the fluid loss from the surgical area and
the respiratory tract.
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2.3.2 Establishment of hemorrhagic shock

The induction of hemorrhagic shock began 20min after
catheterization. At first, a sodium citrate solution (0.2 mL)
was preloaded in a 2 mL syringe. Blood was discharged
from the left femoral artery at a rate of 2 mL/3 min, and
the MAP was maintained at 40–45 mmHg for 20min.
During the shock stage, the MAP was maintained at
40–45mmHg via a small amount of bleeding or autolo-
gous blood transfusion for 60min.

2.3.3 Fluid resuscitation

The right femoral vein was used for fluid resuscitation
after shock, and the left femoral vein was connected
to a micropump. The rats in the THS + FR group and
Lactobacillus group were resuscitated within 30min using
the AR solution. Resuscitation fluid was injected at a rate
of 3:1 (resuscitation fluid to blood loss volume). No fluid
resuscitation was administered in the THS group, and the
rats were strictly observed for 4 h.

2.3.4 Tissue collection

If the animals died within 4 h, tissues were collected
immediately. The remaining rats were killed by cervical
dislocation after 4 h of resuscitation, and the small intes-
tine tissues were collected. The tissues were divided into
three parts for quantitative PCR, western blotting, and
histological examination.

2.4 Histological examination

Tissues were fixed in 4% paraformaldehyde solution.
Hematoxylin and eosin (H&E) staining [13] was per-
formed for pathological examination of the small intest-
inal tissue from the rats that experienced hemorrhagic
shock and the appropriate control animals. Slides were
observed under a light microscope. The pathological inju-
ries in the intestinal tract were scored by a pathologist.

2.5 Quantitative RT-PCR

qRT-PCR was used to detect the mRNA expression of TNF-
α, IL-6, and IL-10 in the small intestinal tissues harvested
from the experimental rats. After obtaining small intestine
tissue samples, total RNA was isolated and extracted by the

Trizol method. RNAwas reversely transcribed into the cDNA
as per instructions on the Invitrogen kit, and then qPCR was
done for amplification. glyceraldehyde phosphate dehydro-
genase as the amplification primer: F: 5′-CCTCTATGCCAAC
ACAGT-3′, R: 5′-AGCCACCAATCCACACAG-3′; TNF-α, F: 5′-
GACTCTGACCCCCATTACTCT-3′, R: 5′-TGTTTCTGAGCATCGT
AGTTGT-3′; IL-6, F: 5′-CACCCACAACAGACCAGTA-3′, R: 5′-
GAAGCATCCATCATTTCTTT-3′; IL-10, F: 5′-GACAACATACTG
CTGACAGATTC-3′, R: 5′-GCTGTATCCAGAGGGTCTTC-3′;
miR-146a, F: 5′-GGGGGGTGAGAACTGAAT-3′, R: 5′-TCGTAT
CCAGTGCGTGTC-3′. At 95°C for 1min pre-denaturation,
95°C for 15 s denaturation, 60°C for 30 s extension, cycling
for 40 times; the dissolution curves were drawn (95°C, 1min
−95°C, 15 s−60°C, 30 s). After the reaction, the CT valuewas read
and the mRNA expression was calculated.

2.6 Western blotting

Western blot was used to determine the protein expres-
sion of TLR4 and the phosphorylation (Ser536) and ace-
tylation (Lys310) of the p65 subunit of NF-κB. About
100mg of frozen small intestine tissue was taken, washed
twice with phosphate buffered saline, cut into pieces, and
then 1 mL of radio immunoprecipitation assay lysate
was added and ground on ice. After centrifugation at
12,000 rpm for 10 min in a 4°C centrifuge, the superna-
tant was taken for quantitative analysis of BCA protein.
Sodium dodecyl sulphate–polyacrylamide gel electro-
phoresis was performed with 10% separation gel and
4% concentrated gel, and then the gel was transferred
to the PVDF membrane by the wet membrane transfer
method. The 5% skim milk powder sealant was placed
on a shaker for blocking for 2 h, and the corresponding
primary antibody was added. After incubation overnight
at 4°C, the membrane was washed by tris buffered saline
tween (TBST) for three times. The secondary antibody
was added and incubated at room temperature for 1 h,
and then the membrane was washed by TBST for three
times. Finally, the film was exposed, developed, and
fixed in a darkroom by enhanced chemiluminescence
and analyzed with Fluorchem gray analysis software.
The grayscale ratio of the target protein to β-actin is the
relative expression level of the protein.

2.7 Statistical analysis

All data were analyzed using SPSS v22.0, and the results
presented as mean ± standard deviation. One-way ana-
lysis of variance was used to compare the data between
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groups. Fisher’s least significant difference test was used
for pairwise analysis. A P value of <0.05 was considered
statistically significant.

3 Results

3.1 mRNA expression of inflammatory
factors in the tissues from the small
intestine of rats that experienced
hemorrhagic shock

The PCR analyses revealed that compared to the control
group, the mRNA expression of TNF-α and IL-6 had sig-
nificantly increased. Nevertheless, when compared with
the THS and THS + FR groups, the mRNA of TNF-α had
significantly decreased in the Lactobacillus group (P < 0.01
respectively; Figure 1a). Similarly, IL-6 mRNA was also
significantly reduced in the Lactobacillus group compared
to the THS + FR groups (P < 0.05 respectively; Figure 1b).
On the other hand, the expression of anti-inflammatory
factor IL-10 in the Lactobacillus group was significantly
higher than that in the THS group and the THS + FR group
(P < 0.01 respectively; Figure 1c).

3.2 TLR4 expression in the small intestine

The western blot results showed that the TLR4 protein
expression had significantly increased in the THS group

compared to the control group (P < 0.01). In the Lactobacillus
group, TLR4 expression had decreased compared to the THS
group and the THS + FR group (P < 0.01) (Figure 2a).

3.3 Phosphorylation (Ser536) and
acetylation (Lys310) of NF-κB p65 in the
small intestine

Compared to the THS group, the phosphorylated p65 (Ser536)
and acetylated p65 (Lys310) levels in the Lactobacillus group
had significantly decreased (P < 0.05; Figure 2b and c).

3.4 Histopathology of the small intestine

The control group displayed intact intestinal mucosa,
well-arranged glands, and normal intercellular space.
In the THS group, the subepithelial space of the villi
was enlarged and accompanied by a separation of the
upper cortex and lamina propria. The capillaries of the
villi were congested, while a part of the villus tip was
damaged. The lamina propria was bleeding, ulcerated,
and infiltrated with inflammatory cells. Compared to the
THS group, the villi in the THS + FR group showed expan-
sion of the subepithelial space with moderate separation
of the upper cortex and lamina propria, and some tips of
the villi were slightly damaged. Compared to the THS
group and the THS + FR group, the intestinal structure
of each layer of the Lactobacillus group was relatively
complete, and the villi were arranged in an orderly
manner. The turbidity and swelling of the small intestinal

Figure 1: ThemRNA expression of TNF-α (a), IL-6 (b), and IL-10 (c) in different groups. Differences in the levels of mRNAswere detected by qPCR;
n = 8; *P < 0.05, compared with the control group; #P < 0.05, compared with the THS group; and &P < 0.05, compared with the THS + FR group.
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cells were significantly reduced, while no obvious cell
necrosis was observed (Figure 3a). In addition, the scores
of the pathological injury of the intestinal tract in the THS

groupwere higher than in the control group and that of the
Lactobacillus group were significantly lower than in the
THS group (Figure 3b).

Figure 2: Protein expression of TLR4 (a), p65 phosphorylation (Ser536) (b), and acetylation (Lys310) (c) in tissue from the small intestinal.
Differences in the levels of proteins were detected by western blot; n = 8; *P < 0.05, compared with the control group; #P < 0.05, compared
with the THS group; and &P < 0.05, compared with the THS + FR group.

Figure 3: Histopathology of the small intestine. (a) The histopathology of the small intestine observed under light microscopy (H&E; ×10),
red arrow indicates intestinal mucosal damage; (b) macroscopic injury score; n = 8; *P < 0.05, compared with the control group; #P < 0.05,
compared with the THS group.
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4 Discussion

THS leads to hypovolemia and hypoperfusion of internal
organs. For its own protection, the body prioritizes
sending blood to the brain, heart, and kidneys to maintain
normal function. This greatly reduces blood supply to the
gastrointestinal tract, the first organ system affected by
hemorrhagic shock [14]. Ischemia of the mucosa can
damage the intestinal mucosal barrier and cause intestinal
epithelial dysfunction. Subsequently, bacteria of the
intestinal microbiota can penetrate the barrier and induce
systemic inflammatory response syndrome, which can
further develop into MOF [15]. Importantly, TLRs play a
pivotal role in mediating the immune response. TLR4
was the first TLR discovered and is the most well-studied
family member [16]. Like many receptors, TLRs link extra-
cellular immune stimulation to an intracellular immune
response, and with TLR4 specifically, ligand binding can
lead to the activation of the NF-κB signaling pathway.
Under normal circumstances, TLR4 is rarely expressed in
intestinal mucosa. However, dysregulation of the micro-
biota can disrupt host intestinal mucosal immune tolerance
and lead to increased expression of TLR4 on intestinal
epithelial cells. Subsequently, excessive expression of
TLR4 caused over-activation of NF-κB and increased
release of inflammatory mediators such as TNF-α, IL-6,
and IL-8, which can cause tissue injury [17] and even
sepsis [18]. NF-κB is demonstrated to be a key regulatory
gene responsible for intestinal damage secondary to
hemorrhagic shock, and inhibition of its activation allevi-
ates hemorrhagic shock and organ dysfunction [19,20].
Recently, studies have found that TLR4 overexpression
also occurs during hemorrhagic shock, which may be
related to the destruction of the intestinal mucosal barrier
caused by the redistribution of blood flow and the ability
of intestinal bacteria to penetrate the barrier following this
damage [21].

Colonization of the intestinal tract with lactic acid
bacteria improves microecological balance, assists the
host in metabolizing nutrients, and regulates the host
immune system [8]. Receptors such as TLRs play a vital
role in host recognition of extracellular signals. Lee et al.
suggested that lactic acid bacteria can reduce TLR4 expres-
sion while mitigating an intestinal inflammatory response
[9]. Studies have also demonstrated that lactic acid bacteria
can attenuate intestinal inflammation, inhibit the produc-
tion of inflammatory cytokines, and downregulate the
NF-κB signaling pathway [9,10]. Monocytes and macro-
phages had also been shown to be stimulated by lactic
acid bacteria to maintain immune homeostasis [22,23]. In
this study, rats pre-treated with Lactobacillus-containing

probiotics showed downregulated TLR4 expression com-
pared to rats that did not receive the probiotics, which
suggests that the Lactobacillus-containing probiotics
inhibited TLR4 expression, thereby reducing the over-acti-
vation of the NF-κB signaling pathway to relieve intestinal
inflammation.

NF-κB is the ultimate effector of TLR signaling and is
usually present as an inactive complex consisting of the
p50 and p65 subunits and the inhibitory protein IκBα
[24]. We found that the phosphorylation and acetylation
of p65 increased during hemorrhagic shock, but pretreat-
ment with Lactobacillus-containing probiotics could reduce
this increase. Our results suggest that Lactobacillus-containing
probiotics can downregulate hemorrhagic shock-induced
p65 phosphorylation in the intestine, thereby inhibiting
NF-κB signaling.

TNF-α and IL-6 are important mediators of the immune
response and chronic inflammation, and the gene promoter
regions of both cytokines contain the NF-κB binding site.
Thus, inhibiting NF-κB activation could downregulate the
production of TNF-α and IL-6 as well as other inflammatory
factors, which ultimately would result in less inflammation
[25]. IL-10 is an anti-inflammatory cytokine that inhibits the
inflammatory response and can improve disease prognosis
[26]. Notably, the balance between inflammatory and anti-
inflammatory responses determines disease progression.
Recent studies have shown that Lactobacillus-containing
probiotics can promote the release of IL-10 through the
stimulation of multiple immune cells, such as dendritic
cells, monocytes, and regulatory T cells [27]. Researchers
observed that probiotics can mitigate inflammatory bowel
disease through the regulation of IL-10 [28]. In this study,
the expression of TNF-α and IL-6 mRNA was significantly
increased in the rats experiencing hemorrhagic shock, indi-
cating the severity of the host’s inflammatory response sec-
ondary to hemorrhagic shock. However, pre-treating the
rats with Lactobacillus-containing probiotics was able to
decrease the levels of TNF-α and IL-6 mRNA. Consistent
with these finding, phosphorylated (Ser536) and acetylated
(Lys310) p65 were also downregulated by Lactobacillus-
containing probiotics. At the same time, IL-10 was up-
regulated, which balanced the inflammatory response
and therefore reduced likely intestinal injury.

5 Conclusion

We concluded that Lactobacillus-containing probiotics
can inhibit the activation of the NF-κB signaling pathway
by downregulating the expression of TLR4, and can
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protect the intestinal mucosa of rats suffering hemor-
rhagic shock by reducing the proinflammatory cytokines
IL-6 and TNF-α while increasing the levels of IL-10.
Nonetheless, hemorrhagic shock is much more complex
in human patients with multiple pathological factors
involved. Furthermore, the preparation of Lactobacillus
and the timing of its clinical application are still being
debated. So, further research is required to optimize the
therapeutic protocol to accelerate the clinic translation
process.
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