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Synapses are the fundamental functional units of neural circuits, and their dysregulation
has been implicated in diverse neurological disorders. At presynaptic terminals,
neurotransmitter-filled synaptic vesicles are released in response to calcium influx
through voltage-gated calcium channels activated by the arrival of an action potential.
Decades of electrophysiological, biochemical, and genetic studies have contributed to a
growing understanding of presynaptic biology. Imaging studies are yielding new insights
into how synapses are organized to carry out their critical functions. The development
of techniques for rapid immobilization and preservation of neuronal tissues for electron
microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly
advancing our understanding of synapse structure and function.
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Introduction

A functional nervous system requires the establishment of neural circuits that reliably execute
complex tasks and adapt to stimuli that change over time. Neural circuit function, in turn,
depends on the proper formation, function, and plasticity of synaptic connections between
component neurons. Defects in the organization and function of synapses underlie diverse
neurological disorders including autism, depression, and memory loss. Although synapses were
first hypothesized at the turn of the twentieth century, their study required significant advances in
microscopy and they were not directly observed until the development of the electron microscope
in the 1950s. The minute size and intricate molecular composition of synapses has made them
an experimental challenge since their discovery. Increasingly, this challenge is being met through
the application of innovative techniques for imaging at ultrastructural and near-ultrastructural
levels.

The presynaptic terminal enables neuronal communication by releasing neurotransmitter in
response to Ca2+ influx through voltage-gated calcium channels activated by the arrival of an
action potential. Neurotransmitter released from the presynaptic terminal into the narrow synaptic
cleft converts electrical input into a chemical output received by a postsynaptic cell through binding
of neurotransmitter to postsynaptic receptors. Proper neurotransmitter release requires accurate
functional organization at the presynaptic terminal such that neurotransmitter-containing synaptic
vesicles (SVs) are clustered within the terminal, docked at release sites, and rapidly fused with the
synaptic membrane within a microdomain of increased Ca2+ concentration. Neurotransmitter
release properties must be both reliable and plastic to maintain the scalability of synaptic strength in
response to varying inputs. Although the postsynaptic specialization plays an equally important role
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in neuronal communication, it is well reviewed elsewhere
(in Feng and Zhang, 2009; MacGillavry et al., 2011; Gold,
2012; Iasevoli et al., 2012). In this review, we focus on
the contribution of ultrastructural imaging techniques to a
mechanistic understanding of the signal-sending side of the
synapse, the presynaptic terminal.

Early electron microscopy (EM) studies first identified many
of the now well-known features of synapses, including SVs
and post-synaptic densities (De Robertis and Bennett, 1955;
Palay and Palade, 1955). Although synaptic ultrastructure varies
across species and neuronal subtype, the general functions
described above are shared among all synapses and generate
commonalities in synaptic architecture (Zhai and Bellen, 2004).
Neurotransmitter release is accomplished through a complex
network of molecules at the presynaptic active zone (AZ;
Couteaux and Pécot-Dechavassine, 1970; Südhof, 2012). The
AZ provides both a structural and molecular foundation for
synaptic activity, and is identifiable in all synapses as a strip
of electron-dense presynaptic plasma membrane tightly apposed
to a postsynaptic electron density comprising neurotransmitter
receptors and associated cytoskeletal proteins. The presynaptic
terminal also contains large clusters of SVs sorted into distinct
pools, commonly subdivided into the following: (1) the reserve
pool that maintains release during prolonged activity, (2) the
recycling pool; and (3) the readily-releasable pool (RRP), which
can be further subdivided into SVs ‘‘tethered’’ to the AZ
membrane by short filaments and ‘‘docked’’ SVs in direct contact
with the AZ membrane absent any visible tethers. The RRP is
defined as SVs that are released upon mechanical stimulation
with hypertonic sucrose and thought to represent the population
accessed upon Ca2+ influx during normal physiological activity
(Figures 1A,B; Rosenmund and Stevens, 1996).

Although conventional EM techniques employing chemical
fixatives have been successfully applied for decades and yielded
tremendous insights into synaptic structure and cell biology,
recent work has demonstrated that in hydrated samples,
preservation of fragile cellular ultrastructure is difficult to
achieve with chemical fixatives due to slow penetration and
diffusion throughout the cell. This results in significant
alterations to neuronal morphology and ultrastructure, including
changes in the distribution of functional components, especially,
as discussed below, synaptic vesicles and the filamentous
cytoskeleton. Rapid freeze preservation has been applied for
decades in many organisms and tissues, beginning with
‘‘freeze-fracture’’ and ‘‘freeze-etching’’ experiments that split
the phospholipid bilayer to reveal membrane faces (Moor
et al., 1961; Steere, 1989; reviewed in Heuser, 2011). Recent
high-pressure freeze/freeze substitution (HPF/FS) techniques
have improved ultrastructural preservation in dissected or
cultured neuronal tissues, as well as intact organisms including
Caenorhabditis elegans and Drosophila larvae (Dubochet et al.,
1988; Landis et al., 1988; Rostaing et al., 2004; Fouquet et al.,
2009; Stigloher et al., 2011; McDonald et al., 2012). Through
the application of high pressures (2100 bar) at the freezing
point within milliseconds, HPF/FS maintains the benefit of
suspending the biological sample in a near-native state while
allowing vitrification to penetrate up to 200 microns into

tissue. Following this rapid immobilization, chemical fixatives
are slowly substituted into the tissue as it is warmed to room
temperature over several days. Alternatively specimens can be
maintained and imaged at −170◦C for ‘‘cryo-EM,’’ eliminating
the need for chemical preservation following immobilization,
although these techniques are typically limited to cultured
cells and thin isolated tissues (Dubochet, 1995; Zuber et al.,
2005). Beyond HPF/FS, recent EM work has advocated a more
‘‘proteocentric’’ approach to immobilizing and staining synaptic
tissues. By avoiding the OsO4 traditionally used to preserve lipids
at the expense of protein, it has become possible to visualize the
molecular conformation of the proteinaceous AZ and cytomatrix
(Burette et al., 2012). Despite demonstrated effects on synaptic
ultrastructure, conventional EM preparations utilizing aldehyde
fixatives still remain an important complementary approach
to rapid cryofixation. Although the speed of cryofixation
may assist the immobilization of transient events, HPF/FS is
certainly not gentle—it is possible that the application of high
pressure and transition to vitrification, no matter how fast,
may alter the endogenous distribution of synaptic components
(Südhof, 2012). Therefore any conclusions drawn from the
morphology of the synaptic ultrastructure must take into
consideration existing light-level imaging, electrophysiological,
genetic, and biochemical studies. These recent advances in
EM have combined with super-resolution light microscopy to
address synaptic function by characterizing the constitutive
components of synapses in situ. Here we discuss our expanded
understanding of presynaptic structure and function with a focus
on those discoveries made possible by advances in ultrastructural
imaging.

A Complex Network of Proteinaceous
Filaments Organizes Presynaptic Terminals

A primary function of the presynaptic terminal is to cluster SVs
into functional pools that can release neurotransmitter upon the
arrival of action potentials, sustain release, and modulate it in
response to changing stimuli. In fact, recent reconstructions of
the molecular organization of synaptic terminals suggest that
a significant portion of the presynaptic proteome is devoted
to trafficking SVs (Wilhelm et al., 2014). Furthermore, SVs
themselves are intricate proteinaceous structures to which a
large body of work has been devoted (Takamori et al., 2006).
Studies in hippocampal slice preparations, cultured neurons,
and dissociated synaptosomes have suggested that a network of
filaments linking SVs is the primary structural determinant of
SV clustering and organization. Rapid freezing/freeze etching
enabled the first observation of this complex network of filaments
radiating from both synaptic vesicles and the presynaptic
membrane (Landis et al., 1988). Changes observed in the network
of SV tethers at the presynaptic terminal in response to electrical
or mechanical stimulus suggest that they are highly dynamic,
supporting a role in mediating vesicle release dynamics. Recent
observations in C. elegans suggest the filamentous cytomatrix not
only tethers SVs but also provides a general structural framework
for organelles within the terminal (Stigloher et al., 2011; Astro
and de Curtis, 2015).
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FIGURE 1 | Structure-function relationships of the presynaptic terminal.
(A) Diverse presynaptic terminals have a number of common structural
characteristics visible in electron micrographs. The active zone (AZ) membrane
is delineated by its electron-dense lipid bilayer. Complex cytoskeletal filaments
project from the AZ membrane into the presynaptic cytoplasm and are often
visible as an electron-dense projection. SVs are 40–60 nm in diameter and
organized into three functionally defined pools: the reserve pool (purple),
recycling pool (blue), and readily releasable pool (RRP; red). SVs of the reserve
and recycling pools are typically linked to one another by 2–3 thin proteinaceous
tethers 30–40 nm in length, and occasionally linked to the AZ membrane by
longer filaments of roughly 60 nm in length. The reserve and recycling pools are
morphologically intermixed and therefore defined primarily by their mobility in
functional assays. RRP vesicles are tethered or docked at the membrane in
close proximity to clusters of voltage-gated calcium channels at the base of the
dense projection. Three modes of endocytosis are hypothesized for recovery of

SVs following exocytosis: clathrin-mediated endocytosis (CME), kiss-and-run,
and ultrafast endocytosis. The newly described ultrafast endocytosis involves
the formation of 80-nm diameter vesicular intermediates within 50–100 ms after
stimulus that fuse with early endosomal compartments within 1 s after stimulus.
SVs are then reformed from the early endosome in a clathrin-dependent manner
3–5 s post stimulus. (B) The RRP includes SVs tethered to the AZ membrane by
short filaments 5–25 nm in length and SVs in direct contact with the membrane.
Although the exact molecular composition of SV tethers is unknown, some of
the AZ proteins responsible for regulating SV tethering and docking/priming are
known. (C) Cryopreservation of synapses reveals the morphological intricacies
of dense projection structure previously masked by chemical fixation and
dehydration. Although the unique functional requirements of distinct synapses
within and between species likely underlie observed differences in morphology,
most Dense projections (DPs) comprise a central core and radiating filaments of
varying lengths that contact of distinct functional pools.
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HPF/FS EM and cryoelectron tomography have begun to
yield a clearer picture of the filamentous cytomatrix linking
SVs (Rostaing et al., 2006; Fernández-Busnadiego et al., 2010;
Jiao et al., 2010; Stigloher et al., 2011; Helmprobst et al., 2015).
Tomographic reconstruction of HPF/FS-prepared tissue slices
provides a boost in axial resolution relative to conventional EM
that further facilitates the visualization of fine synaptic filaments.
In contrast to higher estimates from single thin sections, it
appears that each SV (40–60 nm in diameter) is linked to one
or two neighboring vesicles by short filaments (30–40 nm in
length), and that longer filaments (50–60 nm in length) connect
the SV network to the AZmembrane (Figure 1A). These filament
lengths are consistent in different organisms and neuronal
subtypes, including the electric ray electric organ, frog and
zebrafish NMJs, rat cerebrocortical synaptosomes, and mouse
cerebellar cortex or hippocampal slices (Landis et al., 1988;
Hirokawa et al., 1989; Rostaing et al., 2006; Siksou et al., 2007;
Fernández-Busnadiego et al., 2010; Helmprobst et al., 2015).

The filamentous cytomatrix appears to increase in complexity
with proximity to the AZ membrane, an observation that
is easily reconciled with the need for more complex vesicle
trafficking and release machinery near SV release sites. The
complex cytomatrix of the active zone (CAZ) is highly adapted
to the functional requirements of specific synapses, and in many
cases can be observed as a projection from the AZ membrane
in electron micrographs (Figures 1A,C). For example, ribbon
synapses in the vertebrate retina and cochlea are so named
for the presence of large ribbon-like, electron-dense projections
that extend into the presynaptic cytoplasm where they tether
large pools of SVs. These specialized structures are thought
to enable neurotransmitter release rates sufficient for retinal
neurons to encode stimulus intensity in the strength of release
rather than release rate, and in many neurons DPs (DPs)
appear to be responsible for clustering synaptic vesicles near
the AZ membrane where they can be rapidly trafficked for
release (Lenzi and von Gersdorff, 2001; Parsons and Sterling,
2003; tom Dieck and Brandstätter, 2006; Weimer et al., 2006;
Zampighi et al., 2008). The complexity of DPs varies dramatically
and can range from a simple linear amorphous density within
several nm of the cell membrane to extensive filamentous
projections extending several hundred nm into the interior of
the presynaptic bouton (Zhai and Bellen, 2004). It is likely that
neurotransmitter release in general is regulated by common
mechanisms, but that differences in the morphology of DPs
represent the diversification of a central structure/function
theme to diverse niches.

The morphology of the CAZ is closely linked to its functional
capabilities and impaired synaptic function has long been
associated with structural defects. To that end, a significant
investment has been made in characterizing presynaptic DPs
in diverse synaptic subtypes. The application of HPF/FS to
neuronal tissues has advanced an entirely new perspective on
the morphology of DPs (Figure 1C). For example, at the
AZ of the Drosophila neuromuscular junction (NMJ), DPs
were initially termed ‘‘T-bars’’ due to their shape in electron
micrographs, a thick pedestal topped by a platform that clustered
synaptic vesicles. With HPF/FS, the Drosophila NMJ T-bar

is in fact filamentous—an observation easily reconciled with
light-level studies demonstrating that the T-bar component
and CAST/ELKS/ERC homolog Bruchpilot adopts an elongate
conformation (Fouquet et al., 2009). In C. elegans, conventional
EM studies suggested that the DP was a plaque-like structure
that extended across the width of the AZ but remained shallow
within the cytoplasm (Zhai and Bellen, 2004). In fact, as in
Drosophila, HPF/FS preservation reveals that the C. elegans DP
is composed of elongated filaments extending up to 100 nm
into the cytoplasm of the synaptic terminal (Kittelmann et al.,
2013). Vertebrate DP structures are highly variable depending
on synaptic subtype, ranging from the ribbons described above
to minute electron densities regularly spaced between docked
SVs in mammalian central synapses (Gray, 1961; Pfenninger
et al., 1972; Dick et al., 2003). In rat hippocampal slice cultures
prepared using HPF/FS, DPs lose their regularity and take on a
sparse, filamentous appearance (Siksou et al., 2007; Zhao et al.,
2012b). In a recent electron tomographic analysis of zebrafish
NMJ AZs, DPs appear as a complex arbor of filaments radiating
from a dense central core, a structure that is more reminiscent
of DPs at the frog or Drosophila NMJ than vertebrate central
synapses (Helmprobst et al., 2015). Although previous work has
struggled to reconcile diversity in DP structure with an apparent
common functional purpose, in coming years the application of
HPF/FS techniques to each of these systems will likely elucidate
the shared and divergent roles of DPs in synaptic function (Zhai
and Bellen, 2004).

High-Resolution Microscopy is Clarifying
the Molecular Organization of the
Presynaptic Cytomatrix

As clear images emerge of the filamentous nature of DPs,
ultrastructural and near-ultrastructural studies have begun to
address the molecular correlates of these structures. Quick-
freeze deep-etch EM expands on the freeze fracture preparations
described above through vacuum sublimation of up to 10 µm
of ice from the freeze-fractured membrane surface, enabling
enhanced preservation of the topology of 3D structures (Heuser,
2011). Deep-etch EM of SVs incubated with Synapsin in
vitro revealed fine structures linking SVs and, combined with
single-molecule reconstruction, suggested that the molecular
conformation of Synapsin matched that of the SV linkers
(Hirokawa et al., 1989). Although this correlation with the
distribution and conformation of the SV protein Synapsin I
led to the hypothesis that the synaptic web was composed of
this protein, triple knock-out of all Synapsin isoforms does not
appear to disrupt the filamentous nature of the cytomatrix,
either between vesicles or between vesicles and the AZ (Siksou
et al., 2007). Therefore, although Synapsin may be a critical
component of SV tethers, other molecules must be involved
in their formation and maintenance (Takei et al., 1995; Siksou
et al., 2007). On the other hand, incubating the synapse in
tetanus toxin significantly reduces the number of filaments
near the AZ membrane, suggesting that the formation of this
subset of the cytomatrix may be regulated by the synaptic
vesicle SNARE protein Synaptobrevin, and that distinct regions
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FIGURE 2 | A highly conserved network of proteins organizes
presynaptic function. Presynaptic proteins can be grouped into zones
within the AZ based on studies of their location. Although the structural
complexity of the presynapse is not illustrated (see Figure 1), it can be generally
divided into the dense projection (orange), an AZ-proximal zone
extending to approximately 50 nm from the membrane (green), an AZ-distal
zone extending to approximately 100 nm from the membrane (blue), the

peri-active zone beyond the electron dense AZ membrane (gray), and
SVs that may transiently occupy any of the other zones. Presynaptic proteins
discussed in this review are grouped according to their predominant localization
and described in detail. For each molecule, conservation in multiple species is
indicated with the gene name from humans, flies, and worms. Links
between presynaptic proteins and human neurological disorders are
summarized.
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of the filamentous cytomatrix are separable in their molecular
regulation (Fernández-Busnadiego et al., 2010).

The precise organization and exact function of DPs remain
enigmatic. However, a highly conserved network of interacting
proteins comprising the CAZ has been well defined in many
model organisms, including Piccolo/Aczonin, Bassoon, Rab3
interacting molecules (RIMs), Unc-13, RIM binding protein
(RBP), liprin-α, and CAST/ELKS/ERC (Figure 2; Dresbach
et al., 2001; Rosenmund et al., 2003; Zhai and Bellen, 2004;
Jin and Garner, 2008; Bruckner et al., 2012). A large body of
work has furthered our understanding of how each component
contributes functionally to the behavior of the synapse and
is reviewed elsewhere (Haucke et al., 2011; Gundelfinger and
Fejtova, 2012). However, a detailed understanding of CAZ
morphology has been hindered by the detection limits of
conventional light microscopy where the diffraction limit of light
restricts lateral resolution to between 200 and 300 nm and axial
resolution to 500 nm (Abbe, 1873; Pawley, 2010; Bianchini et al.,
2015). To bypass the diffraction limit and achieve nanometer
resolution, both immuno-EM and super-resolution microscopy
have been applied to the question of protein localization
within the presynaptic CAZ. Stochastic optical reconstruction
microscopy (STORM) and the related technique photo-activated
light microscopy (PALM) take advantage of ‘‘on’’ and ‘‘off’’
states of photo-switchable fluorophores to temporally distribute
localization information and computationally reconstruct the
center of each diffraction spot (Betzig et al., 2006; Rust et al.,
2006). STORM was used to establish the axial distribution of
synaptic proteins within the presynaptic terminal in mouse
olfactory bulb and cortex synapses, where RIM1 was found
between 20 and 50 nm from the presynaptic membrane and
the related Piccolo and Bassoon proteins were detected between
20 and 100 nm from the membrane (Dani et al., 2010).
Combining immuno-gold labeling and HPF/FS EM has enabled
localization of synaptic proteins with nanometer resolution
in an ultrastructural context (Rostaing et al., 2006; Weimer
et al., 2006). Such a study in cerebellar synapses found that
RIM1 and Munc-13 localize closest to the plasma membrane
at approximately 20 nm, while Piccolo adopts an L-shaped
conformation at the tip of the DP where it extends to cover the
distal AZ between 40 and 80 nm from the synaptic membrane
(Limbach et al., 2011). In Drosophila, immuno-EM detecting
two distinct epitopes of Bruchpilot demonstrated that it adopts
an elongated conformation at the DP core (Fouquet et al.,
2009). These data inform compelling hypotheses about the
role of these proteins in synaptic function, where Piccolo and
Bassoon regulate SV trafficking at the AZ perimeter; Munc13–1,
RIM1, and CAST1 have a direct role in priming in support of
SV release; and CAST/ELKS/ERC/Bruchpilot bridges these two
compartments.

CAZ proteins are also responsible for clustering Ca2+

channels in close proximity to SV release sites. Although decades
of work has generated a better understanding of Ca2+ dynamics
at the presynaptic AZ (Llinás et al., 1992; DiGregorio et al.,
1999; Frank et al., 2009), the precise localization of Ca2+ channel
subunits at sub-AZ resolution has only recently been determined
using the application of advanced imaging techniques, and

remains a significant challenge. Immunogold labeling of CA3
pyramidal cells prepared using rapid freeze/freeze fracture
demonstrated that CaV2.1 channels are distributed nonrandomly,
clustering at presumptive SV release sites (Holderith et al., 2012).
A similar technique applied to rat cerebellar parallel fibers also
observed small clusters of CaV2.1 channels between 50 and
100 nm in diameter (Indriati et al., 2013). Super-resolution
imaging approaches are also beginning to reveal the molecular
determinants of Ca2+ channel localization. Stimulated emission
depletion (STED) microscopy boosts resolution by using an
additional depletion laser to suppress fluorescence emission
around the focal point, and has been applied to in vivo imaging
of neuronal tissues where it can localize synaptic proteins with 60
nm lateral resolution (Hell and Wichmann, 1994; Nägerl et al.,
2008; Liu et al., 2011; Urban et al., 2011). STED microscopy
was instrumental in detecting a disorganization of Ca2+ channel
punctae in inner ear hair cells lacking Bassoon, demonstrating
its role in organizing the precise localization of Ca2+ channels at
AZs (Frank et al., 2010).

Detection efficiency in immuno-EM is limited by many
factors, including embedding material, epitope preservation, lack
of specific antibodies and difficulty achieving adequate tissue
penetration. Correlative light and EM microscopy (CLEM) has
begun to address these issues by combining the advantages of EM
with those of fluorescent protein microscopy. In one approach,
this is accomplished using a hydrophilic resin and cryo-EM to
preserve protein fluorescence post-embedding. A laser integrated
in the EM column allows registration of fluorescent signal from
ultrathin sections in electron micrographs (Agronskaia et al.,
2008; Faas et al., 2013). Watanabe et al. developed nano-fEM,
which employs STED and PALM super-resolution imaging on
ultrathin sections that are subsequently imaged in a scanning
electron microscope. This method was first employed to study
the localization of presynaptic Liprin-α/SYD-2 in C. elegans
where it was found to localize specifically to the DP in agreement
with previous results using immuno-EM (Yeh et al., 2005;
Watanabe et al., 2011). In many cases the development of
antibodies against synaptic proteins has proven difficult, limiting
the ability to localize these molecules with nanometer resolution.
To overcome this obstacle, many studies have employed the
overexpression of fluorescently tagged proteins to determine
precise localization. However, the degree to which overexpressed
proteins represent endogenous localization and intermolecular
interactions is often unclear. Recent developments in genome
engineering are enabling many groups to circumvent the
caveats of overexpression by facilitating efficient endogenous
tagging of proteins (Harrison et al., 2014). The generation of
targeted double-strand breaks with CRISPR-Cas9 allows for
highly efficient homology directed repair that can incorporate
exogenous sequences, including fluorescent or small epitope
tags, into any gene of interest, and promises to advance our
understanding of the molecular structure of synapses.

Most CAZ proteins are expressed as multiple isoforms,
effectively multiplying the complexity of the molecular
machinery in a way that most studies have yet to address.
Drosophila Bruchpilot is expressed as two distinct isoforms,
Brp-190 and Brp-170. Two-color STED imaging at the NMJ
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with 50-nm resolution determined that Bruchpilot isoforms are
arranged in an alternating array around Ca2+ channel clusters,
where together they provide a structural link between the RRP
at the base of the DP and tethered vesicles at the AZ periphery
(Matkovic et al., 2013). The application of STORM to this same
system has further revealed that each AZ comprises roughly 15
heptameric units interspersed with ‘‘free’’ unclustered protein
(Ehmann et al., 2014). Bruchpilot clusters are encircled by
Drosophila RIM-Binding Protein, which promotes Ca2+ channel
clustering and Ca2+-dependent neurotransmitter release. STED
microscopy was used to localize two distinct Rim-Binding
Protein epitopes with 50 nm resolution, revealing an elongated
conformation with its C-terminus positioned near Ca2+ channel
clusters and its N-terminus closer to the membrane-distal
C-terminus of Bruchpilot (Liu et al., 2011).

The boost in resolution gained from super-resolution
microscopy has also unmasked phenotypes that suggest specific
functional roles for other molecules in the regulation of CAZ
morphology. In a Drosophila model of amyotrophic lateral
sclerosis (ALS), flies overexpressing the DNA/RNA-binding
protein Fused in Sarcoma exhibit a subtle malformation of
AZ Bruchpilot clusters that would have been impossible to
detect with traditional confocal microscopy (Lanson et al.,
2011; Shahidullah et al., 2013). Similar defects were detected
in mutants lacking the Drosophila PDZ domain-containing
protein Dyschronic using STED microscopy, suggesting a
role in CAZ assembly (Jepson et al., 2014). Another super-
resolution technique, structured illumination microscopy (SIM),
illuminates samples with patterned light to create moiré fringes
for the computational reconstruction of features below the
resolution limit, and improves lateral resolution by a factor of
two (Gustafsson, 2000). SIM microscopy has been employed to
clarify the role of microtubules and their associated proteins in
linking the CAZ to the cytoskeleton, revealing the association
of microtubules with nearly all AZ Bruchpilot clusters (Lepicard
et al., 2014).

Synaptic Vesicles are Organized into
Functional Pools with Morphological
Correlates

Models of SV trafficking postulate three pools of vesicles
distinguished primarily by their mobility rather than their
physical localization within the terminal: the reserve pool,
the recycling pool and the RRP (Rizzoli and Betz, 2005;
Denker and Rizzoli, 2010). Although these pools were originally
defined electrophysiologically, the application of high-resolution
electron tomography to preparations that preserve native
structure has enabled a detailed morphological definition of
synaptic vesicle pools that is closely related to their functional
properties.

In the bouton interior up to several hundred nanometers from
the AZ membrane, clusters of SVs linked by thin filaments are
organized in many distinct groupings of varying size—up to 20
distinct clusters in some systems (Fernández-Busnadiego et al.,
2010). Although SVs in these clusters appear morphologically
similar they can be distinguished by their mobility into

two populations: the recycling pool which is continuously
replenished and trafficked to the AZ membrane and the reserve
pool which is only accessed under extreme conditions (Haucke
et al., 2011). The RRP is operationally defined as the population
of vesicles released in response to mechanical stimulus with a
hypertonic sucrose solution. In rat cerebrocortical synaptosomes,
quantification of the morphological difference after hypertonic
stimulation only observed release of vesicles tethered to the AZ
membrane by more than two tethers under 5 nm in length.
Except for two cases in which SVs were observed linked to the AZ
membrane by a narrow fusion pore, SVs making direct contact
with the AZ membrane were not observed in this preparation
(Fernández-Busnadiego et al., 2010). Combined with studies in
other cell types and organisms that detect morphological docking
more frequently, this work suggests that SVs tethered to the AZ
membrane by short 5–25 nm filaments comprise the RRP, and
that direct ‘‘docking’’ contact between an RRP vesicle and the AZ
membrane may represent a transient event that proceeds rapidly
to neurotransmitter release. It is also possible that vesicles of
the RRP oscillate stochastically between primed and un-primed
states. If this is the case, synaptic probability of release may
be a key determinant in the distribution of the RRP found
in tethered vs. docked states. In support of this idea, conical
electron tomography, which uses more complex tilt geometry
to reduce missing volume in tomographic reconstructions, was
used to demonstrate that in cortical synapses approximately
75% of vesicles in contact with the presynaptic membrane are
hemi-fused (Lanzavecchia et al., 2005; Zampighi et al., 2005).
In this hemi-fused state, the inner leaflet of the SV membrane
remains intact but the outer leaflet is continuous with the
inner leaflet of the AZ membrane. Contact between SVs never
involved hemi-fusion, supporting the model of proteinaceous
tethers between vesicles (Zampighi et al., 2006). Further, recent
electrophysiological work at the murine calyx of Held suggests
that the RRP is composed of two vesicle populations with distinct
release kinetics (Figure 1B). The ‘‘fast’’ RRP is released within 1
ms of stimulation and the ‘‘slow’’ RRP is released approximately
4 ms after stimulation (Chen et al., 2015). It is possible that
vesicles in the ‘‘fast’’ RRP are docked, while vesicles in the
‘‘slow’’ RRP are tethered. The future application of rapid freeze
imaging techniques to address this model will help determine
the morphological identity of vesicles within the RRP, and define
how each contributes to the release probability of individual
synapses.

Morphological Docking Precedes Synaptic
Vesicle Fusion

Rapid release of neurotransmitter is thought to require
physical docking and molecular priming to tightly synchronize
membrane fusion with presynaptic Ca2+ influx, yet the
morphological correlate of molecular priming has remained
elusive. A critical step that must occur before coordinated
fusion is the UNC-13-mediated assembly of the soluble N-
ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) complex, where zippering of trans-SNAREs forces
the fusion of SV and AZ membranes. SNARE assembly is
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thought to be the final molecular priming step enabling
SV fusion competence, and decades of work have addressed
the molecular and biophysical mechanisms that underlie SV
fusion (reviewed in Südhof, 2013a,b; Kaeser and Regehr,
2014). However, key structure-function relationships remain
unclear. In work using aldehyde fixatives, the lack of a
vesicle docking phenotype in synapses lacking UNC-13, despite
complete loss of both spontaneous and evoked fusion, led to a
distinction between vesicle priming and docking, where priming
must occur downstream of docking but before exocytosis
(Aravamudan et al., 1999; Richmond et al., 1999; Varoqueaux
et al., 2002). The application of HPF/FS EM tomography to
these samples revealed a loss of SV docking in Munc13 KO
synapses, raising the possiblity that vesicle contact with the
presynaptic membrane (docking) may be the structural correlate
of functional priming (Siksou et al., 2009). This remains an open
question.

Cryo-electron tomography of HPF/FS-immobilized rat
synaptosomes are clarifying the structure-function relationships
underlying SV docking/priming. RIM1α regulates the formation
of short SV-AZ membrane tethers, and through these structures
regulates the size of the RRP (Fernández-Busnadiego et al.,
2013). Synapses lacking CAPS, Synaptotagmin I, Syntaxin
I, and UNC-18 also lack tethered SVs and exhibit impaired
neurotransmitter release, suggesting that these molecules may
regulate tethering upstream of docking/priming (Figure 1B;
Gracheva et al., 2010; Imig et al., 2014).

The proximity of the RRP to Ca2+ channels is a key
determinant of release probability and kinetics, and the coupling
of the RRP to Ca2+ channel clusters is a critical aspect of SV
docking/priming. Although the sub-AZ localization of Ca2+

channel clusters relative to other molecules has not been
directly determined with nm resolution, the combination of
genetic and biochemical studies with STED super-resolution
light microscopy suggests that they likely reside at the base of
the DP, directly opposite of neurotransmitter receptor clusters
(Liu et al., 2011; Graf et al., 2012; Matkovic et al., 2013).
Computational simulations of Ca2+ influx and SV release suggest
that SVs more distal to Ca2+ channel clusters may represent
the slow RRP detected electrophysiologically (von Gersdorff and
Matthews, 1994; Heidelberger et al., 1994; Jiao et al., 2010; Chen
et al., 2015). At the fly NMJ, the majority of SVs tethered to
the AZ membrane are linked to the AZ membrane by 5–25 nm
filaments within 50 nm of the DP base (Jiao et al., 2010). During
depolarization, vesicles at this distance from a Ca2+ channel
cluster are likely exposed to Ca2+ concentrations between 50
and 100 µM. Therefore, if the necessary molecular priming steps
have been achieved, tethered SVs should be rapidly released
as part of the RRP during evoked release in physiological
conditions.

The molecular nature of SV docking/priming appears to
vary somewhat between synapses, likely due to the distinct
release requirements of different neurons. For example, although
a number of synaptic scaffolding proteins are conserved, it
appears that many of the Ca2+ sensing and SV priming functions
carried out in other cells by Synaptotagmin, RIMs, and Munc13
may be carried out by the protein Otoferlin in cochlear inner

hair cells (IHCs). Recent electron tomography of IHC synapses
demonstrated that loss of Otoferlin in IHCs results in a reduction
of short SV-AZ membrane tethers, the same structures thought
to be the structural correlate for the RRP in the rat cortex
(Gracheva et al., 2010; Imig et al., 2014). The ability of large IHC
synapses to sustain a RRP replenishment rate of around 700 SVs
per second at each AZ, compared to 70 SVs per second per AZ in
rat bipolar cells likely necessitates specialized machinery (Singer
and Diamond, 2006; Pangršic et al., 2012). Although the exact
molecular mechanism by which Otoferlin facilitates such high
rates of neurotransmitter release remains unclear, it is possible
that its many C2 domains enable sophisticated Ca2+ sensing and
more rapid membrane bending than in other cell types (Pangršic
et al., 2012).

Extensive electron tomography of the frog NMJ has enabled
McMahan and colleagues to link the structural characteristics
of the presynaptic terminal to SV docking, where the DP
was classified into three distinct structural layers and the
stepwise handoff of SVs between the macromolecular complexes
that comprise each layer is thought to achieve SV docking
(Figure 1C). The first class of AZ macromolecules occupies
roughly 15 nm closest to the AZ and contains structures
termed pegs, ribs, and beams; these structures likely contain
Ca2+ channels and the molecules that regulate their distribution
relative to vesicle docking sites. Beams extend lengthwise down
the elongate AZ structure where they are linked to docked
SVs by filamentous ribs that make contact with the presynaptic
plasma membrane via short pegs (Harlow et al., 2001). The next
15 nm from the AZ is the intermediate layer, which contains
steps and spars spaced at regular intervals and may mediate
the first transition to morphological docking before contact
with the proximal class of AZ material. Steps extend centrally
from the AZ-proximal beams, and are linked to docked SVs by
filamentous spars. The final class of macromolecules includes
masts, which extend 30 nm from steps as a coiled bundle
of 4–9 strands, booms, and topmasts. Booms appear to link
the inner structure of the DP to the distal surface of docked
vesicles, whereas filamentous topmasts extend furthest from
the central mast to contact clustered, undocked SVs, possibly
facilitating the replacement of recently fused vesicles with this
clustered population (Szule et al., 2012). Furthermore, electron
tomographic examination of the luminal structure of docked
SVs revealed that SVs contain a consistently oriented internal
skeleton that enables appropriate orientation of a docking vesicle,
possibly through interactions with sparsely distributed vesicular
proteins required for SV fusion (Harlow et al., 2013). Elements
of this ultrastructural arrangement appear to be conserved
across phyla, although again the presence of certain structural
features may be dependent on the functional requirements of
the synaptic subtype. At the fly NMJ, electron tomography of
synapses prepared by HPF/FS revealed that DPs are composed
of a central core, extensions, and legs, an organizational scheme
that is conserved in other insects including locusts (Jiao et al.,
2010; Leitinger et al., 2012). Relative to the frog NMJ, the
central core may be analogous to the mast, step, and beam; the
extensions similar to the spar, boom, and topmast; and the legs
the equivalent of the ribs and pegs tightly associated with Ca2+
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channels at the base of the DP. The combination of these high-
resolution structural analyses with protein localization studies
will further elucidate the contribution of each macromolecular
structure to SV trafficking and neurotransmitter release.

Advanced Ultrastructural Imaging
Techniques Enable the Preservation of
Exocytic and Endocytic Events

In the 1980s, Heuser and Reese combined a carefully timed
electrical stimulus with rapid freezing of neuronal tissues,
enabling the first observation of exocytic and endocytic
intermediates (Heuser and Reese, 1981). The improved spatial
resolution of EM tomography and ability of HPF/FS to
immobilize tissue on rapid time scales has enabled the study
of transient events in the SV cycle, especially exocytosis and
endocytosis. In many situations the direction of these transient
events can be difficult to determine conclusively—whether
an ‘‘omega’’ shape at the synaptic membrane represents
vesicle fusion or endocytosis is not inherently obvious. These
‘‘snapshots’’ have frozen fusion events at each of the hypothesized
intermediate steps—a slight invagination of the presynaptic
membrane, SVs linked to the synaptic cleft by a narrow fusion
pore, and fully spherical vesicles making membrane contact
with the AZ membrane (Fernández-Busnadiego et al., 2010).
‘‘Omega’’ figures are observed in 20% of synapses within 15 ms
of ontogenetic stimulus and only rarely in unstimulated controls.
The appearance of many of these structures immediately
following stimulus suggests that they represent SVs in the act
of full collapse into the AZ membrane. Optogenetic stimulus
on short time scales appears to only release vesicles making
morphological contact with the AZ membrane (Fernández-
Busnadiego et al., 2010; Watanabe et al., 2013). Stimulus strength
and type likely has a significant effect on the proportion of the
RRP that is released in these experiments as mechanical stimulus
with sucrose solutions depletes SVs that are tethered to the
membrane by short (5–25 nm) filaments in addition to those
docked at the membrane.

Neurons exhibit extreme polarity—in some cells the
presynaptic terminal may be located at a distance hundreds
of times the length of the cell body. Therefore, sustained
activity requires local recycling of molecules and organelles,
especially SVs. Early experiments using their ‘‘freeze slammer’’
technique led Heuser and Reese to develop a model of SV
endocytosis where SVs are retrieved by bulk endocytosis
(Heuser and Reese, 1973). One extensively studied mode of SV
endocytosis is termed clathrin-mediated endocytosis (CME).
CME is slow (around 20 s after stimulation), occurs at the
AZ periphery, and requires clathrin and a number of adapter
proteins (Heuser and Reese, 1973, 1981; Watanabe et al., 2013;
reviewed inMcMahon and Boucrot, 2011). Following exocytosis,
vesicular membrane proteins are trafficked to the AZ periphery
where they can be recycled to maintain SV identity during
endocytosis. In PC12 neuroendocrine cells, the post-fusion
diffusion of the vesicular acetylcholine transporter (VAChT)
was tracked using a combination of iPALM and freeze-fracture

EM. Following exocytosis, VAChT localization extends several
hundred nanometers from the fusion site, where it is trapped at
preformed clathrin endocytic structures through an interaction
between its cytoplasmic tail and the adaptor protein AP2 (Kim
and Hersh, 2004; Sochacki et al., 2012). By imaging these minute
nascent clathrin structures and associated VAChT with iPALM
and EM, Sochacki and colleagues determined that preassembled
clathrin domes are present at high density in order to prevent
the diffusion of vesicular proteins far from release sites (Sochacki
et al., 2012).

Subsequent experiments have led to a model in which
neurotransmitter release can be accomplished by either full
collapse into the synaptic membrane or partial ‘‘kiss-and-run’’
release (Alabi and Tsien, 2013). Kiss-and-run is hypothesized
to be the release of neurotransmitter through a narrow fusion
pore formed by the force of the AZ cytoskeleton restraining
against SNARE-mediated full collapse, enabling more rapid
recovery of synaptic vesicles.Whether a given SV undergoes kiss-
and-run or full collapse is thought to be dictated by binding
of Ca2+ to Synaptotagmin (Syt) C2 domains (Wang et al.,
2003). Previous work has employed multiple methods to define
kiss-and-run release in several different neuronal and non-
neuronal cell types, including FM dye destaining, pHlourin-
based pH responses, quantum dot dequenching, whole cell
capacitance recordings, measurements of postsynaptic receptor
currents, and amperometry (Ceccarelli et al., 1972; Richards
et al., 2005; Zhang et al., 2009; reviewed in Alabi and Tsien,
2013). However, measurements of kiss-and-run obtained by
these techniques have been interpreted in different, sometimes
conflicting, ways and a consensus on the degree to which a kiss-
and-run mechanism is accessed during normal activity in diverse
synaptic subtypes has not emerged (Granseth et al., 2006; Wu
et al., 2007).

Expanding on the freeze slammer technique, Erik Jorgensen,
Christian Rosenmund, Shigeki Watanabe, and colleagues
have combined optogenetic stimulation with HPF/FS tissue
preservation to preserve the state of the synaptic terminal within
milliseconds after stimulating vesicular release. This ‘‘flash
and freeze’’ technique finally enables visualization of discrete,
rapid events, bringing the temporal resolution of EM into a
range approaching that of electrophysiological measurements.
In cultured mouse hippocampal neurons, flash and freeze has
enabled the definition of three distinct forms of endocytosis:
ultrafast (50–100 ms), fast (1 s), and slow (20 s). Ultrafast
endocytosis occurs at the AZ edge, is clathrin-independent,
and requires Dynamin and actin for scission and trafficking
of endocytosis products (Watanabe et al., 2013). Vesicular
products generated by ultrafast endocytosis are recycled through
endosomal pathways and reformed into synaptic vesicles in a
clathrin-dependent manner within 5–6 s (Watanabe et al., 2014).
Trafficking of reformed synaptic vesicles within the terminal also
appears to depend on actin and the size and release probability
of the synapse, where larger, higher-probability synapses require
F-actin for fine positioning and translocation of SVs across
larger distances and at faster speeds (Rust and Maritzen, 2015).
Although ultrafast endocytosis appears distinct from kiss-and-
run exocytosis, it likely represents an adaptation that enables
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fast firing rates incompatible with slow clathrin mediated
endocytosis (Watanabe et al., 2013). Despite the large body of
work supporting multiple models of endocytosis, the degree
to which each is employed during normal neuronal function
remains unclear. Recent work suggests that the terminal may be
able to shift between slow and ultrafast endocytosis depending
on the vesicular requirements as dictated by temperature or
neuronal activity (Micheva and Smith, 2005; Granseth et al.,
2006; Renden and von Gersdorff, 2007; Watanabe et al., 2014;
Kononenko and Haucke, 2015). RRP SVs appear to utilize
multiple endocytic modes following exocytosis. Fast microwave-
assisted aldehyde fixation and photoconversion of endocytic
vesicles labeled with FM1–43 dyes revealed that, after release,
50% of the RRP vesicles are retrieved close to the AZ within 4 s
after stimulation in a clathrin-independent manner. Within 30
s, the rest of the RRP is endocytosed through large intermediate
vesicles, and a small proportion of the pool rejoins the RRP
(Schikorski, 2014).

As discussed above, following ultrafast endocytosis SVs
are reformed from endosomal compartments in a clathrin-
dependent manner. Is endosomal SV reformation similar to
CME in other ways? SIM microscopy was used to image
endogenously tagged Clathrin heavy chain (Chc) and clathrin
adaptor subunit α-Adaptin (α-Ada). Dynamin photoinactivation
blocks relocalization of Chc and α-Ada from the center of
the bouton to the periphery after stimulus, suggesting that SV
budding from synaptic endosomes is stabilized by Dynamin
(Kasprowicz et al., 2014). Therefore, SV reformation from
synaptic endosomes employs a molecular mechanism similar to
CME, which may have contributed to the omission of ultrafast
endocytosis from earlier interpretations and models.

Synaptic Ultrastructure is Plastic

Presynaptic specializations are plastic in response to changes
in network activity, and homeostatic changes in molecular
composition and activity can alter neurotransmitter release on
short time scales. The structural basis of synaptic plasticity
has long been elusive, but is likely mediated in part by
the dynamic nature of presynaptic architecture. For example,
pharmacologically silencing neurons in hippocampal slice
cultures with bath application of the Na+ channel blocker
tetrodotoxin increases the size of the presynaptic bouton,
AZ, postsynaptic density, and RRP (Murthy et al., 2001).
At the Drosophila NMJ, irreversible blockage of glutamate
receptors via application of the wasp venom philanthotoxin or
loss of the glutamate receptor subunit GluRIIA leads to the
homeostatic increase in the amount of neurotransmitter released
to maintain normal levels of neuronal activity in the network.
This increase is accompanied by morphological changes visible
with super-resolution microscopy, in this case STED, including
an increase in the size of the RRP and complexity of the CAZ
(Weyhersmüller et al., 2011). Immuno-EM has also been used
to detect activity-dependent rearrangement of CAZ proteins on
short time scales. Following high K+-induced depolarization, SV
proteins including SV2, Synaptophysin, Synapsin, and Synuclein
redistribute towards the AZ, Piccolo and Bassoon remain stable,

and RIM1 relocates away from the AZ membrane (Tao-Cheng,
2006). The structural malleability of the CAZ is achieved in
part by degradation of proteinaceous synaptic tethers via the
ubiquitin-proteasome system (UPS). Although the complete
molecular composition of the filamentous cytomatrix remains
unclear, the levels of synaptic proteins including RIM, Munc13,
and Synapsin are modulated by the UPS in an activity-dependent
manner (Waites et al., 2013). Other CAZ proteins likely provide
the link between changes in neural activity and the ubiquitination
of synaptic proteins, and Bassoon and Piccolo have emerged
as likely candidates. Through the loss of negative regulation
of the E3 ubiquitin ligase Siah1, reduction of Piccolo and
Bassoon protein levels lead to the degradation of SV-associated
proteins including Synaptophysin, VAMP2, SV2, and Synapsin
IA (Waites et al., 2013).

Chemically induced long-term potentiation (LTP) is
also associated with ultrastructural changes at the synapse
(Wojtowicz et al., 1994). A model for the plasticity mechanisms
associated with learning and memory, LTP involves both pre-
and postsynaptic molecular changes. When LTP is induced over
the course of 10 min by application of the potassium channel
blocker tetraethylammonium (TEA), the occurrence of omega-
shaped invaginations drastically increases, most likely because
increased neurotransmitter release dramatically improves the
odds of immobilizing a full collapse fusion event. LTP also
appears to induce an elongation of the presynaptic membrane
that is coordinated with increasing complexity of postsynaptic
spines, changes that depend on the priming factor Munc13–1
(Zhao et al., 2012a). In addition to trafficking new molecular
complexes from the cell body, neurons may also accomplish
molecular plasticity through local protein translation, and
STED imaging is now being employed to address this question
(Zhang et al., 2014). Although there is now significant evidence
supporting translation of synaptic transcripts in the cell soma and
dendrites, evidence in support of translation in the presynaptic
compartment after the synapse primarily comes from studies
employing the local application of protein synthesis inhibitors
(Hsiao et al., 2014; reviewed in Akins et al., 2009). Presynaptically
translated transcripts remain difficult to identify, but include the
neuropeptide sensorin in Aplysia, and β-catenin in dissociated
rat hippocampal cultures (Liu et al., 2003; Lyles et al., 2006;
Wang et al., 2009; Taylor et al., 2013). Although fluorescent in
situ hybridization (FISH) detected messenger RNA (mRNA) of
the synaptic proteins Synaptobrevin and Synaptotagmin only
in the soma and occasional dendrite of cultured hippocampal
neurons, applied to other synaptic proteins in diverse neuronal
subtypes, the increased resolution gained from STED-FISH may
reveal previously overlooked mRNA localization in presynaptic
terminals (Zhang et al., 2014). Parallel ultrastructural studies
employing cryopreservation and tomography may hold promise
in addressing the failure to detect polyribosomes presynaptically.

Conclusions

The accumulation of minute changes in large synaptic
subpopulations lies at the root of many neurologic disorders
(van Spronsen and Hoogenraad, 2010; Chen et al., 2014;
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Deák, 2014). The ability to rapidly preserve synaptic biology
in a state as close to life as possible for ultrastructural analysis
is rapidly expanding our understanding of synaptic structure-
function relationships. Applying these approaches to disease
models promises to shed new light on the structural and
molecular underpinnings of synaptic disorders. Despite their
shared functions, synapses are structurally diverse both between
organisms and between neuronal subtypes within an organism.
Therefore, a comprehensive understanding of neuronal function
requires the application of high-resolution imaging techniques
to diverse synapses. Advances in imaging including HPF/FS,
cryo-electron tomography, and super-resolution imaging have
enabled studies of synaptic biology to move increasingly to

experiments in vivo and even in intact, behaving organisms.
Now, just decades after the first direct visualization of synapses,
the revolution in advanced imaging techniques is shedding new
light on synapse biology.
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