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Development of a real-time 
endoscopic image diagnosis 
support system using deep learning 
technology in colonoscopy
Masayoshi Yamada1,2, Yutaka Saito1, Hitoshi Imaoka3, Masahiro Saiko3, Shigemi Yamada2,4, 
Hiroko Kondo2,4, Hiroyuki Takamaru1, Taku Sakamoto1, Jun Sese5, Aya Kuchiba   6, 
Taro Shibata6 & Ryuji Hamamoto2,4

Gaps in colonoscopy skills among endoscopists, primarily due to experience, have been identified, 
and solutions are critically needed. Hence, the development of a real-time robust detection system for 
colorectal neoplasms is considered to significantly reduce the risk of missed lesions during colonoscopy. 
Here, we develop an artificial intelligence (AI) system that automatically detects early signs of 
colorectal cancer during colonoscopy; the AI system shows the sensitivity and specificity are 97.3% 
(95% confidence interval [CI] = 95.9%–98.4%) and 99.0% (95% CI = 98.6%–99.2%), respectively, and the 
area under the curve is 0.975 (95% CI = 0.964–0.986) in the validation set. Moreover, the sensitivities are 
98.0% (95% CI = 96.6%–98.8%) in the polypoid subgroup and 93.7% (95% CI = 87.6%–96.9%) in the non-
polypoid subgroup; To accelerate the detection, tensor metrics in the trained model was decomposed, 
and the system can predict cancerous regions 21.9 ms/image on average. These findings suggest that 
the system is sufficient to support endoscopists in the high detection against non-polypoid lesions, 
which are frequently missed by optical colonoscopy. This AI system can alert endoscopists in real-time 
to avoid missing abnormalities such as non-polypoid polyps during colonoscopy, improving the early 
detection of this disease.

The incidence of colorectal cancer (CRC) has been increasing both in Japan and globally1,2. In Japan, more than 
130,000 people were diagnosed with CRC in 2013, and more than 50,000 people died of the disease in 20161. 
Importantly, colonoscopy following the removal of detected neoplastic lesions reduces the incidence and mortal-
ity of CRC3,4. Therefore, it is essential to perform colonoscopy; however, the incompleteness of colonoscopy may 
lead to post-colonoscopy CRC (PCCRC), a recent problem of colonoscopy. PCCRC has been reported to account 
for 3%–10% of all resected CRC lesions5,6. The reasons for PCCRC include missed lesions (58%), failure to visit 
the hospital (20%), newly occurring lesions (13%), and residual lesions due to inadequate endoscopic treatment 
(9%)7,8. Several studies described the characteristics of PCCRC as follows: (1) right-sided colon location, (2) small 
and early-stage cancer, and (3) flat morphology8–10. Indeed, the missed polyp rate during colonoscopy has been 
reported as approximately 20%, but the rate varies according to the skill of the endoscopist11,12. Hence, we hypoth-
esized that artificial intelligence (AI) technology may help prevention of missed lesions during colonoscopy and 
reduce the skills gap among endoscopists, particularly regarding the detection of flat lesions.

AI technology, which is defined as the science and engineering of creating intelligent machines, has greatly 
progressed in recent years, primarily due to the advancement of analysis methodologies such as neocognitron, 
support vector machine, and deep learning13. Deep learning, also known as deep structured learning or hierarchi-
cal learning, is part of a broader family of machine learning methods based on learning data representations. In 
2006, Hinton and colleagues described the use of the generalized backpropagation algorithm to train multilayer 

1Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan. 2Division of Molecular Modification and 
Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan. 3Biometrics Research Laboratories, NEC 
Corporation, Kanagawa, Japan. 4Advanced Intelligence Project Center, RIKEN, Tokyo, Japan. 5Artificial Intelligence 
Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan. 6Biostatistics 
Division, National Cancer Center, Tokyo, Japan. Correspondence and requests for materials should be addressed to 
M.Y. (email: masyamad@ncc.go.jp)

Received: 29 January 2019

Accepted: 4 September 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-50567-5
http://orcid.org/0000-0002-6786-3527
mailto:masyamad@ncc.go.jp


2Scientific Reports |         (2019) 9:14465  | https://doi.org/10.1038/s41598-019-50567-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

networks, which led to the breakthrough of deep learning14. Deep learning architectures are known to be particu-
larly suitable for quantifying images, exhibiting high capability in detection, classification, and segmentation15. 
In fact, AI using deep learning achieved and exceeded human-level image recognition in a competition at the 
ImageNet Large Scale Visual Recognition Challenge in 2015 (error rate: 4.9% vs. 5.1%)16. AI systems using deep 
learning have been applied for images of lesions such as breast cancer, skin cancer, and diabetic retinopathy, and 
the systems are appropriate for image feature analysis17–19. Moreover, AI systems have been used in mammog-
raphy and computed tomography, albeit on an extremely limited basis20. Although AI has been applied to polyp 
detection in colonoscopy, the results have not been satisfying21. In the present study, we developed an AI system 
that automatically detects early signs of CRC during colonoscopy on an almost real-time basis.

Results
We started training using three groups of images: group 1, 1,244 still images of 1,379 polypoid lesions; group 2, 
891 frames of 173 consecutive lesions and 134,983 frames of noncancerous tissue from videos; and group 3, 2,843 
still images of 564 slightly elevated and depressed lesions (Fig. 1). Each image was transformed to be a resolu-
tion of 880 × 752 pixels after cropping area of endoscopy image from display screen image, since the area size of 
endoscopy image is frequently changed. The size, 880 × 752 pixels, was experimentally determined based on our 
experimental images.

All lesions in the training and validation sets were pathologically proven early-stage CRCs (Tis or T1) or pre-
cursor lesions (Table 1). Histological diagnosis was performed using the World Health Organization criteria. In 
the present study, precursor lesions included adenoma, dysplasia, and sessile serrated adenoma/polyps (SSA/Ps) 
(Fig. 1). We included images of hyperplastic polyps (HPs) in the right-sided colon (from the cecum to descending 
colon) in the training set because interobserver agreement among pathologists for discriminating HPs and SSA/
Ps was reported to be challenging in histology22. Furthermore, including images of HPs in the right-sided colon 
is consistent with the clinical recommendation in the National Comprehensive Cancer Network guideline23. In 
group 2, we included 33 images of eight consecutive patients with advanced CRC (Borrmann classification type 2) 
to prevent missing intermediate lesions. All lesions in the training set images were manually annotated as regions 

Figure 1.  Representative images of trained colonic lesions. (a) 10-mm sized pedunculated type. (b) 10-mm 
sized sessile type. (c) 4-mm sized superficial elevated type. (d) 4-mm sized superficial depressed type. (e) 4-mm 
sized superficial depressed type. (f) 25-mm sized non-granular type laterally spreading tumor. (g) 18-mm sized 
granular type laterally spreading tumor. (h) 50-mm sized granular type laterally spreading tumor. i, 6-mm sized 
sessile serrated lesion.
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of interest (ROIs) at their edges by experienced endoscopists (Supplementary Fig. 1). The extracted ROIs were 
categorized as positive samples and regions outside the ROIs were deemed negative samples in the supervised 
deep learning model. The regions of negative samples were selected randomly.

The deep learning model, which consists of supervised neural networks with multiple layers, has been suc-
cessfully applied to a variety of computer vision tasks24,25. To detect lesions from endoscopic video frame images 
in the present study, our lesion detection model was Faster R-CNN with VGG16, which is one of the frequently 
used deep neural network models for object recognition26,27. This model combines two models: a classifier model 
for lesion detection and a regression model for lesion position (Supplementary Fig. 2). The classifier model is a 
binary classifier for lesions that outputs confidence scores for lesions. The regression model is a linear regression 
model that outputs the predicted positions of lesions. Each model shares the same feature extractor28. Using 9 
types of multiscale sliding windows in accordance with the original study27, these two models detect lesions of 
various sizes. Both models were trained using stochastic gradient descent algorithms. The learning rate gradually 
decreased from 0.001 to 0.0001. However, the prediction speed is not so enough fast for endoscopists to use the 
model in real-time examination. Hence, by adopting the tensor decomposition method of Kim et al. to the trained 
model, the number of weight parameters was 5 times fewer, and the prediction speed was increased 1.7 times 
faster than original model by keeping the original accuracy29.

The diagnostic performance of the AI system was confirmed using the validation set (705 still images of 752 
lesions and 4,135 still images of noncancerous tissue). The clinicopathological characteristics of the lesions in the 
validation set are shown in Table 1. The polypoid subgroup included 48 granular-type laterally spreading tumors, 
nodular mixed type. The superficial type included nine granular-type laterally spreading tumors, homogenous 
type and 30 nongranular-type laterally spreading tumors. The AI system and its user were blinded to the absence 
or presence of lesions and clinical information.

The AI system output was independently checked by three reviewers (MY, SY, and HK). The output for the 
lesion was considered correct when the system detected and flagged the lesion locus in. The output for no lesion 
area in the image with the lesion was considered correct when the all three observers didn’t detect any lesions 
outside the flag. The output for image without lesion was considered correct when the AI system showed no flag. 
The review process was conducted by three reviewers with knowledge of the clinicopathological data of the image. 
When a disagreement occurred among three reviewers, it was settled by discussion and all reviewers finally reach 
the common conclusion for all cases30. The sensitivity and specificity of the AI system were calculated.

The AI system exhaustively analyzed each frame or image, detecting and displaying a result within 0.03 s (30 
frames/s) (Fig. 2; Supplementary Video 1); representative images of detected polyps are shown in Fig. 3. In the 
validation study, the sensitivity and specificity of the AI system were 97.3 (95% CI = 95.9–98.4) and 99.0% (95% 
CI = 98.7–99.3), respectively (Table 2). In subgroup analysis, the sensitivity was 98.1% (95% CI = 96.8–99.0) in 
the polypoid subgroup, versus 92.9% (95% CI = 86.4–96.9) in the nonpolypoid subgroup. The area under the 
ROC curve was 0.9752 (95% CI = 0.964–0.986), and a supplementary human observational study demonstrated 
that the AI system had a superior diagnostic yield as endoscopists, including experienced, fellows, and beginners 
(Fig. 4a and Table 3). In all endoscopists, the sensitivity and specificity were median 87.4% (range 78.9–90.5) and 
96.4% (range 89.1–98.2), respectively. The sensitivity was almost equal between experts, fellows, and beginners 

Still image Video image

Number of images or videos validated 4,840 images 77 videos

Number of endoscopists, n 15 14

Number of lesions (images or videos) 752 (702) 56 (45)

Location of lesions

Right-sided colon 351 (47%) 33 (59%)

Left-sided colon 254 (34%) 20 (36%)

Rectum 147 (19%) 3 (5%)

Size of lesions, mm, median, IQR 5 (4–10) 4 (3–5)

Morphological type, n (%)

Polypoid 638 (85%) 12 (21%)

Slightly elevated and depressed 114 (15%) 44 (79%)

Pathological diagnosis, n (%)

Hyperplastic polyp 23 (3%) 3 (5%)

Sessile serrated adenoma/polyp 40 (5%) 3 (5%)

Traditional serrated adenoma 9 (1%) 0

Low-grade adenoma/dysplasia 441 (59%) 47 (84%)

High-grade adenoma/dysplasia 214 (28%) 2 (4%)

Submucosal invasive cancer 25 (3%) 1 (2%)

Table 1.  Clinicopathological characteristics of lesions in the validation set. IQR, interquartile range. Right-
sided colon includes cecum, ascending colon and transverse colon; Left-sided colon includes descending 
colon and sigmoid colon; Rectum includes rectsgmoid colon, upper rectum and lower rectum. Polypoid type 
includes 0-Is, Isp, Ip, granular type laterally spreading tumor (LST-G) nodular mixed type; Slightly elevated and 
depressed includes 0-IIa, IIc, LST-G homogenous type and non-granular type LST (LST-NG).
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[87.4% (84.9–90.5), 87.4% (86.4–89.9) and 87.1% (78.9–88.4), respectively], whereas the specificity was high 
depending on the experience [experts, fellows, and beginners; 97.3% (96.4–98.2), 96.4% (93.6–98.2), and 93.2% 
(89.1–98.2), respectively]. The AI system analyzed all 4,840 images in 106.0 s (average, 21.9 ms/image), whereas 
endoscopists required median 725.2 s (IQR = 655–914) to analyzed the 309 images (median, 2.4 sec/image).

Accuracy of the AI flag localization was shown using intersection over the union (IOU) (Fig. 4b). If we defined 
poor = IoU < 0.5, good ≥0.5, <0.7, excellent ≥0.7, Good and Excellent was 91%, indicating AI flag is almost 
correct for lesions detection. Representative images of various IOUs were shown in the Supplementary Fig. 3.

Moreover, a comparison between the rectangle size of the flag and confidence score in the validation set 
illustrated that the confidence score varied greatly in the small rectangle size of the flag (Supplementary Fig. 4). 
Representative images of various rectangle sizes of the flags were shown in the Supplementary Fig. 4. Data from 
the images with lesion suggests that the AI system tend to detect the lesions when the rectangle size of the flag is 
large.

The high diagnostic performance was also validated in the independent video image sets (Table 4). If we 
defined the sensitivity and specificity as correct frame number in all frame number (definition 1), the sensitivity, 
specificity, false negative rate (FNR), false positive rate (FPR) with lesion and FPR without lesion was median 
74.0% (interquartile range 47–85), 94.5% (89–98), 26.1% (15–53), 1.2% (0.1–8.7) and 5.5% (1.9–10.6), respec-
tively. If we define the sensitivity as lesions that the AI system correctly detect the lesion consecutive 5 or more 
frame one time or more, and specificity as consecutive 5 or more correct frame number in all frame number 
(definition 2), these values are 100% (57/57 lesions), 98.0% (94.6–99.5), 0% (0/57 lesions), 0% (0.0–28.7) and 
2.0% (0.5–5.4), respectively. If we define the sensitivity and specificity as correct when 50% or more of the entire 
frame is a correct frame, and calculate number of correct videos or correct number of lesions (definition 3), these 
values are 70.2% (40/57 lesions), 100% (77/77 colonoscopies), 29.8% (17/57 lesions), 0% (0/57 lesions) and 0% 
(0/77 colonoscopies), respectively. Although the value varies depends on the definition in the video analysis, the 
strictest definition 1 even had the high diagnostic performance. Furthermore, scatter diagrams of sensitivity and 
specificity divided for each endoscopy vendor illustrated that distribution of the plots was resembling regardless 
of the endoscopy vendor (Supplementary Fig. 5).

Discussion
In this study, we developed a real-time endoscopic image diagnosis support system using deep learning tech-
nology in colonoscopy. Although prior studies attempted to develop AI systems for detecting gastrointestinal 
tumors31–38, the diagnostic performance and processing speed were unsatisfactory to use in real-time. Recent 
two studies using deep learning technology for detection of colorectal polyps reported meaningful and valua-
ble data, however, detection for non-polypoid lesions is unclear39,40. This is a clinically critical question because 
the non-polypoid lesion is a target lesion in this kind of AI system that support human physician because we 
can detect polypoid lesions easily. The strengths of our AI system include (1) its high diagnostic performance 
using approximately 5,000 images of more than 2,000 lesions, (2) the inclusion of approximately 3,000 images of 
more than 500 non-polypoid superficial lesions in the training set, and (3) its nearly real-time processing speed. 
These results demonstrate that this AI system can be used to provide real-time feedback to physicians in clinical 
practice.

Given that we aim to use the AI system during colonoscopy without interrupting any doctors’ operations, 
we developed the real-time system, which enables fast detection. In addition, the principal aim of this AI system 
was to prevent missed lesions during colonoscopy; therefore, superior sensitivity and specificity are required, 
compared with those archived standard endoscopists. The sensitivity of our AI system for diagnosing early-stage 
CRC and precursor lesions was consistent with recently reported data for deep learning in skin cancer and dia-
betic retinopathy18,19. With regard to the specificity, high specificity is needed because it is extremely difficult to 
perform colonoscopy twice for the same patient due to the bowel preparation procedures. The validation study 
was conducted using images from three major endoscopy vendors, and there was no significant difference in the 
AI diagnostic performances among the three vendors. Therefore, we considered that the developed AI model 
could be used vendor-free when we train the AI model more. Further, because video images have a resolution of 

Figure 2.  Represented schematically outline of the developed artificial intelligence system.
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30 frames/s, if the specificity is low, the high false-positive rate will be an obstacle to its use in colonoscopy. The 
present data illustrates that the AI system we developed is an ideal tool to use in colonoscopy.

Another expected benefit of the developed system is to improve the quality of colonoscopy. Corley et al. 
reported that a 1.0% increase in the adenoma detection rate expected a 3.0% decrease in the risk of PCCRC6. 
However, the quality of colonoscopy is usually affected by the skills gap among endoscopists. Rex et al. previously 
reported a polyp miss rate of 17%–48% in a tandem study11. This AI support system is expected to improve the 
detection of neoplastic colorectal polyps and equalize the quality of colonoscopy. Additionally, the AI system 
can comprehensively analyze whole endoscopic images, which compensates for the limitations of the human 
field of vision, and reduces the risk of missed polyps. This type of AI system is likely to be applicable for wide 
field-of-view endoscopy, a recent technological advancement in colonoscopy41–44. Indeed, it was reported that the 
devices provide up to 330° of view could improve the adenoma miss rate as large as 34%44. Moreover, the number 
of monitors used by endoscopists has also been increasing. Even under multiple monitors, this AI system is pos-
sible to sufficiently support endoscopists because of compensating for the limitation of the human field of vision.

The lack of robust computations have limited the utility of computer-aided diagnosis systems for decades45. 
As a consequence, we planned to set several stages to obtain a robust computation as follows: (1) learning still 
and video images from consecutive patients, (2) learning images captured from a high number of endoscopists 
(more than 30 endoscopists), and (3) learning slightly elevated and depressed lesions, which have a low preva-
lence among colorectal tumors46. A robust AI system can potentially overcome gaps in colonoscopy skills among 

Figure 3.  Representative images of detected polyps. (a) A 10-mm adenomatous polyp (polypoid type). (b) 
A 2-mm adenomatous polyp (polypoid type). (c) A 4-mm adenomatous polyp (slightly elevated type). (d) A 
5-mm serrated lesion (slightly elevated type).

Sensitivity*, (n) (95% CIs)

Specificity†, (n) (95% CIs)

With lesions Without lesions

All lesions (752 lesions) 97.3%
(732/752) (95.9–98.4)

90.9%
(638/702) (88.5–92.9)

99.0%
(4094/4135) (98.7–99.3)

Polypoid lesions (640 lesions‡) 98.1%
(628/640) (96.8–99.0)

90.4%
(535/592) (87.7–92.6) —

Superficial lesions (112 lesions‡) 92.9%
(104/112) (86.4–96.9)

95.9%
(93/97) (89.8–98.9) —

Table 2.  Diagnostic performance of AI system for detecting and displaying early stage colorectal cancers and 
precursor lesions in still images. *Sensitivity was defined as AI correctly detected lesion number/number of 
all lesions; †Specificity was defined as AI negative image number/true lesion negative image number (images 
without lesions); Correct answer was defined when AI detect and display loci of lesion by flag when the all three 
observers didn’t detect any lesions outside the flag or no flag, or when AI detect and display no loci when the 
image shows truly no lesion. ‡Since 13 images included both polypoid and superficial lesion, they were excluded 
from the subgroup specificity analysis (with lesions).
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physicians, and the expanded use of our developed system; for instance, the application by utilizing computer 
clouds may enable the global use of the AI support system at low cost.

We used Faster R-CNN model that is one of the two-stage detectors for lesion detection model even though we 
know that some one-stage detector like YOLO could be also available47. The reason why we did not use the YOLO 
algorithm is that one-stage frameworks typically show much poorer performance on detecting small objects than 
two-stage architectures48,49. Such characteristic is undesirable for lesion detection. In addition, given that the 
lesions do not intersect during the colonoscopy examination, we conclude that tracking procedures are not nec-
essary from the viewpoint of clinical applications. For the above reasons, we consider that it’s critically important 
to detect early-stage small lesion. To train the Faster R-CNN model for lesion detection, we used a Faster R-CNN 

Figure 4.  Comparing diagnostic performance between the AI system and endoscopists, and Intersection over 
the union (IoU) for the lesion detection. (a) Diagnostic performance was represented by the receiver-operating 
characteristic curve with AUC = 0.9752. Each orange, gray, and yellow point represents the sensitivity and 
specificity of an endoscopist. (b) If we defined poor = IoU < 0.5, good ≥0.5, <0.7, excellent ≥0.7, Good and 
Excellent was 91%, indicating AI flag is almost correct for lesions detection.

All endoscopists n = 12 Experts n = 3 Fellows n = 5 Beginners n = 4 AI

Sensitivity 87.40% 87.40% 87.40% 87.10% 97.30%

median (range) (78.9–90.5) (84.9–90.5) (86.4–89.9) (78.9–88.4) (95.9–98.3)

Specificity 96.40% 97.30% 96.40% 93.20% 99.00%

median (range) (89.1–98.2) (96.4–98.2) (93.6–98.2) (89.1–98.2) (98.6–99.2)

Processing time 2.4 sec/image 2.7 sec/image 2.2 sec/image 2.4 sec/image 0.022 sec/image

median (range) (1.5–12.9) (2.1–4.7) (1.5–8.7) (1.7–2.9)

Table 3.  Diagnostic performance of the artificial intelligence (AI) system and endoscopists for detecting early-
stage colorectal cancer and precursor lesions. AI, artificial intelligence. Endoscopists were tested 309 images 
while AI did 4840 images.

With lesions§ Without lesion

AI flag Sensitivity False positive False positive

Present 74.6% (47.0–85.1) 1.1% (0.1–8.3) 5.5% (1.9–10.6)

Def. 1* 100% (56/56 lesions) 0% (0.0–1.6) 2.0% (0.5–5.4)

Def. 2Ɨ 69.6% (39/56 lesions) 1.8% (1/56 lesions) 0% (0/77 colonoscopies)

Def. 3ǂ

Absent False negative

—

Specificity

Def. 1* 25.4% (14.9–53.0) 94.5% (89.4–98.1)

Def. 2Ɨ 0% (0/56 lesions) 98.0% (94.6–99.5)

Def. 3ǂ 30.4% (17/56 lesions) 100% (77/77 colonoscopies)

Table 4.  Diagnostic performance of AI system for detecting and displaying early stage colorectal cancers and 
precursor lesions in 77 videos frames. Data shows median (interquartile range). *Definition 1 = correct frame 
number/all frame number. ƗDefinition 2 = consecutive 5 or more correct frame number/all frame number. 
ǂDefinition 3 = correct when 50% or more of the entire frame is a correct frame, and calculate number of correct 
videos/number of lesions. §56 colonic lesions were included in the 77 videos. Def., definition.
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model trained with ImageNet dataset as a pre-trained model, and then the pre-trained model was fine-tuned 
with group 1 and 2 images (1,244 still images of 1,379 polypoid lesions, 891 frames of 173 consecutive lesions and 
134,983 frames of noncancerous tissue from videos). The pre-trained model, trained for 1,000 object category 
recognition task of ILSVRC2012, can extract a kind of universal features such as edges and curves50. Among those 
features, some effective features for lesion detection are enhanced during the fine-tuning procedure. This transfer 
learning technique makes it possible to train high accuracy lesion detection model, while it’s generally hard to 
train models from scratch using only 2,135 images of lesions and 134,983 frame images of noncancerous tissue.

As for the issues of the system we developed in this study. this AI system failed to recognize 20 lesions in the 
images (false-negative rate of 2.7%). These missed lesions were captured obliquely along the edges of the images, 
or they were hidden by the haustra of the colon, indicating that most of them will be detected when this AI system 
is used in real time in vivo with careful observation. Furthermore, on the basis of the relationship between the rec-
tangle size and confidence score, this AI system has weak performance to detect lesions in the distant areas of the 
image. This is reasonable because the lesion images used in the training set were captured when the endoscopists 
were aware of the presence of a lesion in the clinical setting. Therefore, we used consecutive video images in the 
second training period. Further accumulation of lesion images for training, including those in distant areas, may 
establish this AI system as a clinically available real-time AI support system.

In fact, this study was limited by its retrospective design. Additionally, we used consecutive lesions in one 
training period and in the validation set; the images in the training and validation sets were captured in a single 
high-volume center. However, more than 30 endoscopists captured the images, and one advantage of this AI 
system is its applicability to a number of endoscopes developed by two major distributors (Olympus Optical and 
Fujifilm Medical). Thus, this AI system must be more robust than other reported systems. Moreover, although 
there was no in vivo validation data in this study, we confirmed that the resolution of images was 30 frames/s, and 
that this AI system had high accuracy using video images. In addition, we are going to start in vivo clinical trials 
using this AI system.

In conclusion, we have developed an AI system that automatically detects early signs of CRC during colonos-
copy. This AI system can alert doctors to abnormalities such as polyps in real time during colonoscopy, allowing 
for improved early detection of the disease.

Methods
Patients and colonoscopy image samples.  This study was approved by the Ethics Committee of the 
National Cancer Center, Tokyo, Japan. All methods were performed in accordance with the Ethical Guidelines 
for Medical and Health Research Involving Human Subjects. Informed consent was obtained from each patient 
included in the study. All colonoscopic still and video images were obtained at this institution. We retrospectively 
collected images of colonoscopies performed between January 2015 and June 2016. The images were assigned 
to the training set of the deep learning model (obtained between January 2015 and April 2016) or the validation 
set (obtained between May 2016 and June 2016). All images were obtained using standard endoscopes (PCF-
Q240ZI, CF-H260AZI, PCF-Q260AZI, CF-HQ290AI, or PCF-H290AZI; Olympus Optical Co., Tokyo, Japan and 
EC-580RD/M, EC-590MP, EC-590ZP, EC-590WM3, EC-600ZW/M, EC-600WM, EC-L600ZP; Fujifilm Medical 
Co., Tokyo, Japan) and a standard video processor system (EVIS LUCERA system; Olympus Optical; Advancia 
HD or LASEREO system; Fujifilm Medical).

Real-time endoscopic image diagnosis support system.  To adapt the devised program to colonos-
copy, we developed an AI system. Specifically, the video image signal from the video processor system was input 
into a personal computer with graphics processing units (NVIDIA Geforce GTX 1080 × 2) via a capture device 
that converts the signal into image data. The computer program runs all video frames (30 frames/s) and exhaus-
tively analyzes each frame. When the AI system detects a lesion, it flags the locus and provides an audio alert.

Validation of the AI system.  To compare diagnostic yields between the AI system and endoscopists, an 
observation study was performed using randomly selected images from the validation set (199 images with 
lesions and 110 images without lesions) which is independent of the training set. A written informed consent 
was obtained from all participated endoscopists. The endoscopists were classified into experienced (≥5,000 colo-
noscopies, three endoscopists), fellow (<5,000 colonoscopies and certification by the Japan Gastroenterological 
Endoscopy Society, five endoscopists), and beginner groups (<5,000 colonoscopies and no board certification, 
four endoscopists). The observers were blinded to both the histopathological diagnosis and clinical information, 
and the images were evaluated randomly to calculate the human diagnostic yield for each observer.

Statistical analysis.  The performance of the developed AI system was evaluated by estimating the sensitivity 
and specificity with their Clopper-Pearson exact 95% confidence intervals (CIs). The flag was set to display the 
locus when the confidence score exceeded 0.1. The sensitivity was defined on a lesion-basis and estimated as the 
proportion of AI correctly flagged lesions among the pre-defined lesions. The specificity was defined on an image 
basis. We estimated two types of specificity: one was the proportion of no flag images among the images without 
lesions, the other was the proportion of the images with no flag within no lesion region among the images with 
lesions.

We also calculated a receiver-operating characteristic (ROC) curve and the area under the curve (AUC) based 
on the different cutoffs of confidence scores of the AI system for each image with or without lesions using the 
validation set. The first specificity above was used for ROC analysis.

To validate accuracy of the AI flag localization, we calculated intersection over union (IoU). IoU demonstrates 
the rate of correct area in entire area of the flag (ground truth and AI flag). If there were two or more AI flag in one 
image, AI flag with highest confidence score was chosen for this IoU analysis.
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